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In this paper, we present numerical models and experimental benchmarks for eddy current testing (ECT) applications, developed
within the methods and applications of nondestructive electromagnetic diagnostic (MADEND) research project. We compare and val-
idate two different numerical methods for eddy current calculation in the framework of ECT (an integral formulation implemented
on a parallel computer system and a discrete formulation based on a geometric approach) by using specifically designed experimental
benchmarks and a commercial finite element method based on a differential formulation.

Index Terms—Discrete geometric approach, eddy current testing (ECT), integral formulation.

1. INTRODUCTION

HE aim of this work is to present some analysis method-

ologies and experimental benchmarks specifically devel-
oped for the solution and validation of the direct problem in eddy
current testing (ECT). These research activities have been devel-
oped in the framework of the Italian research project methods
and applications of nondestructive electromagnetic diagnostic
(MADEND). Of the various analysis methods, the integral for-
mulation implemented in the CARIDDI code has been greatly
improved thanks to a parallel implementation, and to a reduction
of the computational effort from O(n?) to O(n log(n)) achieved
by using the precorrected fast Fourier transform (FFT) method
and the fast multipole method (FMM) [1]. In addition, a discrete
geometric formulation has been developed based on a geometric
reinterpretation of the physical laws and of the constitutive laws
of magneto-quasistatics referred to a pair of cell complexes, one
being the dual of the other [2]. Typical output quantities in both
approaches can be the variations, produced by a defect, in the
magnetic flux density (at prescribed points) or in the impedance
at coil leads. In order to validate and compare these formula-
tions, a number of experimental benchmarks [3] have been de-
fined and built with different types of defects. Moreover numer-
ical simulations with a commercial finite elements code have
been considered in addition.

II. CARIDDI INTEGRAL FORMULATION

The CARIDDI code is based on an integral formulation of
the eddy current problem [1]. The integral formulation is ob-
tained by assuming as unknown the electric vector potential T
expanded in terms of edge elements based shape functions and
applying the Galerkin method. Uniqueness is enforced by the
tree-cotree decomposition [4]. The eddy current density is given
by J = V x T where T(r) = >, I;Ny(r) and Ny, is the
kth shape function. For time harmonic fields (the exp(jwt) time
dependence is assumed), linear and nonmagnetic materials, the
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column vector I of the degrees of freedom I;.’s is solution of
the linear system ZI = V where Z = R + jwL, R, and L are
properly defined matrices and V is a column vector depending
on the assigned source current density. We highlight that only
the conductive domain needs to be discretized, that regularity
conditions at infinity are automatically taken into account and
that L is a full matrix whereas R is a sparse matrix.

In the framework of ECT, two different lines have been pur-
sued to reduce the computational cost and to increase the ac-
curacy. The first takes advantage of the fact that in many prac-
tical situations: i) ECT is applied to image spatially localized
conductivity perturbations (crack detection and imaging) and
ii) it is relatively easy to locate a subregion Vr (the tentative
region) of the conductor that is candidate to contain the crack.
This can be properly taken into account to obtain an integral
formulation yielding a reduced linear system of the order of
the shape functions N, not vanishing in V. Specifically, (see
[31, [4] for details) the unknown vector I can be decomposed as
I = Kx+ Qa+ B, where the column vector x accounts for the
current density flowing outside Vr, a accounts for the current
density flowing in V but outside the crack (assumed to be con-
tained in V), K and Q are suitably defined matrices (see [5],
[6]) and B, is a vector arising from the superposition principle
(the effect of the crack is obtained by adding a suitable imposed
source current density in the crack volume). The effectiveness of
the previous decomposition lies in the possibility of computing
a by solving a “small” linear system and obtaining x from «
and B, by linear mapping: x = Aa + Cf, where A and B are
suitable matrices [5], [6].

The second line for efficiently computing the eddy currents
within the ECT framework, consists of reducing the computa-
tional cost for the ZI matrix-vector product in order to solve
Z1 = V by an iterative method such as GMRES. The compu-
tational cost for computing this product comes solely from the
full matrix L. Therefore, the key problem is the development of
an efficient algorithm for computing the LI product.

To this purpose, it is worth noting that the :th component of
the LI product is given by st A -V x N,;dV where A is the
vector potential produced by the current density represented by

0018-9464/$20.00 © 2005 IEEE



CARDELLI et al.: ANALYSIS METHODOLOGIES AND EXPERIMENTAL BENCHMARKS FOR ECT

the degrees of freedom of I. Therefore, the central problem is
the rapid computation of the vector potential produced by I. To
this purpose, we have exploited two different strategies, namely
the precorrected FFT [7] and the FMM [8]. In both approaches
we have exploited the feature whereby the far field produced by
a given source current density does not depend on the details of
the source distribution. Therefore, we treated the far and the near
interactions separately. The near interactions can be accounted
for by using a sparse matrix L"°*", whereas the far interactions
by using a full matrix L, ie, L = Lfr 4 L2 The pre-
corrected FFT and the FMM differ in the method used for com-
puting the far distance interactions (and, consequently, the near
interactions).

