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Discrete Constitutive Equations in A-� Geometric
Eddy-Current Formulation

Ruben Specogna and Francesco Trevisan

Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica Università di Udine, 33100 Udine, Italy

Using a geometric formulation for eddy currents, we present a geometric approach to constructing approximations of the discrete
magnetic and Ohm’s constitutive matrices. In the case of Ohm’s matrix, we also show how to make it symmetric. We compared the
impact on the solution of the proposed Ohm’s matrices, and an iterative technique to obtain a consistent right-hand-side term in the
final system is described.

Index Terms—Cell complexes, cell method, constitutive matrices, eddy currents.

I. INTRODUCTION

THE role of geometry in the discretization of continuous
field equations and of constitutive equations [6], [7], [20],

[21], reveals to be very important in the derivation of the alge-
braic systems of equations with respect to a finite-element mesh.
We will start from an algebraic formulation, named - and
proposed in [24], to solving eddy currents in linear media. To
underline the geometric structure behind this formulation, we
will collocate it within the so-called Tonti’s diagram [19].

We will also focus on discrete constitutive equations,
proposing an efficient way to compute geometrically the
discrete magnetic constitutive matrix and different ways to
compute Ohm’s discrete constitutive matrix. We will show how
a symmetric Ohm’s matrix can be obtained. The interest in this
kind of research is documented also in [9], [17], and [10] for
the case of electric constitutive matrix in wave-propagation
problems.

As a test problem we will consider a benchmark, proposed
and developed by the University of Perugia in the framework
of an Italian research project on nondestructive testing (named
MADEND project [8]). We will compare the numerical results
obtained solving the reference problem, with those from a com-
mercial finite-element code, when different Ohm’s matrices are
used. Finally, convergence and accuracy between the proposed
approach and finite elements will be examined numerically with
respect to the same mesh.

II. PRELIMINARIES

The domain of interest consists of a conducting region ,
where a conductor is present (containing a defect), of a source
region , where a coil with a specified geometry and with im-
pressed current is located, and an air region , which is the
complement of and in . The field quantities of interest
in an eddy-current problem can be represented with differen-
tial -forms [4], [11], such as the 1-form of the electric field,
the 2-form of the induction field, the twisted 1-form of the
magnetic field and the twisted 2-form of the current density.
We introduce in a pair of interlocked cell complexes: The
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primal and its barycentric dual , [5, p. 136], [22]. The -cells
of are simplices, such as nodes ,
edges , faces (triangles) , and volumes (tetra-
hedra) all endowed with inner orientation. The -cells
of are all endowed with outer orientation
and are obtained from according to the barycentric subdivi-
sion. The pair forms the mesh . The mutual inter-
connections of the primal cell complex are described by the
incidence matrices: between edges and nodes , between
faces and edges , and between volumes and faces . The
matrices , , and 1 describe the mu-
tual interconnections of .

We use the de Rham map , [7], which sends a -differential
form to the corresponding array of degrees of freedom (DoF)
relative to the corresponding -cells of mesh . Therefore, we
have that is the array of fluxes on primal faces ,

is the array of electromotive force on primal edges ,
is the array of magnetomotive force (MMF) on dual

edges and is the array of currents on dual faces .
The DoF arrays are regarded here as functions of a time instant.
Physical laws governing an eddy-current problem can now be
written directly in an algebraic way as follows:

(Gauss law) (Ampere law)

(Faraday law) (continuity law)

(1)

Physical laws written in this way are metric independent and
they are exact independently of the size of the mesh . On the
contrary, constitutive laws are pointwise relations between fields
and, to discretize them on a mesh, we need to compute discrete
approximated operators linking the DoF arrays such as

(2)

where and are some square mesh- and medium-dependent
matrices that require metric notions, material properties, and
some hypothesis on the fields in order to be computed. The dis-
crete eddy-current problem (DEC), for the mesh , consists of
computing the arrays , , , and , such that (1) and (2) hold

1The minus sign comes from the assumption that n is oriented as a sink,
whereas the boundary of ~v is oriented by the outer normal.
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Fig. 1. Tonti’s diagram for eddy currents.

simultaneously, when sources are assigned in as impressed
currents together with initial and boundary conditions.

III. GEOMETRIC FORMULATION FOR EDDY CURRENTS

A possible way to solve the DEC problem is to introduce a
pair of potentials and such that is the array of
gauge function values on primal nodes of and is
the array of circulations of magnetic vector potential on primal
edges of , respectively. Considering the array
associated with primal edges , Gauss’s and Faraday’s laws in
(1) are satisfied identically2 when we write respectively

(3)

Combining (1), (3), and (2), we obtain, in the frequency domain
, the following equations:

,
, (4)

where the DoF arrays are now complex variables. This is the
so-called - geometric formulation. From it, being arbitrary,
the so-called formulation [14] may be obtained as a particular
case, by eliminating and the last set of equations in (4); the
convergence of formulation depends strongly on the choice
of the preconditioner as shown in [15], [16], and an appropriate
state of the art preconditioner may exhibit a superior conver-
gence behavior in comparison with - formulation.

