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A Geometric Approach for Wave Propagation in 2-D
Photonic Crystals in the Frequency Domain

P. Bettini, S. Boscolo, R. Specogna, and F. Trevisan

Department of Ingegneria Elettrica, Gestionale e Meccanica, Università di Udine, I-33100 Udine, Italy

We propose a pair of discrete geometric formulations to model two-dimensional (2-D) photonic crystals. Photonic crystals are periodic
materials able to guide light by Bragg’s reflection. We compared the results with an independent approach based on the multiple-scat-
tering technique (MST).

Index Terms—Discrete approaches, photonic crystals, wave propagation.

I. INTRODUCTION

PHOTONIC crystals consist of a periodic arrangement of di-
electric or metallic elements [1] able to suppress the propa-

gation of electromagnetic field in the structure for a given range
of frequencies, i.e., the range of a complete photonic bandgap,
[2], [3]. By introducing defects into the periodic lattice, we ob-
tain a waveguide for light.

The aim of this paper is to model photonic crystals using the
so-called discrete geometric approach based on the geometric
structure behind Maxwell’s equations [4]–[6].

We modeled the photonic crystal using a two-dimensional
(2-D) geometry, and we will compare the results from the geo-
metric approach with those from an independent approach based
on the multiple-scattering technique (MST) [7].

II. MAXWELL’S LAWS AT DISCRETE LEVEL

In the 2-D domain of interest , we introduce a pair of in-
terlocked cell complexes. One complex is made of simplexes
(the 2-cells are triangles), while its dual is obtained from it,
according to the barycentric subdivision. We indicate with
the primal complex (whose cells are endowed with inner ori-
entation) and with the dual (whose cells are endowed with
outer orientation) [4]. As the same geometric element of a com-
plex can be thought with two complementary orientations, we
may construct the pair of meshes and

, where the suffix “ ” indicates the simplicial complex.
For brevity, we will indicate with , either or .

We may model the electromagnetic field quantities in terms of
differential -forms [5]. Then, we consider the de Rham map, a
machinery that integrates -form with respect to the -cells of
mesh , yielding the degree of freedom (DoF) array , whose
elements are indexed over the corresponding -cells. We obtain
that is the DoF array of electromotive force (emf) associ-
ated with primal edges and are the DoF arrays of in-
duction fluxes and of the so-called magnetic currents associated
with primal faces is the DoF array of magnetomotive force
(mmf) associated with dual edges and are the DoF ar-
rays of electric fluxes and of electric currents associated with
dual faces .
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In our 2-D wave propagation problem, no free charge
is present in , and all the media are linear. The discrete
Maxwell’s equations written with respect to mesh are

(1a)

(1b)

(1c)

(1d)

where , and are the usual incidence matrices
defining interconnections between the cells of each complex
forming . Continuity equation is implied
by (1b); from it and (1d), we have .

Discrete laws (1b) are fulfilled exactly, while discrete consti-
tutive laws between the DoF arrays

(2a)

(2b)

hold only approximately; these equations can also be written in
an equivalent way as

(3a)

(3b)

where and - or and - are some square mesh and medium
dependent matrices.

III. DISCRETE WAVE PROPAGATION PROBLEM

The discrete wave propagation problem consists of deter-
mining the arrays , and such that (1) and (2)- or
equivalently (3)- are satisfied simultaneously. Sources are spec-
ified as impressed electric currents or as impressed magnetic
currents in a subregion of . Initial and boundary
conditions have to be specified in addition. Along the boundary
of , an uniaxial perfectly matched layer (PML) of cells is
considered [8].

A. Formulation in Terms of

In the case of a transverse-electric (TE)-field mode—the elec-
tric field is normal to the symmetry plane—it is convenient to
refer to the mesh , and we may reformulate the wave prop-
agation problem in terms of DoF array , assuming the mag-
netic currents null in . Then, by substituting in (1b), (2a) for

, (2b) for , and using (1a), we obtain

(4)
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Fig. 1. Geometry of the plane model for the photonic crystal. The electric
(magnetic) current source is also shown, together with line 1 (dashed–dotted)
and 2 (dashed) used for numerical results comparison.

