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Static Behavior Prediction of Microelectrostatic Actuators
by Discrete Geometric Approaches
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The analysis of a microelectrostatic actuator is presented, formulated by means of the so-called Discrete Geometric Approach applied
to the solution of the electrostatic-elastostatic coupled problem. Numerical results computed by means of the proposed approach are
compared to those coming from assessed approaches like the finite-element method (FEM) (for both the structural and the electric do-
mains) and FEM/boundary element method (BEM) (FEM for the structure, BEM for the electric domain). A preliminary experimental
validation is finally added.

Index Terms—Discrete geometric approach, finite elements, microelectromechanical systems (MEMS).

I. INTRODUCTION

ONE OF the most challenging advances in microsystem
design is an efficient use of electromechanical cou-

pling for actuation, sensing, and energy harvesting purposes.
Scale laws demonstrate that electric field applied to flexible
microstructures provides stronger actuation, if compared to
magnetic forces [1]. Therefore microbeam electrostatic actua-
tors are widely used in radio-frequency microelectromechanical
systems (MEMS), although they suffer breakdown voltage and
pull-in effect, both causing the structural collapse. Electrostatic
force exhibits a nonlinearity on voltage, charge, and mechan-
ical displacement, which makes difficult a straight and fast
computation of stress, strain, and displacement to foresee the
mechanical reliability [2].

The aim of this work is to investigate the capability of the
so-called Discrete Geometric Approach (DGA) [3]–[6] in the
solution of a plain, static, and nonlinear electrostatic-elasto-
static coupled problem to compute displacements and voltage
at pull-in on a set of cantilever microbeams. In this way, we use
a unique approach for both the electrical and the mechanical
domains, with a benefit for the design of an efficient numerical
tool; in addition, we propose second-order triangular elements
for both the domains.

A sequential approach has been adopted [7], by solving the
electric and mechanical problems separately. The numerical re-
sults are compared to the experimental ones obtained on a set of
cantilever microbeams with several geometrical aspect ratios,
including length, width, gap, and thickness.

The computational efficiency of this method is compared to
the nonlinear solutions of the sequential approach when the
electrical and mechanical problems have been discretized both
by the finite-element method (FEM) or even by FEM in the
structure and boundary element method (BEM) in the dielectric;
in addition, a special mechanical finite element [8] has been also
considered.
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Fig. 1. Sketch of the 2-D electrical (D ) and mechanical (D ) domains (not
on scale). The boundary � and � of the conducting domain is shown in ad-
dition. � is the truncation of the infinity domain of the electrostatic problem.
Finally, on � the Neumann boundary condition is imposed.

Fig. 2. Global Cartesian coordinate system (x; y) and local affine coordinate
system (�; �) for the triangle t. Special Gauss points g , i = 1; . . . ; 6 on the
edges of the triangle are shown. Finally g denotes the center of mass of t.

II. DISCRETE APPROACH FOR THE COUPLED PROBLEM

A sketch of the 2-D domain geometry is shown in Fig. 1 for
the electromechanical coupled problem. The domain of interest
have been partitioned into the mechanical and the elec-
trical domains. In , we will introduce a pair of
interlocked cell complexes based on triangles, [3], [9]. Without
loosing generality, we focus on a triangular element , Fig. 2.
The primal complex consists of the nodes , , of , and
of the additional nodes , , forming the center of mass of
the edges of . The primal edges are obtained by splitting in two
halves each of the edges of . In order to assure a second-order
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convergence in terms of electric field E and electric flux density
in , or in terms of strain , , and stress , ,

components in , we will build a dual-cell complex starting
from special points in each of the edges of [5]; these points co-
incide with the pair of points for the entire edge of of a Gauss
integration formula of second degree. We denote with ,
with the Cartesian global coordinates of node .
We introduce in a local affine reference frame as shown
in Fig. 2. The relation between the local coordinates of a
point in and the corresponding global coordinates is

(1)

where the transformation matrix is defined as

(2)

Along each of the edges of we denote with , the pair
of Gauss points. For example, with reference to the edge from

to , we write , , with
. The center of mass of is denoted with .

