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Coupling Between Circuits and A-� Discrete
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We propose a way to couple field equations for quasistatics in a bounded domain—where electromagnetic phenomena are assumed
to be confined—with circuit equations. The algebraic equations describing eddy-current problems are obtained by means of a discrete
geometric formulation - , based on the circulation of the magnetic vector potential and a scalar potential .

Index Terms—Coupled-problems, discrete approaches, eddy currents.

INTRODUCTION

THE coupling between a formulation for eddy-current prob-
lems and circuit equations has been discussed in [1] within

the framework of the Galerkin approach and in [2] in the con-
text of the finite integration technique. In [3] and [4], the cou-
pled circuit-field problems have been treated in a more general
way within the framework of the homology theory in order to
formulate well-posed coupled problems.

In this paper, we will couple a discrete geometric formulation
for eddy currents, named - [5], [6], with circuit equations.
We assume that all electromagnetic phenomena exist within a
bounded domain . The complement of with respect to the
universe is domain containing circuit components; we con-
sidered an ideal voltage source with an impedance in series or,
dually, a current source with an admittance in parallel. However,
the approach we used is general, and a generic electric network
can be considered instead. A conducting region is present
in ; air region is the complement of in (Fig. 1). We
indicate with the intersection and with (consider

and in Fig. 1) the intersections . On surface
, surfaces lay; they are the only interfaces between
and domains. Interface is regarded as equipotential with

potential and current crossing it.
The coupling between fields in and circuits in is estab-

lished through proper interface conditions involving quantities
like potentials and currents on interfaces .

I. FORMULATION IN TERMS OF -

We consider in a pair of interlocked cell complexes [7].
We assume that the primal complex is made of inner oriented
simplices (nodes , edges , faces , and volumes ). The dual
complex is obtained from the primal, according to the barycen-
tric subdivision, and its cells (dual volumes , dual faces , dual
edges , and dual nodes ) are endowed with outer orientation
[8].

The mutual interconnections of the primal cell complex are
described by the usual incidence matrices: , and . The
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Fig. 1. Schematic view of the electromagnetic domain D containing D and
of sources region D .

matrices and describe the
mutual interconnections of the dual complex [9].

We consider the following arrays of degrees of freedom
(DoF): of fluxes on of electromotive force (emf) on
of currents on of magnetomotive force (mmf) on . We
regard these arrays as functions of a time instant. Independently
of the grain of the mesh, and hence of the size of the cell com-
plexes, the physical laws at discrete level are fulfilled exactly,
and they can be written as

Gauss' law Ampere's law

Faraday's law continuity law

(1)

On the contrary, discrete constitutive laws are approximated and
are

(2)

where (with being the number of primal
faces of ) and (with being the number
of primal edges of ) are some square-mesh- and medium-
dependent matrices; in general, they are sparse matrices, and
they could be also nonsymmetric. The magnetic matrix can
be computed as described in [10], while Ohm’s matrix can be
computed as proposed in [5] and [6].
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Fig. 2. (Left) Cross section showing the surface� betweenD andC and of
interface surface S . (Right) Side view of S � � .

Of course, boundary conditions need to be specified on
(a null normal component of magnetic induction field) on

the common surface between and (a null normal com-
ponent of current density vector) and on (a null tangential
electric field is considered).

Next, Gauss’ law and Faraday’s law in (1) are satisfied iden-
tically1 by setting and

(3)

where is the array of circulations of magnetic vector potential
along primal edges of and is the array of scalar potentials2

associated with primal nodes in . Combining them with (1)
and (2), we obtain a first set of equations, one-to-one with the
primal edges in

(4)

a second set of equations, one-to-one with primal edges in

(5)

and the last set, one-to-one with primal nodes in

(6)

To solve (4)–(6), we rely on the automatic gauging of an itera-
tive solver based on the CG method. Of course, (6) is implied by
(5), and the so-called -formulation may be obtained as a par-
ticular case [11]. However, since we use the simple SSOR-based
preconditioner, it is faster to solve the whole set (4)–(6) for
and .

To specify the boundary conditions, we impose the normal
component of magnetic induction field to be null on , by
setting to zero the circulations along primal edges on .
Tangential components of electric field are null on interfaces

, by making equipotential nodes on each . We impose the
normal component of current density to be null on the surface

by setting to zero the current crossing dual faces on
the common surface between and .

Finally, current flows from to only across the dual faces
on the interfaces . These dual faces are one-to-one with

primal nodes on (left side of Fig. 2); the dual faces are
outer oriented by the respective normals entering .

II. COUPLING BETWEEN - AND CIRCUITS

In , Kirchhoff’s voltage and current laws hold together with
the component equations. Here, to fix ideas, we will consider the
example schematized in Fig. 1, where ideal voltage or current

1PropertiesDC = 0 and CG = 0 hold in a cell complex.
2From it, the electric scalar potential V is derived as V = �d �.

generators are considered, with an impedance connected in
series (or, equivalently, in parallel) an impedance is connected.

Due to the assumed boundary conditions on , we may
model electromagnetic phenomena in as in circuit theory ac-
cording to the model of an electric n-pole. We indicate with

the total current crossing interface , and we outer-orient
with the normal to , pointing inward . Thus, from

Kirchhoff’s current law, currents are solenoidal ,
and, in our example, we write .

For each node on interface holds,
where is the common potential value nodes on have. We
comply with Kirchhoff’s voltage law in , by expressing the
voltage between a pair of interfaces as

. Of course, the potential of one interface will be arbitrarily
set to zero.