A synthetic tool that gives relevance to the geometric aspects
and allows to derive the above equations is the Tonti’s diagram
(for a comprehensive description, see [19]). Here, we derive it at
discrete level for our DEC problem, Fig. 1. On the left side of the
diagram, two vertical pillars are drawn, where each DoF array3

is associated with the corresponding geometric element of the
primal cell complex (nodes to volumes, from top to bottom).

2MeshM is formed by cell complexes and, hence, the identitiesDC = 0,
CG = 0 hold.

3These DoF arrays are called configuration variables.

Fig. 2. Geometric elements of a meshM reduced to a single tetrahedron v.

On the right side of the diagram, only one of the two vertical
pillars needs to be drawn for the case of eddy currents, where
each DoF array4 is associated with the corresponding geometric
element of the dual complex (nodes to volumes, from bottom to
top). The dashed circles represent categories not used in the spe-
cific problem.5 The discrete constitutive equations (2) are rep-
resented as horizontal links from left to right. Along a vertical
pillar, we move from the variables on one level to the variables
on the successive level (for example, from on edges to
on faces ) of the primal or of the dual complex, using the in-
cidence matrices. This process6 allows us to form, at each level,
algebraic relations between variables such as the physical laws
in discrete form (1). We can derive the first set of equations in
(4), following the path 1-2-3-4 in the diagram (see Fig. 1). The
second set of equations in (4) comes from the path 1-2-3-4 to-
gether with the path 1-5-4. Finally, the last set of equations in
(4) corresponds to the path 1-5-4-6.

IV. DISCRETE CONSTITUTIVE EQUATIONS

Without losing generality, we may limit the primal mesh to a
single tetrahedron under the assumption of homogeneity of the
medium in it so that the reluctivity or the conductivity are
constants. All results derived in this particular case can easily be
extended to a mesh consisting of tetrahedra, where each element
may model different media. By linearity, the global matrices
or can be assembled from the contributions of the single el-
ements. Recalling a result demonstrated in [23], we will derive
the elements of a matrix in a very efficient way. We refer to
Fig. 2, where a primal edge is inner oriented from the lower label
to the higher label of its bounding nodes and a face is inner-ori-
ented in such a way that its orientation matches the orientations

4These DoF arrays are called source variables.
5For example the top left empty circle is reserved to the electric scalar poten-

tial V , not used in this formulation; its relation with � is V = d �, and for this
� is also referred to as time-integrated scalar potential.

6More formally, this is the co-boundary process.
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of two of its bounding edges. We inner-orient a cell according
to Möbius rule.7

We express the induction field in (denoted in roman type)
in terms of Whitney face elements and using Gauss’ law (1), we
obtain

(5)

where , with is the flux associated with face
and , with , is the vector associated with edge .
Field is uniform in , and MMF along a dual edge

becomes

(6)

where is the edge vector associated with . Then the th row
, with , of a possible constitutive matrix for the

considered mesh is

(7)

The constitutive matrix derived this way, is nonsymmetric and
singular, but what really matters is that the matrix is sym-
metric positive semidefinite [23], and that it coincides with the
matrix one can obtain using finite elements based on Whitney
edge elements [18].

Now we will deduce the discrete Ohm’s constitutive matrix
. We approximate the electric field vector in each cell by

means of an affine field. A simple way to generate in an affine
, from the six voltages on primal edges , is

(8)

where is the th Whitney
vector function of degree 1 associated with edge (of nodes

, ) and is the affine nodal function for node , is
any point in . The current density vector is
affine in , and the electric current across a dual face (with
associated area vector , see Fig. 2) becomes

(9)

where is the current density evaluated at the barycentre
of the dual face . Then the element of a constitutive

matrix for the considered mesh is

(10)

The matrix obtained this way is nonsymmetric but, it is easy
to prove in a way similar to that shown in [23], that the ma-
trix is still symmetric and positive semidefinite, and it co-
incides with that from nodal finite elements based on Whitney
nodal functions.

7The rule states that the orientations of two adjacent faces counter match on
the common edge.

This constitutive matrix makes the global system matrix
in (4) nonsymmetric. We will now suggest two approaches to
derive a symmetric Ohm’s matrix.

A first approach considers the dissipated power in the con-
ductor region. We focus on a tetrahedron , and we write

; by substituting in it (8) for and assuming
uniform in , we have

(11)

where is the volume of and is its barycentre.8 Using the
geometric interpretation of shown in [23], we can express

as

(12)

where and are the area vectors associated with faces
and , respectively, , are incidence numbers between
inner orientations of faces , , respectively, and inner orien-
tation of . For example (see Fig. 2), attached to edge with
nodes and , becomes . Now
from a pure geometric property in a tetrahedron with barycen-
tric subdivision, we have that
holds; for example (refer to Fig. 2), . Being

, (12) becomes

(13)

and substituting it in (11), we have

(14)

Now we may set the uniform current density to
, where we use (8) for E. This corresponds to consider in

an average current density vector that coincides with the average
of in (9), with , being .
Therefore, (14) becomes

(15)

This way, we derive the elements of a constitutive matrix as

(16)

where it is straightforward to see that and that
is singular, but still holds. The elements
in (16) coincide with those of the so-called mass matrix of edge
elements (see [5]), provided that we compute the integrals using
a 1-point quadrature formula, the quadrature point being located
in the barycenter of the tetrahedron.

