
694 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 6, JUNE 2008

Constitutive Matrices Using Hexahedra in a Discrete
Approach for Eddy Currents
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We examine the construction of reluctivity and Ohm’s constitutive matrices for discrete geometric approaches using nonregular hexa-
hedra as primal volumes. The effect of element deformation on the representation of uniform fields have been investigated for static fields.
Then convergence and accuracy of the proposed matrices has been carried out using an eddy-current problem as working example.
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I. INTRODUCTION

DISCRETE geometric approaches [1] like the Finite Inte-
gration Technique (FIT) [2] or the Cell Method [3], [4]

have been originally implemented using regular hexahedra to
construct the primal cell complex. In recent years the FIT ap-
proach has been extended to distorted hexahedra [5]. In the case
of the Cell Method, the difficulty for nonregular hexahedra lies
in the construction of constitutive matrices, the discrete coun-
terparts of constitutive laws.

The aim of this paper is to construct constitutive ma-
trices—the reluctance mapping magnetic fluxes to m.m.f.s
and conductance matrix mapping e.m.f.s to currents—for
nonregular hexahedra. This shifts the emphasis on the basis
functions to employ. Even though no canonical edge and face
elements do exist for hexahedra, we used the basis functions
described in [6]. Then we will follow the recipe to construct
constitutive matrices proposed in [7] for simplexes.

As a first step, the effect on the solution of the distortion of the
element will be investigated with respect to uniform static cur-
rent conduction and magnetic fields using an extremely coarse
mesh. Then an eddy current problem will serve as a working
example for the case of nonuniform fields and deformed hexa-
hedra. The numerical results will be compared with a tetrahedral
mesh using the discrete geometric approach.

II. CELL COMPLEXES AND BASIS FUNCTIONS

The inner-oriented geometric elements1 of the primal com-
plex are the nodes , edges , faces and volumes of a
hexahedra-based mesh (Fig. 1).

We will focus here on the the nodal, edge, and face mixed
finite elements [6], associated with the geometric elements of .
We indicate with the nodal function2 of the point
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1The notion of inner and outer orientations can be found in [3] and [9].
2In our case s (p) is generated by the following polynomial base

(1; x; y; z; xy; xz; yz; xyz).

Fig. 1. Nonregular hexahedron is shown, together with the oriented geometric
elements forming the primal K and the dual ~K cell complexes.

of coordinates , associated with the node . It is equal
to 1 when and it is null on the other nodes.

Edge vector function attached to edge , inner ori-
ented from nodes to (refer to Fig. 1), is defined as

(1)

where is the sum of the nodal func-
tions associated with the four nodes indi-
viduating the face , this face has node as the only common
node with edge . Similarly we have that

holds, where the nodal functions are associated
with the four nodes of face , having node in common with
edge .

Finally, face vector function associated with face ,
inner oriented as shown in Fig. 1, is defined as

(2)

where involves associated with the four nodes
of face and associated with
the four nodes of face respectively (refer to Fig. 1); the pair
of faces , has the node in face in common. The pair
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of gradient vectors , , appearing in the cross product,
is ordered according to the order of the faces , they are
associated with; the order of these faces is established by the
inner orientation of face and then, in our case, comes as
first. Similarly for the other cross products.

These scalar and vector functions form a basis for the spaces
they generate and they reduce to the Whitney edge and face
vector functions when degenerates to a tetrahedron.

It is a standard procedure to introduce a reference cube
and an injective map , mapping a point of
coordinates , , in the reference cube into the point in
the actual hexahedron . We use this mapping to systematically
compute the edge and face vector functions exploiting the Jaco-
bian matrix of .

The dual complex consists of outer-oriented geometric ele-
ments. A generic geometric element will be obtained by map-
ping the points forming the corresponding geometric element
of as . We refer to a primal cell complex made of a
single hexahedron . A dual node is obtained by mapping the
barycenter of the reference cube into the point
in . Note that, in general, is no more the barycenter of . A
dual edge is a segment in such that , where
is a segment in joining and the barycenter of face
(a square) corresponding to in . Again note that is a
segment between points and , but is not the
barycenter of face . For this reasons the resulting dual complex
is not the barycentric one in general, but it is barycentric only in
the reference cube . A dual face is a nonplane quadrilateral
surface defined as , where is the corresponding dual
face (a square) in . Finally a dual volume is bounded by the
dual faces around .