In the precorrected FFT, we replace the current density de-
scribed by I with a properly chosen (see [7] for details) source
onto a regular Cartesian grid containing the conducting domain.
Then, the vector potential produced by these sources is com-
puted by means of the FFT thanks to the translationally invariant
structure of the static free space Green function appearing in (1).

In the FMM, initially proposed in [9] for solving the Laplace
equation and extended in [7], [8] for solving eddy current
problems, the computation of the far interactions is carried
out by using multipoles expansion. Specifically, the vector
potential involved in the computation of the interactions with
the ¢th shape function is written as A = Anear 4 Afar where
A (r) = (o) /(4) [,y (3(&'))/(x —2/)dV", AP (x) =
(110)/(4m) fVC\Bq_ I/ (r - r’|)dV’, ; is a cubic box
of size [ containing the support of V x IN; and J is
the current density represented by I. Each component of
the vector potential Afar js harmonic in B; and it can,
therefore, be expanded by a local expansion A™'(r) =
(10)/(47) 0 o Yo Lt Y116, ) + O 1370 +1)/2)
where L)' is the vector of the local expansion coefficients
and p is the order of the local expansion. Consequently,
(LD); = (L*D); + (po)/(4m) 3250 Dome—p Lt MG +
O3~ +1)/2) where M; ™ is the multipole of degree n and
order m of V x N; and L"®" a sparse matrix. The efficiency
of this scheme stems from the fact that the FMM allows the
coefficients L to be recursively computed for any box, order
and degree, with a nearly O(n) computational cost.

III. DISCRETE GEOMETRIC FORMULATION

We introduce in the domain of interest (containing the
conductive region V) a pair of interlocked cell complexes:
the primal K and its dual f( [10], [11]. The p-cells of

= {N, E, F,V} are simplices, such as nodes, edges, faces
(trlangles) and volumes (tetrahedra) all endowed with inner
orientation. The p-cells of K = {N, E, ', V'} are all endowed
with outer orientation and are obtained from K according to
the barycentric subdivision. The pair (K, K ) forms the mesh.
The mutual interconnections between the cell complex K, K
are described by the incidence matrices: G between edges and
nodes, C between faces and edges, and D between volumes
and faces. The matrices G = DZ,C = CT, and D = —G7
describe the mutual interconnections of K. The arrays of De-
gree of Freedoms can be associated univocally to the elements
of K or K. We have that U is the array of voltages on primal
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edges, ® is the array of fluxes on primal faces, F is the array of
magnetic voltages on dual edges and I is the array of currents
on dual faces. In our linear eddy current problem with sinu-
soidal source currents, we apply the complex transformation
to the above time harmonic arrays. The physical laws of the
eddy-current problem, can be written exactly, regardless of the
size of the particular mesh, as follows D® = 0 (Gauss’ law),
CF =1 (Ampere’s law), C U = —iw® (Faraday’s law),
DI =0 (continuity law).

Constitutive equations in discrete form are a finite dimen-
sional linear operator (i.e., a matrix) linking some physical vari-
ables referred to a complex with other physical variables re-
ferred to the other complex. In our discrete quasistatic problem,
the discrete magnetic and Ohm’s constitutive equations are re-
spectively F = v .1 = ¢ U where v, o are two square ma-
trices (F' x F' and E x E respectively) containing material prop-
erties and metric notions. These matrices can be derived using
a geometric approach [2], [12] under the assumption of unifor-
mity (or uniformity in subregions) of the fields in each primal
cell, while reluctivity and conductivity are assumed as constants
within each tetrahedron.

One possible way to solve the discrete eddy-current problem
is to introduce the array x of gauge functions values on primal
nodes of the conducting region and the array a of circulations
of the magnetic vector potential on primal edges. In this way
Gauss’ law and Faraday’s law are satisfied identically when we
write respectively ® = C aand U = —iw (a+ Gyx), being
DC =0and CG = 0.

A first set of equations, relative to the primal edges, is de-
rived by substituting in Ampere’s law the discrete magnetic
constitutive equation, where the array of fluxes is expressed in
terms of a. We obtain CvCa = I, where I is null in noncon-
ducting regions. A second set of equations can be written, rela-
tive to the primal edges in V.. by substituting in Ohm’s constitu-
tive equation, Faraday’s law and the previous relation, obtaining
[CrC+iwela+iwoGy = 0. The last set of equations is written
for the primal nodes in V,, by substituting the Ohm constitutive
equation and Faraday’s law in the continuity equation. We ob-
tain iwDoa + zchrGX = 0. It has been proven (see [11] for
details) that CvC is symmetric positive semidefinite (and anal-
ogously also for Do G). It coincides with the one that can be ob-
tained using edge elements based on the Whitney complex. On
the contrary the o matrix is not symmetric, which makes the dif-
ference with standard finite elements equations. A code based on
the above described formulation has been implemented and op-
timized using FORTRAN 90 as the programming language and
NAG library routines to iteratively solve the final linear system
with conjugate gradient without gauging techniques.