B. Formulation in Terms of

In the case of the transverse-magnetic (TM)-field mode—the
magnetic field is normal to the symmetry plane—we consider
the DoF array , and we assume the electric currents null in

. In this case, it is convenient to consider mesh and sub-
stituting in (1a), (3b) for , (3a) for , and using (1b), we have

(5)

IV. CONSTITUTIVE MATRICES

Constitutive matrices and for the formulation in terms
of on mesh can be easily derived in a geometric way.
Matrix is obtained by particularizing for triangles the idea
developed in [9] for tetrahedra. On the other hand, with the
electric field being normal to the symmetry plane, matrix has
exactly the same geometric structure of the so-called Ohm’s ma-
trix described in [10], by simply swapping conductivity with
permeability .

It is important to note here that due to the complementarity of
the orientations of the same cell in and in , we have that

and hold. Therefore, the constitutive ma-
trices in (5) coincide with matrices in (4), respectively,
provided that we swap the material constants with
and with . This property allows us to unify the coding for the
pair of formulations in terms of or of indifferently.

V. MODEL OF THE TEST GEOMETRY

As test geometry, we consider (Fig. 1) a square array of infin-
itely long dielectric pillars (refractive index and radius
to pitch ratio ) embedded in air, with a sharp 90 bend
obtained by removing a line of pillars from the square lattice.

The bandgaps for the square lattice can be found by solving
an eigenvalue problem on the borders of the irreducible
Brillouin zone [1], formulated as

(6)

where is the magnetic field complex vector, is the an-
gular frequency, is the refractive index, and is the ve-

Fig. 2. TE band structure of a square lattice of dielectric pillars (n =
3:4; r=a = 0:2) embedded in air. The elementary cell is schematized in the
inset.

locity of light in vacuum. Eigenvalues are the field pat-
terns of the harmonic modes and the eigenvalues are
proportional to the squared frequencies of the modes.

It is a known result that only the TE-polarization exhibits a
bandgap (see Fig. 2) in the range where
is the wavelength in the vacuum.

VI. NUMERICAL RESULTS

Numerical simulations for both the proposed formulations (4)
and (5) have been carried out at a normalized frequency

for TE and TM configurations.
As the square lattice of high-index pillars embedded in air

exhibits a bandgap only for the TE polarization, we may expect
a guided propagation throughout the waveguide only for such a
polarized field.

In order to compare results, an independent approach, based
on the MST, has been used to provide the reference data for both
field configurations.

A. Multiple-Scattering Technique

The scattered field is calculated by expanding the field in
cylindrical harmonics and by exploiting the continuity condi-
tions on the surfaces of the pillars, thus not requiring any do-
main discretization and adsorbing boundary conditions.

Let us consider the case of a TE-polarized incident field and
assume to have only the th cylinder. When the sources are as-
signed in the substrate, we know the incident field generated
in the absence of the cylinders. As the incident field impinges on
the cylinder, a scattered field defined in the substrate and a
field transmitted into the cylinder appear. The scattered field
and the field transmitted into the cylinder are defined in two ho-
mogenous regions, and admit the following modal solutions:

(7)

(8)

where and are cylindrical coordinates centered in the
cylinder center , and is the propa-
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gation constant in the cylinder. Moreover in (7) is a
second-type Hankel function.

In order to easily express the continuity condition on the
cylinder boundary, we express the incident field in terms of
the following Fourier–Bessel: expansion

(9)

Using Maxwell’s equations and from (9), (7), and (8), it follows
that the components of the incident, scattered, and transmitted
magnetic fields, respectively, are

Finally, by writing the continuity conditions

we obtain, for the th cylinder, the scattering matrix whose
coefficients are

The scattering matrix is diagonal and depends only on the
parameters and of the th cylinder. It links the coeffi-
cients of the locally scattered field and those of the locally inci-
dent field with the matrix relation

(10)

where we denoted by and the column vectors of coeffi-
cients and , respectively.

