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We present an inversion procedure for the image reconstruction of defects in metallic plates, using a multifrequency eddy-current
system. The solution of the eddy-current forward problem is achieved by means of a discrete geometric approach, while the inverse
problem is resolved with an iterative linearization algorithm based on sensitivity data. In particular, we propose a suitable measurement
point on the region under test using a probe coil exited by means a multifrequency signal, in order to improve the amount of usable data
and the accuracy of the inverse procedure.

Index Terms—Discrete geometric approach, inverse problems, multifrequency eddy currents, sensitivity analysis.

I. INTRODUCTION

EDDY-current inspections is one of the most interesting
approaches in electromagnetic nondestructive evaluation

of metallic materials. The presence of a defect produces an
impedance variation of the probe coil and, therefore, in the
voltage or current at the coil leads, that we can use to locate
the defect and also to estimate its shape and depth, so that we
can verify the integrity of the plate [1]–[4]. To this aim, we
use 3-D image reconstruction algorithms based on an inversion
procedure elaborating experimental data together with solu-
tions of proper forward problems. The results presented in this
paper have been obtained using simulated data instead of the
experimental ones. The direct model is based on a discrete geo-
metric approach for electromagnetic field, by means of integral
quantities associated with the oriented geometric elements of a
pair of interlocked cell complexes [5]–[13].

II. MULTIFREQUENCIES DETECTOR SYSTEM

In general, the 3-D image reconstruction of defects in a ma-
terial has been derived by means of suitable detection systems
consisting of several probe coils [14], [15]. Indeed the multi-
probe coil systems provide many data to be considered in the
sensitivity analysis. Nevertheless, they cannot be enough to as-
sure an accurate resolution of the inverse problem which re-
mains highly “ill-posed.” Moreover, in most of practical ap-
plications, only a finite portion of the sample under inspection
is available to be tested. In this case, increasing the number of
probe coil positions could lead to redundant data that are useless
in the inversion procedure. Therefore, in this work, we present
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a multifrequency excitation for the probe coil, in order to re-
duce the “ill-posed” characteristic of the problem and to im-
prove the inversion procedure, in terms of capability to distin-
guish the depth of the defect. In particular, in this paper, we show
some results obtained using two values of frequencies 500 Hz
and 1 kHz, associated with two different depth of inspection,
and with 13 different positions of the probe coil on the metallic
plate. For each frequency, we impose a unitary excitation cur-
rent and so we calculate the variation of the voltage at the probe
coil leads.

III. FORWARD PROBLEM

We introduce in the domain of interest (containing the
conductive region ) a pair of interlocked cell complexes:
the primal , based on simplexes, and its barycentric dual ,
[5]–[8]. The mutual interconnections between the cell complex

are described by the incidence matrices: between
edges and nodes, between faces and edges, and between
volumes and faces. The matrices and

describe the mutual interconnections of . The
arrays of degree of freedoms can be associated univocally to
the elements of or . We have that is the array of voltages
on primal edges, is the array of fluxes on primal faces, is
the array of magnetic voltages on dual edges and is the array
of currents on dual faces. The physical laws of the eddy-current
problem, can be written exactly, as follows: (Gauss’
law); (Ampère’s law); (Faraday’s
law); and (continuity law). In addition, the discrete
magnetic and Ohm’s constitutive equations are, respectively,

, where are two square matrices (
and , respectively). These matrices can be derived in a
geometric way as described in [8]–[13]. To solve the discrete
eddy-current problem [10], [11], we search for an array of
scalar potential values on primal nodes of the conducting region
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Fig. 1. Detector system configuration.

TABLE I
DIMENSIONS OF THE PROBE COIL

and for array of circulations of the magnetic vector potential
on primal edges. In this way, Gauss’ law and Faraday’s law
are satisfied identically when we write, respectively,
and . A first set of equations, relative to
the primal edges, is derived by substituting in Ampère’s law
the discrete magnetic constitutive equation, where the array
of fluxes is expressed in terms of . We obtain ,
where is null in nonconducting regions. A second set of
equations can be written, associated with primal edges in
the conducting region, by substituting in Ohm’s constitutive
equation, Faraday’s law, and the previous relation, obtaining

. The last set of equations
is written for the primal nodes in the conducting region, by
substituting the Ohm constitutive equation and Faraday’s law
in the continuity equation. We obtain .

As a result of the linearity of media, we have expressed the
array as the sum of the array of circulations of the contribu-
tion to the magnetic vector potential produced by the source cur-
rents and the array of circulations of the contribution to the
magnetic vector potential due to the eddy-currents in the con-
ducting region. Then we precomputed the array by means of
an integral representation of the source currents. In this way, we
can remove the source currents from the right-hand side of the
final system.

IV. INVERSION PROCEDURE

We have considered a plate of aluminium (conductivity: 37.7
S/m), with a thickness equal to 4 mm and indefinite dimen-

sions along the other two directions. We focalize our attention on
a square region of the plate of 3 cm 3 cm, divided into a regular
grid of cubes named “voxels,” whose edge is equal to 2 mm and
which represents the basic volumetric amount. So, we have a total
number of 450 voxels, and our aim is to estimate the value of elec-
trical conductivity “ ” at each voxel (see Fig. 1). We consider a
probe coil having the dimensions shown in Table I.

Fig. 2. Probe coil positions over the area under test.