We modeled the volumetric defect, assumed to be perfectly
insulating, with a collection of dual faces. Then we imposed a
zero current across each of the dual faces approximating the
defect. Thanks to the linearity property, with a first eddy cur-
rent analysis we computed the currents crossing the defect dual
faces, when the defect volume is treated as a conductor. Then we
performed a second eddy-current analysis, without the source
current, feeding the set of defect dual faces with a current op-
posite to that in the flawless case. In order to solve this second
problem, we modified the equation relative to edges and nodes
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Fig. 1. Geometry of the benchmark problems (a), (b), (c).
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Fig. 2. Electrical circuit linked to probe coil.

of the conductor as described in [2]. In this way the impedance
variation becomes the ratio between the induced voltage in the
second eddy-current analysis and the impressed current per turn
in the coil, used in the first analysis.

IV. BENCHMARKS AND EXPERIMENTAL SET-UP

The numerical and experimental data were compared with re-
spect to the three benchmarks a), b), and c) described in the fol-
lowing. On a 4 mm thick aluminum plate there is an artificial
defect of cylindrical shape, 1 mm in diameter and 4, 3, and 2
mm in height, respectively (see Fig. 1). The detection technique
based on the impedance variation of a probe coil is well known
and widely studied and used for many applications. In particular
it is possible to detect a thin crack in a metallic body by indirect
measurement of the impedance variation of a probe coil, using
the electrical circuit represented in Fig. 2. V' is an ac voltage
source, R is a bridge resistance, Z is the impedance of a probe
coil placed on a metallic plate, Z> is the impedance of a ref-
erence coil. The probe coil has 400 turns, is 10 mm in height,
12 mm in inner diameter, 18 mm in outer diameter and 0.5 mm
in average lift-off. The reference coil is identical to the probe
coil described above and is placed in a defect-free region of the
metallic plate. The values Z5 and Z; coincide when the probe
coil is far from the defect location. It is possible to determine the
defect location in the metallic plate by moving the probe coil on
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Fig. 3. Picture of experimental set-up.
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Fig. 4. Comparison of the three different numerical formulations with
measurements (benchmark a).

the metallic plate surface and by measuring the voltage V¢ be-
tween the nodes B and C (see Fig. 2). This particular topology of
the electric circuit gives an output signal Vpc which is immune
with respect to the change of the voltage source value and to the
thermal phenomena of the probe coil. Critical points for the ex-
perimental procedure are the positioning system for the probe
coil with respect to the cracks on the metallic plate and the pa-
rameter acquisition system. The experimental set-up (see Fig. 3)
consists of a two-dimensions automatic positioning system: 1)
with a resolution of 0.1 mm; 2) a signal voltage analyzer with
aresolution of 1 1V for the V¢ measurement; 3) an amplified
signal generator for the electrical circuit supply; and 4) a dedi-
cated software + digital control. In particular the probe coil path
and the acquisition time of each point of measure can be com-
puter-controlled [3].

V. NUMERICAL RESULTS

In order to compare the results we also used a commercial
code (ANSYS) based on the differential formulation of mag-
netic vector potential A and of the electric scalar potential V
inside the conducting region [13], using 6194 hexahedral ele-
ments. With the discrete geometric formulation we used from
35000 (benchmark 1) to 45000 (benchmarks 2 and 3) tetrahe-
dral (10546 elements in the conductor), taking 90 s of CPU time,
as maximum, on a portable PC with 1 GB Ram at 1.8 GHz. The
voltage AU (Vpc variation) from the integral, the discrete and
the commercial FE formulations are compared with each other
and with the experimental data, in Fig. 4 (benchmark a), in Fig. 5
(benchmark b) and in Fig. 6 (benchmark c). For the CARIDDI
integral formulation we realized that a minimal mesh made of
4224 elements (discretizing the conducting region only) was
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Fig. 6. Comparison of the three different numerical formulations with
measurements (benchmark c).

enough to reach an accuracy within a few percent. This mesh in-
volved 9378 unknowns, taking 164 s on a Beowulf parallel ma-
chine (sixteen nodes, each node consisting of a PIII-450 MHz,
512 MB RAM, BGB HDD).

We have seen a general agreement among the computed data,
like the ones reported in the paper, for all the benchmarks prob-
lems studied during the MADEND program.

This agreement is also extended to the measured data, if we
take into account the noise of the signal due to lift-off and in-
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strument uncertainties at signal levels of a few microvolts, such
as in our case.

VI. CONCLUSION

This paper is a report of two numerical approaches studied
and applied to nondestructive eddy current testing and evalua-
tion during the MADEND Italian scientific research program.
The examples of application to real eddy current evaluation
benchmarks, and the general agreement either with the com-
puted results, or with the measured data, suggest that the for-
mulations and the numerical approaches presented in the paper
can be considered as useful tools for the numerical modeling
and design of eddy current diagnostics devices.
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