For more than one cylinder, we simply superimpose the ef-
fects, and from (10), we have

(11)

where represents the local contribute due to the incident
field, and the term represents the field scattered by the

th cylinder in the direction of the th cylinder, thus acting as
a secondary incident field for this cylinder. In order to write re-
lation (11), we have to express the field scattered by the th
cylinder in the coordinate reference of the th cylinder. Graf’s
formula [11, eq. (9.1.79) ] solves this point by giving for the
matrices the following expression:

where is the distance between the centers of cylinders
and , and is the azimuthal coordinate of cylinder in the
reference frame of cylinder , respectively.

By moving all the terms related to scattered fields to the left
side in (11), we obtain the linear system of equations

If the square and column submatrices , and
are truncated in order to keep the indices and between
and , the final size of the system to be solved is .

Finally by solving the linear system, the total electric field
outside the cylinders can be written as

(12)

B. Geometric Approach

To solve the 2-D wave propagation problem, when the elec-
tric field is normal to the plane of symmetry (TE configuration,

), we used formulation (4) on , while the comple-
mentary case of the electric field on the symmetry plane (TM
configuration, ) is solved with formulation (5) on

.
The volumes of meshes or are prisms with triangular

base (on the plane of symmetry) and unitary height. In both the
formulations, the DoF are attached to the edges normal to the
symmetry plane (having unitary height) and thence one-to-one
with the nodes of the 2-D triangular mesh (we used 155 000
triangles).

Along the boundary of domain an uniaxial PML of cells is
considered to avoid reflections. Unfortunately, a wide number
(20 layers) of PML elements along the boundary is necessary to
reach a high level of accuracy, but it greatly worsens the con-
ditioning of the problem and raises the computational cost of
numerical solution, even though an efficient iterative algorithm
(based on CG from NAG Scientific Library) is adopted to solve
(4) or (5), for the TE or TM cases, respectively.

In the numerical analysis, an elementary electric or magnetic
current source, parallel to the cylinder axes, is placed in the
middle of the input port of the waveguide, as in Fig. 1, for a
TE- or TM-polarized field, respectively.

The results of the analysis carried out with the geometric ap-
proach are presented in Fig. 3 (TE configuration) and in Fig. 4
(TM configurations) from a qualitative point of view. As ex-
pected, a guided propagation throughout the structure is ob-
tained only for a TE-polarized field, as can be seen in Fig. 4. The
numerical results obtained with the discrete geometric method
for TE configuration are compared with those from the MST in
the spectral domain, at normalized frequency , in
terms of normalized amplitude and phase of the electric field at
selected points of lines L1 and line L2 of Fig. 1, as reported in
Figs. 5 and 6.

The agreement is very good in both cases. However, it must
be pointed that a careful optimization of PML parameters is re-
quired to reach an acceptable compromise between accuracy
and computational cost of the numerical solution of the problem.
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Fig. 3. TM polarization: Amplitude of the magnetic fieldHHH = H ẑzz.

Fig. 4. TE polarization: Amplitude of the electric fieldEEE = E ẑzz.

Fig. 5. Amplitude of the electric field (E = E ẑ component) at the output
cross section: Lines L and L of Fig. 1.

VII. CONCLUSION

A pair of discrete geometric formulations to model 2-D pho-
tonic crystals in the frequency domain has been developed and

Fig. 6. Phase of the electric field (E = E ẑ component) at the output cross
section: Lines L and L of Fig. 1.

the numerical results for a selected geometry compared with
those from an independent approach based on the MST. The
analysis performed with the two methods show an excellent
agreement that evidences a difference lower than 100 dB be-
tween the calculations in the worst case. On the other hand, the
geometric approach required a high number of triangles to accu-
rately model the geometry of the photonic crystal. Correspond-
ingly, we had to consider up to 20 layers of PML elements along
the boundary, worsening the conditioning of the problem.
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