The center of mass of the edges between the pair of points ( ,
), ( , ), ( , ) are denoted with , , , respectively.
In our 2-D model, a dual surface has a unitary thickness

in the out of plane direction and its trace is a line segment from
node to node . The components of
the area vector1 of are defined as

(3)

Next, we introduce a dual volume , in a one to one correspon-
dence with . Its boundary is a collection of facing and
it is oriented by the outer normal. For example (refer to Fig. 2),
for , is bounded by , , , and .

A. Formulation of the DGA for Electrostatics

For each , the DGA for electrostatics can be cast in
terms of the electric potential (associated with a primal node

) together with the electric flux (associated with a dual face
) and the electric charge (associated with a dual volume ).

We assume here that no free charge is present in , and then
for each .

In the local coordinate system , is approximated with
a second-order polynomial

(4)

where the coefficients can be computed in
terms of the electric voltages at the six primal
nodes of ; in this way we obtain

(5)

1The area vector has amplitude equal to the area of ~s and it is normal to
~s with a specified orientation.

where is the resulting 6 6 matrix. Then, can be expressed
as

(6)

From (6), the components of E along are

(7)

where is the Jacobian matrix of the mapping from to
coordinates, and the matrix is defined as

(8)

Denoting with the electric flux of through
, we get

(9)

where and are the components of evaluated in the
center of mass of . By substituting in (9), (3) for the compo-
nents of , using the constitutive relation , with the
uniform permittivity of , and evaluating the components of E
according to (7), we obtain

(10)

where is a constant for homogeneous, isotropic, and linear
dielectric material inside each primal cell, or it is a tensor in
the general case.

Next, for element we may write the local contribution to
Gauss’ Law as

(11)

where is the matrix of incidence numbers between the outer
orientation of and the outer orientation of .

Finally, assembling the contribution from (11) for each , the
final system becomes

(12)

where is the resulting stiffness matrix for the electrostatic
problem. The boundary conditions must be assigned to close the
problem in , by prescribing for the potential on ,

for the potential on , and zero electric flux on
.
From the solution of (12), the components of the electrostatic

force acting on laying on can be evaluated as

(13)

where is the surface charge lying on the conducting boundary
in the neighborhood of node and , are the com-

ponents of the average electrical field acting on .
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B. Formulation of the DGA for Elastostatics

For each , the DGA for elastostatics can be cast in
terms of the components and of the displacement vector
(associated with a primal node ), together with the surface
force vector (associated with a dual face ). Again, we ap-
proximate , as

(14)

where , are the arrays of the displacement components in
the primal nodes. From (14), the displacement gradient compo-
nents along the axes of the global coordinate system are

(15)

where

(16)

and the strain components can be written as

(17)

Next, the surface force array on is

(18)

where , , and are the stress components evaluated in the
center of mass of .

Now, using Hook’s Law between stress and strain compo-
nents and (17), we obtain

(19)

where , in the case of 2-D plain stress, for isotropic homoge-
neous material, is given by

(20)

Next, for element we may write the local equilibrium equations
in the absence of volume forces

(21)

where is the array of the component of the resulting sur-
face force associated with node , and similarly for .

Finally, assembling the contribution from (21) for each , the
final system becomes

(22)

where , and is the array of the mechanical
loads with nonnull entries on the nodes only, calculated
according to (13); is the resulting stiffness matrix for the
elastostatic problem. In addition, the constraints ,

are imposed for .

Fig. 3. Flowchart of the sequential field coupling approach implemented with
voltage increments. The internal loop (indexed with k) describes the increments
of loads�F , while the outer loop (indexed with i) describes the increments�V
applied to the voltage.

C. Solution Algorithm

An efficient, fast, and robust relaxation algorithm has been
developed to analyze the electromechanical nonlinear problem
presented hereafter. The two domains and mutually
influence each other only at the interface, so that an iterative se-
quential analysis of the two fields can be suitably performed.
A sequential field coupling (SFC) approach with voltage in-
crements is adopted. The total potential difference is split into

increments: for each intermediate voltage value the cou-
pled analysis is performed by means of the usual SFC method.
The equilibrium configuration is achieved for each load step be-
fore increasing the applied potential difference, as shown in the
scheme reported in Fig. 3.