III. CONSTITUTIVE MATRICES

Constitutive matrices are discrete counterparts of the Hodge
operator, [8], [9]. We will focus here on reluctance and on con-
ductance constitutive matrices. The matrix maps an array of
fluxes over the primal faces to an array of m.m.f.s on the
dual edges. Its dimension equals the number of primal faces.
The matrix maps an array of e.m.f.s along primal edges to
an array of currents crossing the dual faces and its dimension is
the number of primal edges of the conducting region.

In order to construct these matrices, we will extend to hexa-
hedra the technique described in [7] for the case of simplexes. In
the following we will consider the cell complexes , formed
by a single hexahedron. We also assume reluctivity and con-
ductivity element-wise uniform. The matrices and for a
mesh of hexahedra are obtained by summing up the contribution
element by element.

A. Reluctance Matrix

We indicate with the flux attached to a primal face of
hexahedron , with . Using face vector functions

, we may approximate the flux density vector in as

(3)

Then, from constitutive law between fields , the m.m.f.
along dual edge in , with , becomes

. Finally, the numbers

(4)

are the entries of a possible matrix.

B. Conductance Matrix

In a similar way, but at a different geometric level, we indicate
with the e.m.f. along a primal edge of hexahedron , with

. Then from edge vector functions , we may
approximate the electric field vector in as

(5)

Combining it with Ohm’s law between fields , the cur-
rent density in becomes . Then the
numbers

(6)

are the entries of a possible matrix.

IV. EFFECT OF THE ELEMENT DEFORMATION

We will face here a numerical analysis of the effect on the
solution of the deformation of an hexahedron without modi-
fying significatively its size. To this aim, we consider the static
case, where the actual fields are uniform; later we will move to
quasi-statics.

To quantify the extent of this effect, we will evaluate the quan-
tity associated with field

(7)

where indicates the approximated vector field, is the actual
field, is the problem domain and is the amplitude of
a vector field. The vector field stands for or and the
approximated field is given by (3) or (5) correspondingly;
reluctivity or conductivity are represented by according to
the case.

As working examples, we consider a magnetostatic (MA) and
a current conduction (CC) problems in the domain , formu-
lated in a discrete way as [10]

(8)

where , are incidence matrices between the pairs and
of the primal complex, is the array of the circulations of

the magnetic vector potential associated with the primal edges
and is the array of the electric scalar potentials associated
with the primal nodes. The sources are assigned by specifying
proper boundary conditions, for this reason the right-hand sides
in (8) are null. Finally, and .
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Fig. 2. Primal complex K consisting of distorted hexahedra. The considered
distortion produces 26 hexahedra; the element having node A as one of its nodes
remains a cube.

Fig. 3. Three components B , B , B , are shown computed along the line
AB; note that no error occurs in the undistorted element.

The boundary conditions have been set in order to generate in
a uniform magnetic induction field of amplitude T and

a uniform current density field of amplitude A m re-
spectively, both directed as the z axis. In the domain —a cube
of unitary edge—we constructed an undistorted primal complex

consisting of cubical elements. By displacing five
nodes but one of the innermost cube, we obtain a new deformed
primal complex made of 26 hexahedra plus one cube (see
Fig. 2).