8The order of this approximation of P is O(s), where s is the size of the
mesh.
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A second approach, purely numerical, consists of decom-
posing in (10), in its symmetric (positive definite) and anti-
symmetric parts as

(17)

It follows that and again holds. It
can be also verified that . Thus, we consider
only neglecting .

As the mesh size approaches zero, we have that tends to
; because is structurally symmetric and the norm of is

negligible with respect to the norm of , we have also that
will tend to .

V. DETERMINATION OF THE SOURCE CURRENTS

We will solve system (4) without gauging, using an iterative
solver for nonsymmetric matrices based on the conjugate gra-
dient (from NAG numerical libraries). To assure consistency of
the known term in (4), we need

(18)

where is the source current vector in . To compute a
solenoidal , different approaches can be used such as those
presented in [2], [12]. The approach we follow here starts from
a prescribed current density vector in . In our case the
coil is circular, and we choose of constant amplitude and
tangent to a generic circle laying inside the coil region and
coaxial with the coil itself. But in general, a more complicated
coil shape can be considered as well. For each tetrahedron

, we compute the current , with ,
with the barycenter of the portion of a dual face tailored
inside the tetrahedron . Then for each dual face in , we
add the total current associated with that dual face. The source
currents thus obtained do not comply with (18). Thus, we form
a tree and a co-tree based on primal nodes (one-to-one with

) and primal edges (one-to-one with ) in . Like in basic
circuit theory, we keep the currents associated with the edges
of the co-tree and we determine the currents associated with the
tree edges consistently with (18). We impose this iteratively,
without solving any linear system. The algorithm scans all the
nodes in and considers the star of edges relative to each
node as follows:

1) if the star of edges has only one tree edge, with current
not yet computed, then compute the corresponding cur-
rent consistently with (18) from the other currents relative
to that node;

2) remove that node from the list of nodes;
3) restart from 1) until the list of nodes is empty.

Typically the algorithm converges in few iterations.

VI. NUMERICAL EXPERIMENTS AND RESULTS

As reference test problem, we consider the MADEND bench-
mark 1 (see [13] for a detailed description). It consists of a probe
coil (400 turns, 10 mm height, 12 mm inner diameter, 18 mm
outer diameter) placed above an aluminum plate (4 mm thick)

Fig. 3. Benchmark problem geometry.

TABLE I
RESULTS FROM DIFFERENT TYPES OF ANALYSIS

having 0.5 mm of average lift-off, (Fig. 3 on the left). The volu-
metric defect is a perfectly insulating cylindrical hole
of 1 mm diameter crossing the plate. A reference coil, identical
to the probe coil described above, is placed in a region of the
metallic plate without defects. The coils are fed with a sinusoidal
current of frequency Hz and are connected to a bridge
to measure the voltage variation across the two branches of
the bridge, for different relative positions between the probe
coil and the hole. The voltage variation de-
pends on according to the prescribed nonlinear
characteristic function of the bridge, where is the flawless
impedance and is the defected plate impedance.

We studied the impact on , of the proposed Ohm’s con-
stitutive matrices , and , with respect to the same mesh
of 30782 tetrahedra. We also compared the results obtained
this way, with those from a commercial finite-element code
(ANSYS 7.0) based on the formulation [1], again with
respect to the same mesh of 30782 tetrahedra. In Table I we
show the amplitude of the voltage variation instead of

when mm. We used the same iterative solver
for nonsymmetric sparse complex matrices in the three cases
based on a conjugate gradient squared iterative method with
SSOR preconditioning (the over-relaxation coefficient used is

) of the NAG scientific library; the CPU time on a
portable Pentium IV with 0.5 GB RAM, 1.9 GHz is about the
same in the three cases (88 s as maximum, of which, 68 s for
generating geometric data and assembling the final system,
while 20 s are needed for its solution, in 87 iterations) for one
eddy-current analysis.

Finally, in Fig. 4, we compare the convergence of (on the
top) and (on the bottom), when the number of elements is
increased up to 130 000 (14.50 min of CPU time, 140 iterations).
With ANSYS, we avoided simulations above 40 000 elements
due to heavy memory requirements.
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Fig. 4. Covergence of jZ j (on the top) and of j�U j (on the bottom) values
versus the number of tetrahedra.

VII. CONCLUSION

The geometric frame of Tonti’s diagram is used to derive the
algebraic equations of the so-called - geometric formulation
for 3-D eddy currents. Different approaches to construct mag-
netic and Ohm’s discrete constitutive matrices have also been
proposed evidencing how to construct a symmetric Ohm’s ma-
trix. Finally, we suggested a way to compute the current sources
consistently with discrete continuity law, so that an ungauged
approach can be efficiently applied. The results, thus obtained,
are in a very good agreement with those from a commercial FE
code.
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