III. NUMERICAL RESULTS AND COMPARISONS

To evaluate the actual effectiveness of the DGA, a comparison
has been performed among the nonlinear solutions obtained by
the sequential approach with different methods: a special me-
chanical finite element [8], a commercial FEM code (ANSYS)
operating a coupled field analysis and a FEM/BEM approach
(FEM for the structure, BEM for the electric domain). It is well
known that the physical problem is fully 3-D, mainly because
of the distribution of the electrostatic loads on the microbeam.
Nevertheless, in this paper, the comparison among different nu-
merical approaches is limited to a plain static nonlinear coupled
problem. The aim is to investigate the possibility to build a fast
and reliable 2-D model suitable to approximate, with enough
accuracy, the actual 3-D behavior of several specimens experi-
mentally tested. A challenging aspect of the proposed approach
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Fig. 4. Numerical comparison of the tip displacement as a function of the ap-
plied voltage for the DGA, FEM (ANSYS), sequential nonincremental FEM [8],
FEM/BEM approaches (E = 166 GPa, � = 0:23, L = 200 �m, h = 2 �m,
d = 15 �m, g = 10 �m).

is the development of a compact model useful to predict the dy-
namic behavior of the electromechanical coupled microsystem,
where both electromechanical and geometrical nonlinearities
are present simultaneously. Several polysilicon cantilever mi-
crobeams ( GPa, ) have been numerically
investigated with length m , gap

m , thickness m, and width
m. The test case has the following nominal (mea-

sured) values: m, m, m, m
( m, m, m, m).

In Fig. 4 the tip displacement is presented as a function of the
applied voltage up to the pull-in condition. A quite good agree-
ment is shown among the numerical results calculated by DGA
(15 000 elements and 32 000 degrees of freedom for the elec-
trical analysis and 756 elements and 4000 degrees of freedom
for the structural analysis), by a FEM (ANSYS) (iterative, mesh
morphing, 80 PLANE183 for the solid beam, 3000 PLANE 121
for the electrical analysis), by a sequential nonincremental FEM
[8] (3036 elements, 346 nodes along beam boundary for elec-
trical analysis; 41 nodes, 40 Timoshenko two-node beam ele-
ments for structural analysis), and by a FEM/BEM (337 two-
node boundary elements, 188 nodes along beam boundary for
electrical analysis; 31 nodes, 30 two-node Timoshenko beam el-
ements for the structure). The DGA code, developed in Fortran
90, takes approximately 4 s to perform the internal loop, indexed
with in Fig. 3, on a 3-GHz Pentium IV, 2-GB RAM; it seems
to be promising in the perspective of the implementation into
a dynamic solution algorithm including electromechanical and
geometrical nonlinearities. A direct comparison of the perfor-
mance in terms of efficiency and computational time with the
other methods is unpractical since they have been developed in
different environments (ANSYS, Matlab).

Fig. 5 compares the experimental and numerical predictions
from DGA. The difference between the curves obtained with the
nominal (solid) and measured (dashed) dimensions is mainly
due to the 3-D fringing effects of the electrostatic load distribu-
tion. The increment of the force per unit length, computed with
a 3-D FEM analysis, is about 1.4. To account for fringing effects
by means of a 2-D model, an effective thickness may be in-
troduced; in our case m, which is
close to the nominal value.

Fig. 5. Comparison of experimental tip displacement with DGA numerical pre-
dictions, using measured (2.2 �m) and nominal thickness (2 �m).

IV. CONCLUSION

This paper deals with the application of a discrete geometric
approach to the numerical prediction of the nonlinear static
behavior of electrostatic microactuators. Plain static solution
demonstrates that the performance of DGA is competitive and
assures the same level of accuracy of available methods like
FEM coupled-field solution, sequential nonincremental FEM
and FEM-BEM hybrid method. A preliminary experimental
validation defined the limits of application of the 2-D model-
ling, mainly due to the 3-D fringing effect of the electrostatic
load distribution. Nevertheless the experimental results are
fitted by the 2-D model where an effective microbeam thick-
ness is calibrated on the actual response of the microsystem.
This approach could be proposed instead of model reduction
techniques to avoid the computational problems related to the
solution of 3-D coupled models.
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