A first result is that the stiffness matrices in (8) are symmetric
and positive definite, for the undistorted primal complex and
we have that the errors , are both null. However, the same
matrices become nonsymmetric for the distorted primal com-
plex and we have that ,

hold respectively, where indi-
cates the extent of the nonsymmetry of matrix and is the

-norm. Correspondingly the error is null indicating that
exactly represents a uniform field. In the case of a MA problem
the error becomes . This indicates that face vector
functions are unable to represent a uniform vector field when
a deformation of the elements occurs. To see this effect—known
in the framework of finite elements too—we plotted in Fig. 3
the three components of the magnetic induction in a number

Fig. 4. Real parts of the current densities vectors in the stranded coil placed
above a conducting aluminium plate are shown for a mesh of 15 540 hexahedra.
The amplitude of the current density vector in the coil is scaled. A zoom to see
the skin effect is also shown.

of points evenly distributed along the line AB drawn in Fig. 2.
However, it is interesting to note that a uniform field in the
MA problem is exactly represented when it is computed in the
special point even in the presence of a large deformation of
the hexahedron.

We also computed the ratio between the maximum and the
minimum eigenvalues of the stiffness matrices appearing in (8),
before the boundary conditions are imposed. We denote with

this ratio associated with matrix .
Then we have that and

respectively; on the other hand and
hold for the case of . This shows that

the deformation of the elements affects in a comparable way
the ill-conditioning of the final systems in (8).

V. CONVERGENCE FOR MAGNETO-QUASI-STATICS

We consider here an eddy current problem as working ex-
ample to study the convergence and accuracy of the constitutive
matrices , when fields are no more element wise uniforms
and the elements forming the primal complex are distorted.

The domain of interest of the eddy-current problem (a
cylinder of diameter of 60 mm and height 44.5 mm), has been
partitioned into a source region (a circular current driven
coil of 18 mm of outer diameter, 12 mm of inner diameter,
and 10 mm height) placed above a conducting region con-
sisting of an aluminium plate 4 mm thick and with a radius of
30 mm (Fig. 4). The insulating region is the complement of

and in . In we force a sinusoidal current source
with a frequency of kHz.

We briefly recall the basic equations of a discrete geometric
approach to solve eddy-current problems3 [11] [12], [13]. We
search for the array of the circulations of the magnetic vector
potential along primal edges of and for the array of scalar
potential associated with primal nodes of such that

(9)

3The proposed formulation is part of the Geometric Approach for Maxwell’s
Equations (GAME) code developed by R. Specogna and F. Trevisan with the
partial support of MIUR (Italian Ministery for University and Research).
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Fig. 5. Convergence in terms of � is compared for the case of hexahedra and
tetrahedra; the O(l ) reference convergence order is drawn in addition as
a continuous line.

Fig. 6. Convergence in terms of � is compared for the case of hexahedra and
tetrahedra; the O(l ) reference convergence order is drawn in addition as
a continuous line.

where array is the subarray of , associated with primal
edges in ; the matrix is associated with pairs of .
With we mean the th row of array , where
is the label of edge or of node . Finally and

, being the number of edges in . The system
(9) is singular and to solve it we rely on CG method without
gauge condition [14].

The test problem has axial symmetry and the results obtained
from the 3-D analysis in terms of the errors and , have been
compared with respect to a 2-D model. To study the conver-
gence, we used five meshes with increasing refinement, having
1536, 6156, 11 776, 25 800, and 39 168 hexahedral cells respec-
tively. We choose the mean length of the edges as

quality factor for the mesh. Figs. 5 and 6 show that the conver-
gence is of the first order. Moreover the convergence has been
computed not only for hexahedra but also for the case of a primal
complex made of tetrahedra, where the constitutive matrices can
be computed as described in [12], [13]. To achieve a similar
accuracy in the solution, a mesh of about 39 000 hexahedra is
needed while, in the case of tetrahedra, 360 000 elements are
required.

VI. CONCLUSION

Even though we started from the same basis functions as in
the framework of finite elements, to construct the reluctance and
conductance constitutive matrices, the final stiffness matrices
are different. They are in general nonsymmetric, the extent of
the asymmetry depending on the deformation of the element.
The investigation of the effect on the solution of the element de-
formation reveals that only the face vector functions—used to
construct the matrix—are unable to represent a uniform field
in points different from , where however the representation is
exact. Finally an eddy current problem, used to investigate the
convergence for nonuniform fields, revealed a first-order con-
vergence, but requiring about a factor of 10 elements less with
respect to a tetrahedra mesh to achieve the same accuracy.
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