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A �-Method for Eddy Currents in Time-Domain
With a Discrete Geometric Approach
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In this paper, a time-domain formulation for two-dimensional (2-D) eddy-current problems based on a discrete geometric approach is
presented. The method bears very strong similarities with a mass-lumped -type finite-element method (FEM) formulation. Analogies
and differences are highlighted, and a numerical experiment is reported.

Index Terms—Discrete approaches, eddy-currents, mass lumping, -method.

I. INTRODUCTION

THE aim of this paper is to develop a -method [1,
pp. 385–396], widely used in the finite-element method

(FEM) context, within the framework of discrete geometric
approaches (see, e.g., [2]–[4]) with a primal-dual time-domain
discretization. In discrete geometric approaches, the physical
laws between integral variables are exact independent of the
grain of the mesh, while the discrete counterparts of Hodge
operators [5] are approximate.

We will focus on the geometric construction of the discrete
counterparts of Hodge operators, showing the relationship be-
tween the discrete geometric approach and mass lumping ob-
tained by Lobatto integration [1, pp. 401–404] for the case of
Ohm’s constitutive matrix.

We will use as a working example a two-dimensional (2-D)
eddy-current problem with voltage sources, where the current
density is normal to the symmetry plane and, consequently, the
magnetic field is on the symmetry plane.

II. CELL COMPLEXES AND DISCRETE LAWS

We indicate with the domain of interest and with
the conducting regions; in , voltage sources are present. Do-
main is the complement of in . We consider in
a pair of interlocked cell complexes in space. The primal com-
plex is made of nodes , edges , faces , and volumes . In our
2-D problem, primal cells are prisms with unit thickness and tri-
angular base. Faces are the lateral faces of the prisms , and
edges are those normal to the symmetry plane. These edges
have a one-to-one correspondence with nodes . The dual com-
plex is made of dual nodes , dual edges , dual faces , and dual
volumes , and it is obtained from the primal according to the
barycentric subdivision. Interconnections are given in terms of
usual incidence matrices ( between between ,
etc.) [6]. This pair of cell complexes forms a mesh in the space
domain.

We also introduce a pair of cell complexes in the time
domain (Fig. 1). Its elements are primal instants
and primal intervals with inner orientation. The
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Fig. 1. Cell complexes in time domain.

dual complex has dual instants and dual intervals
, endowed with outer orientation. However, in

contrast with the most common choice [7], this complex is not
the barycentric dual with respect to the primal. A dual instant

is related to the previous and the following primal instants,
respectively, as

(1)

where . This pair of cell complexes forms the time
domain mesh.

We will consider now the so-called global variables, which
are formally -cochains associated with the chains of the cell
complexes in space and time. As a result of Tonti’s finite for-
mulation [8], [9], there is a precise association between global
variables and oriented space and time geometrical elements of
a cell complex. This association plays a key role in providing
a discrete formulation of laws in many theories of physics, and
it is useful in computational electromagnetism. In the case of
magneto quasi-static fields, the global variables and their asso-
ciations can be summarized as follows:

• the impulse of the electric voltage , is
associated with primal edges and dual intervals ;

• the magnetic flux is associated with primal faces and
dual instants ;

• the impulse of electric current is associ-
ated with dual faces and primal intervals ;

• the impulse of magnetomotive force (mmf)
is associated with dual edges and primal intervals .

We will arrange variables into arrays indicated in bold face,
respectively as, , indexed over the respective -cells.

With respect to the space and time meshes we introduced,
physical laws for eddy currents can be written—independently
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of the size of the space and time meshes—as algebraic equations
involving the global variables arrays as

Faraday's law

Ampere's law

Gauss' law (2)

Note that the continuity equation is not written explicitly be-
cause, in our 2-D quasistatic problem, it is identically satisfied,
with the current density being normal to the symmetry plane.