TABLE II
POSITIONS OF THE PROBE COIL ON THE AREA UNDER TEST

This probe coil respects technological limits of coil realiza-
tion with commercial winding machines and at the same time
is the most proportioned in terms of inner radius (outer radius)
height. In our procedure, we move the probe coil in 13 different
positions, arranged over the plate to optimize the tradeoff be-
tween minor number of positions and greater recovering of the
voxel region. Setting the center of the voxel region (3 cm 3
cm) described previously as the origin (0, 0) of a coordinate
system (see Fig. 2), the positions of the center of the coil are
shown in Table II.

For each probe coil position “ ,” and for each frequencies
considered “ ,” the voltage output is calculated by means of a
numerical direct model, in function of the conductivity map

(1)

At the same time each element of the sensitivity matrix is de-
fined as

(2)

In this way, each row of the sensitivity matrix represents a con-
figuration of measure, i.e., a fixed position of the probe coil at
a fixed frequency, while each column represents a voxel of the
plate. It was found that for the present eddy-currents problem
the derivative of the probe coil voltage with respect to the voxel
conductivity can be expressed in the following compact expres-
sion [14]:

(3)

where is the current in the probe coil “ ” at the frequency
“ ,” is the volume of the th voxel and is the electric
field in the element volume generated from the probe coil in the
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Fig. 3. Singular values of the sensitivity matrix (linear scale).

position “ ” at the frequency “ .” In this work, the excitation
current is assumed unitary. The sensitivity matrix is calculated
solving the forward problem, then the distribution of the electric
conductivity is iteratively upgraded using a procedure of mini-
mization of the differences between the real values of voltages at
the probe coil leads and the computed ones. In general, the real
values of voltages can be obtained from a measurements, but at
the moment, in this work, we calculate these values by means of
direct problem simulations, considering the real defect as a well
defined number of voxels with imposed conductivity equal to
zero. We have matured some experience about the use of noisy
computed data instead of experimental ones; also, in this case,
the inversion procedure presented here is efficient. The iterative
process start with a uniform distribution of conductivity , i.e.,
with a plate without defects, and at each iteration the variation
of for each voxel is calculated as follows:

(4)

where “ ” is the number of iteration, is the sensitivity matrix
and is the vector of the voltage data obtained from the real
distribution of the electric conductivity.

Moreover, we have obtained a progressive reduction of the
variation of conductivity calculated using (4), so that the conver-
gence of the iterative process is guaranteed avoiding too large
increments. Therefore, the (4) can be expressed as follows:

(5)

where is the reduction factor, which value diminish as the
iterations go on. Moreover, we introduce in (5) a penalty term
to minimize the norm of the variation of conductivity at each
step. This penalty is the product of the sensitivity matrix and
the variation of calculated at the previous iteration. However,
this term is reduced of a factor , for example, equal to 50%.
In this way, we impose that the variation at the step must
not be too great referred to the variation at the previous step

. We introduce a damping factor chosen frequency dependent
and determined to optimize the resolution in the -direction (see
Fig. 1). In particular, we operate a normalization of the singular

Fig. 4. Results about the inversion procedure for the test 1. Conductivity distri-
bution on the first layer of the metallic plate obtained at the iteration n 5 (color
bar S/m).

Fig. 5. Results about the inversion procedure for the test 1. Conductivity dis-
tribution on the second layer of the metallic plate (2 mm of depth), obtained at
the iteration n 5 (color bar S/m).

values of the sensitivity matrix, considering the different values
of frequencies. After this normalization, we obtain the diagrams
of singular values in Fig. 3, referred to the first iteration. In
order to improve the convergence of the solution process, we
also correct back to aluminium the computed values of conduc-
tivity greater than the value peculiar to aluminum, and back to
zero the values minor of zero. The iterative procedure is termi-
nated when the difference between the measured voltage on the
probe coils and the voltage simulated at the current step has the
global minimum.

V. RESULTS

In this paper, we present two tests, in the first, there is only
one defect on the plate, in the second, there are two defects at
two different depth. For the first test, we have considered a de-
fect corresponding to the voxel number 81, i.e., a cube-shaped
defect in the first layer of voxel, while the second layer is con-
sidered without any defects. Starting from an uniform configu-
ration of and proceeding with the iterations, after five steps,
we have obtained the map of reported in Fig. 4 for the first
layer and in Fig. 5 for the second layer. The position of the de-
fect in the metallic plate is determined with a good accuracy. For
the second test, we have considered two defects arranged on the
two different layers, exactly on voxel number 65 (first layer at
the plate surface) and voxel number 386 (second layer at 2 mm
of depth respect to the plate surface). In this case, the results of
the inversion procedure are reported in Figs. 6 and 7. We have
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Fig. 6. Results about the inversion procedure for the test 2. Conductivity dis-
tribution on the first layer of the metallic plate obtained at the iteration n 10

(color bar S/m).

Fig. 7. Results about the inversion procedure for the test 2. Conductivity dis-
tribution on the second layer of the metallic plate (2 mm of depth), obtained at
the iteration n 10 (color bar S/m).

a clear image of the defect in the first layer, while the defect on
the second layer is detected with minor accuracy.

VI. CONCLUSION

A 3-D imaging inversion algorithm based on multifrequency
eddy currents nondestructive inspection is presented. The pro-
cedure exploits a forward problem solution achieved by means
discrete geometric approach for electromagnetic field and an in-
version procedure based on sensitivity linearization.

Preliminary results seem to indicate that multifrequency anal-
ysis (500 Hz with 3.7 mm of skin depth, 1 kHz with 2.6 mm of
skin depth) improves the stability of the inverse procedure and

provides good results for the 3-D reconstruction of a defect also
when it is located at different depth in the metallic plate.
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