A. Case of Voltage Source

In the case of a voltage source in and an impedance ,
Kirchhoff’s voltage law gives

(7)

The idea of the coupling between equations in and in
consists of constraining the values of nodes on to the
corresponding potential as

(8)

where spans in the set of labels of the nodes ;
this implies card (with card , we indicate the
cardinality of set ) equations of the kind of (8).

On the other hand, between current in (7) and current
crossing interface , we write

(9)

where is ; it is when the normal to and the pos-
itive reference assumed for match. In our case

.
Next, with current being additive on ,

we may write

(10)

where is the current associated with dual face [one-to-one
with 3 on (right side of Fig. 2)]; we assume that the outer
orientation of each and match.

Using continuity law in (1), each current can be expressed
as

(11)

where is the current crossing dual face (one-to-one with
edge ) bounding dual volume (one-to-one with node

), and is the incidence number between outer orientations
of and . Finally, is the set of labels of edges having
node in common.

Using the second of (2) and (3) for , we may express as
row row row (12)

where operator row gives the th row of matrix .

3If node n lays on the boundary of connector S , then only the portion of
dual face ~f \ S contributes to the current.
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Fig. 3. Cross section of the considered geometry for the filed problem inD.

Now, introducing the following row arrays:

row

row

we can rewrite (10) as
(13)

Relation (13) points out the natural way, given by the discrete
geometric approach, to express the total current , defined
as a sum of local current contributions on the dual complex, in
terms of the primary unknowns and , defined on the primal
complex. It is then clear that the so-defined total current is ex-
actly the current flowing through a surface made of dual faces.
With a magnetic vector potential finite-element (FE) formula-
tion, for which the current density is weakly conserved through
primal faces, a similar technique had been used in [1] to natu-
rally express the total current via a volume integration in a tran-
sition layer instead of a direct surface integration of the current
density.

In our example, from (9) and (13), we write one independent
equation

(14)

with currents being solenoidal. Now, we may formulate
the coupled problem in the case of our example.

1) Coupled Problem: Determine , and by
solving (4), (5), and (6) together with (7), by adding equa-
tions of the form (8) and one equation of the form (14) with
(13).

B. Case of Current Source

Here, the complementary case of an ideal current source in
parallel with an admittance is considered. The circuit
equation complementary to (7) is now . In this
case, instead of (14), we consider

(15)
and we may define the coupled problem.

1) Coupled Problem: Determine , and by
solving (4), (5), and (6) together with (7), by adding equa-
tions of the form (8) and one equation of the form (15) with
(13).

III. NUMERICAL RESULTS

As a test-coupled problem, we considered in a fully three-
dimensional (3-D) geometry consisting of a circular coil placed
above an aluminum plate (in Fig. 3, a cross section is shown). In

Fig. 4. Primal mesh in D for the field problem.

Fig. 5. Amplitude of the real part vector of the current density complex vector
in the plate is shown along line 1. The discrete approach and a 2-D and 3-D
analysis of GetDP are compared.

, we considered a sinusoidal voltage source
with a frequency 5000 Hz. Due to the axial symmetry of the
field problem, an axisymmetrical modeling could be sufficient.
Nevertheless, in order to validate the developed 3-D formula-
tion, a fully 3-D geometry, corresponding to of the struc-
ture, is considered. The primal mesh we used is shown in Fig. 4,
where the interface surfaces coincide with the pair of
rectangular cross sections and of the coil on . The
mesh consists of 132 519 tetrahedra and 157 268 edges, and the
number of DoFs is 170 347; the final system matrix has a spar-
sity of 0.0134%, and the iterative solver converged in 65 itera-
tion with a relative residual of . The CPU time is 35
s to build the final linear system and 72 s to solve it. To com-
pare the results obtained from the - formulation coupled with
circuits, we used the FE code GetDP [1], [12] to compute both
a 3-D solution of the eddy-current problem on a similar tetra-
hedral mesh and a two-dimensional (2-D) simulation on a trian-
gular mesh. Precisely, we computed the current density complex
vector along a number of points evenly distributed along a pair
of sampling lines shown in Fig. 3. Figs. 5 and 6 show the ampli-
tude of real and imaginary vectors of current density complex
vector, respectively, along the sampling line in the conductor,
while Figs. 7 and 8 show the same quantities in the coil. The
irregularity of the current density computed with the discrete
geometric formulation (DGF) is due to the use of a mesh of ran-
domly distributed tetrahedra and Whitney edge functions for the
interpolation, while the 2-D FE solution is based on a finer mesh
(about 15 000 triangles) and quadratic interpolation. We also
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Fig. 6. Amplitude of the imaginary part vector of the current density complex
vector in the plate is shown along line 1. The discrete approach and a 2-D and
3-D analysis of GetDP are compared.

Fig. 7. Amplitude of the real part vector of the current density complex vector
in the coil is shown along line 2. The discrete approach and a 2-D and 3-D
analysis of GetDP are compared.

compared the total current in the coil, which is one of the nat-
ural outputs of coupled problem. Using - formulation cou-
pled with circuits, we obtained
(real and imaginary parts are in A), while using GetDP in 3-D
and 2-D, we obtained and

, respectively .

IV. CONCLUSION

We presented the coupling between - discrete geometric
formulation for 3-D eddy-current problems and circuits. The re-
sults obtained in terms of both current densities and total cur-

Fig. 8. Amplitude of the imaginary part vector of the current density complex
vector in the coil is shown along line 2. The discrete approach and a 2-D and
3-D analysis of GetDP are compared.

rents are in very good agreement with those from an FE code
named GetDP.
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