Now, we focus on global variables—like and
—associated with primal or dual intervals. Considering,

for example, and due to the mean-value theorem for con-
tinuous functions, there exists an instant, say in the interval

, such that

(3)

where instant does not coincide in general with primal instant
. If we assume an affine behavior of the integrand in

the interval , then (3) becomes , where
is the middle point of the interval . For a generic function

holds.
However, according to our time discretization, time instant

coincides with only in the special case of , when
the dual cell complex in time is the barycentric one. There-
fore, in the generic case when , we have that

holds. Similarly, we can write
. Therefore, we have

(4)

where and are the arrays of voltages, of cur-
rents, and of mmf at primal or dual time instants, respectively.
Next, using (4), we may rewrite Faraday’s and Ampère’s laws
in (2), when . We obtain

(5)

In the case of , we have to replace with
in (5).

III. DISCRETE CONSTITUTIVE LAWS

Constitutive laws are pointwise (both in space and in time)
relations between fields. In addition to (5), we need therefore
discrete counterparts of the constitutive laws. Discrete magnetic
and Ohm’s equations can be written as

magnetic

Ohm (6)

where and are some square- and mesh-dependent matrices
that require material properties and metric notions (such as
lengths or areas) in order to be computed. Array con-
tains the imposed emf’s. We observe, however, that Ohm’s law
relates the pair of arrays or , associated

Fig. 2. Prism of triangular base forming the primal cell complex.

with different time instants, and therefore it cannot be used
directly in this form. In order to have the right- and left-hand
sides of the discrete Ohm’s constitutive equation evaluated
in the same instant , we may compute from
the values by means of the following series
expansion:

(7)

where is the time derivative evaluated at . This approach
is at the base of the so-called -method. If we choose ,
the dual cell complex in time becomes barycentric, and from
(7) we obtain the following expression for the current:

.
For a generic , we may rewrite Ohm’s law in (6) as

(8)

IV. GEOMETRIC CONSTRUCTION OF MATRICES

We will derive magnetic constitutive matrices and
working on a single prism (Fig. 2). We assume the reluctivity

and the conductivity to be uniform in each . In the general
case of a mesh based on prisms (corresponding to a 2-D mesh
based on triangles), we obtain the constitutive matrices by
assembling the contributions from each prism.

To each lateral face with of the prism, we
associate the corresponding area vector , normal to the face
of length equal to the area of the face and pointing in a way
congruent with the inner orientation of the face. If we assume
the prism of unit thickness, then , where is the edge
vector associated with edge .

A. Magnetic Matrix

Area vectors are linearly dependent and with orientations in
Fig. 2, we have . Therefore, a uniform induction
field B in the prism (parallel to the plane of symmetry) complies
with discrete Gauss’ law in (2), and we can write the flux asso-
ciated with face as . From it, because the three
fluxes are linearly dependent, with little algebra, we obtain

(9)

where is the area of the triangle. Now, from constitutive law
between fields, , mmf along dual edge becomes

(10)
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where is the edge vector associated with dual edge . In this
way, the th row , with of a possible magnetic
constitutive matrix is

(11)

This is a purely geometric expression, and matrix thus ob-
tained is singular and not symmetric.

B. Ohm’s Matrix

Ohm’s matrix links the current , associated with a dual face
like , shown in Fig. 2, with the voltage associated with a
primal edge like . We recall that and are in one-to-one cor-
respondence with a primal node ( in Fig. 2) in the 2-D
mesh based on triangles. We assume the electric field E to be
uniform in the prism and thus current density is also
uniform. Because the pair are mutually orthogonal, we have

, where is the area of and is the length of
edge regarded here as unitary. Therefore, the global constitu-
tive matrix assembled for the whole mesh will be diagonal,
and its generic element is

(12)

where is the th triangular element, is the cluster of trian-
gles (the so-called support area) around node is the con-
ductivity associated with , and is its area (the three por-
tions of dual faces tailored in a triangle have an area equal to

of the area ).

V. ALGEBRAIC SYSTEM IN THE TIME DOMAIN

Due to the plane symmetry of our problem, the vector po-
tential is normal to the symmetry plane, and we indicate with

its line integral along an edge normal to the symmetry
plane. These line integrals are in one-to-one correspondence
with primal nodes , and we indicate the array they form with

.
The flux associated with a lateral face of prism (like
in Fig. 2) can be expressed as . This

corresponds to

(13)

so that Gauss’ law is satisfied exactly, while Faraday’s law in
(5) becomes

(14)

Now, in Ampère’s law (5), we substitute the discrete magnetic
constitutive (6) and relation (13) obtaining for nodes in

(15)

where . It is possible to show that is
symmetric positive semidefinite and coincident with the one ob-
tained using nodal finite elements [5]. For nodes in , we sub-
stitute (14) for and (15) for in (8), thus obtaining

(16)

where and .
Only in the case of , we replace with .

VI. MASS LUMPING

Equation (16) differs from the discretization of the same
problem with a -type FEM formulation only due to the fact
that the matrix given in (12) differs from the corresponding
matrix arising in the finite-element formulation; however, we
will show that the two matrices are related by the so-called
lumping process. The term lumping in the finite-element con-
text stems from the idea of diagonalizing the mass matrix of
a structural finite-element formulation while preserving some
properties of the proper (so-called fully consistent) mass matrix.
Several approaches for achieving this may devised, but we will
consider only the technique using Lobatto quadrature (some
authors refer to this method as the Radau method, while others
make a distinction between the two approaches).

A. 2-D Fully Consistent Mass Matrix

In the 2-D case, the coefficients of the conductivity matrix, in
the case of triangular elements, have the form

(17)

where are standard Lagrangian nodal shape functions.
The conductivity matrix has the same sparsity pattern as the
curl curl matrix, which coincides with the matrix in our
case. If the conductivity is assumed to be constant over each el-
ement and first-order shape functions are considered, then the
following well-known formula can be used to evaluate the inte-
grals in (17)

(18)

where is the area of the triangular element and are
generic integer exponents. Applying (18) to (17) yields

for (19)

where is the number of elements sharing the edge connecting
nodes and ( for boundary nodes and for
nodes inside and domains). Note that for both boundary
nodes and internal nodes

(20)

holds, and therefore the row sum of the coefficients is

(21)

B. Lobatto Mass Lumping

The integrals appearing in (17) can, in principle, be computed
with various numerical integration schemes (a very common
one is Gaussian integration). One of the possible techniques
is Lobatto integration, in which the integration points include
points on the boundary of the integration domain. In particular,
the lowest order Lobatto formula for triangles states

(22)
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Fig. 3. Considered 2-D geometry of the benchmark problem.

Fig. 4. Total current in the conductor on the right as a function of time,
computed with the discrete geometric approach for � = 0:5 and � = 2=3.
A zoom is also shown.

where the superscript indicates the local numbering of the node
where the shape function is evaluated. Due to the fact that for

the three terms in the summation of (22) are equal to zero
and for two terms are equal to zero and one is equal to
one, using Lobatto integration in (17) we obtain

for (23)

Therefore, the following facts should be noted: 1) the matrix
obtained with Lobatto quadrature is diagonal; 2) the matrix
obtained with the Lobatto quadrature has a diagonal coefficient
equal to the row sum of the coefficients of the fully consistent

matrix considering elementwise constant conductivity (or,
equivalently, the matrix obtained with Lobatto quadrature
has a diagonal coefficient that is two times the diagonal coeffi-
cient of the fully consistent matrix considering elementwise
constant conductivity); and 3) the matrix obtained with
the Lobatto quadrature in the finite-element context (lumped
conductivity matrix) coincides with the matrix of the discrete
geometric approach in (12).

VII. NUMERICAL EXPERIMENTS

Fig. 4 shows the total current in one of the conductors of the
benchmark problem of Fig. 3, where domain is the plate
below the pair of conductors forming the domain , fed with
a voltage per unit length given by .
The conductivity of and is S/m. Fig. 5
shows total currents on the same conductor, computed on the

Fig. 5. Total current in the conductor on the right as a function of time,
computed with the discrete geometric approach, and with finite element with
and without lumping. A zoom on the initial part of the curves is also shown.

same mesh with the discrete geometrical approach and FEM
with and without lumping. The agreement between the different
approaches is very good. It should be noted that the difference
between the discrete geometrical approach and lumped FEM
is due to the different construction of the RHS of (16) in both
cases.

VIII. CONCLUSION

This paper presents a time-domain formulation for 2-D eddy-
current problems based on the -method for a discrete geometric
approach. We showed its similarities with a mass-lumped -type
FEM formulation. Analogies and differences were highlighted,
and a numerical experiment showing very good agreement was
reported. The -method presented here can be applied also to
discrete geometric approaches in 3-D problems.
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