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We propose a geometric reinterpretation of the Nodal Force Method in the framework of a pair of discrete formulations for magneto-
statics on complementary meshes.
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I. INTRODUCTION

THE FORCE distribution on a body can be computed by
means of the so-called “Nodal Force Method” (NFM), pro-

posed by [2]–[5] in the framework of finite elements. The aim
of this paper is to provide a geometric reinterpretation of the
NFM, when used within discrete geometric approaches [1], [7].
We will focus on magnetostatics, and we will consider a pair of
discrete formulations1 on complementary meshes to solve the
magnetostatic problem; one formulation takes the circulation of
the vector potential as unknowns, whereas the other uses a scalar
magnetic potential and the circulation of the electric vector po-
tential, in the region of the source currents. In both cases, we
will express the contribution to the resulting force acting on a
node of a tetrahedron in terms of the geometric entities of
the mesh and of the global electromagnetic quantities like the
fluxes of the induction field or the circulations of the magnetic
field.

A numerical example is used to compare the resulting force
acting on a body. We verify numerically that averaging the re-
sulting force values computed from the pair of complementary
formulations yields a good approximation of the actual resulting
force even with a relatively poor mesh. This result holds also in
the framework of finite elements [8].

II. DISCRETE FORMULATIONS FOR MAGNETOSTATICS

The domain of interest consists of a source region ,
where known currents are present, and of a region , where
magnetic materials are present; the complement of and
in is the air region . We introduce in a pair of interlocked
cell complexes [6], [7]. One complex is made of simplexes,
i.e., nodes, edges, faces (triangles), and volumes (tetrahedra),
while the other is obtained from it, according to the barycentric
subdivision.
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1These formulations are part of the Geometric Approach for Maxwell’s Equa-
tions (GAME) code developed by R. Specogna and F. Trevisan with the partial
support of MIUR (Italian Ministery for University and Research).

Each geometric element of a cell complex is endowed with
an orientation [7]. The cell complex whose geometric elements
are endowed with inner orientation is referred to as the primal
complex and denoted by , whereas we denote by the cell
complex whose geometric elements are endowed with outer
orientation. As the same geometric element of a complex can
be thought with two complementary orientations, we may con-
struct two pairs of meshes and ,
where the superscript " indicates the simplicial complex. The
geometric elements of the primal mesh ( for or for

) are denoted by for nodes, for edges, for faces and
for volumes; whereas the geometric elements of the dual mesh
( for or for ) are denoted by , , , respectively.

The interconnections between the geometric elements of a
complex of or are described by means of incidence
matrices. In particular for the simplicial primal complex , we
denote by the incidence matrix between and , by the
incidence matrix between and and by the incidence matrix
between and ; similarly for the simplicial dual complex
we write , and respectively. In particular between the
incidence matrices of and we have that ,

, hold.2

Next, we consider the integrals of the field quantities, also
referred to as integral variables, for a magnetostatic problem
with respect to the oriented geometric elements of a mesh
or , yielding the degrees of freedom (DoF) arrays (denoted
in boldface type); each entry of a DoF array is indexed over the
corresponding geometric element. There is a univocal associa-
tion between a global variable and the corresponding geometric
element [7], and we denote with the following:

• the array of magnetic induction fluxes associated with
primal faces in ;

• the array of magnetomotive forces (m.m.f.s) associated
with dual edges in ;

• the array of electric currents associated with dual faces.
Now, in order to compute the resulting force acting on a body,

we have to first solve the magnetic problem by evaluating the
fluxes on primal faces or the m.m.f.s along the dual edges of
a mesh or [11]. The discrete formulations needed to
compute focusing on mesh or to compute with respect
to are briefly recalled in the next two sections.

2The minus sign comes from the assumption that inner/outer orientations of
a node are opposite.

0018-9464/$25.00 © 2008 IEEE



HENROTTE et al.: REINTERPRETATION OF THE NODAL FORCE METHOD 691

A. Formulation in

In we consider the mesh and we refer all the incidence
matrices to the simplicial complex . We search for a DoF-
array of the circulations of the magnetic vector potential
along the primal edges of such that

(1)

hold, where (1a) is the Ampère’s Law at discrete level and
is the array of currents crossing the dual faces of ; has
nonnull entries for the dual faces of in only. The square
matrix ( , being the number of faces in )
is the reluctance matrix such that (1b) holds exactly at least for
an element-wise uniform induction field B and magnetic field
H in each tetrahedron; it is the approximate discrete counterpart
corresponding to the constitutive relation at contin-
uous level, being the reluctivity assumed element-wise a con-
stant. The reluctance matrix can be computed according to the
following approaches [10], [12], [15]. Finally, (1c) assures that
Gauss’ Law at discrete level is satisfied identically,
since holds.

By substituting (1b) and (1c) in (1a), we obtain the final al-
gebraic system

(2)

for which the boundary conditions must be specified in terms of
on the primal edges on the boundary of .

B. Formulation in

In we consider the mesh and we refer all the incidence
matrices to the simplicial complex . We search for a DoF-
array of magnetic scalar potentials associated with the dual
nodes of such that

(3)

hold, where (3a) is Gauss’ Law at discrete level and is the
known array of the circulations of the electric vector poten-
tial along dual edges; it has nonnull entries for the dual edges

of belonging to the region and to some of the edges
of region also referred to as thick cut region [17]. The
array satisfies the following property , where is the
array having nonnull entries only for the currents crossing the
dual faces in the source region . To compute the array
from , the technique described in [9] can be used. The square
matrix ( , being the number of edges in )
is the permeance matrix such that (3b) holds exactly at least for
element-wise uniform H, B fields in each tetrahedron; it is the
approximate discrete counterpart corresponding to the consti-
tutive relation at continuous level, being the perme-
ability assumed element-wise a constant. The permeance matrix
can be computed as described in [13] and [15]. Finally, (3c) as-
sures that Ampere’s Law at discrete level is identically
satisfied, since holds.

Fig. 1. (A) Tetrahedron v 2 L is shown, having two nodes on @D . (B) Pair
n, f is shown for a tetrahedron v 2 L. Three edges drawn from node n are
displayed; edge e and face f form a pair.

Then by substituting (3b) and (3c) in (3a), we obtain the final
system of equations

(4)

where the boundary conditions must be specified in terms of
on the dual nodes on the boundary of .

III. NODAL FORCE METHOD

We indicate with a layer of tetrahedra enclosing the mag-
netic domain , such that and each tetrahedron

(or ) may have up to 4 nodes on , Fig. 1(A); we
denote by one of these nodes and with the set they form.
Then, the contribution to the resulting magnetic force asso-
ciated with node of can be written in a general way as [2],
[3], [5]

(5)

where

is the Maxwell stress tensor in terms of , fields, is
the magnetic energy density of the material and is the identity
tensor. Finally is an arbitrary function (we need at least to
compute the gradient of it) with support in ; it is 1 on
and 0 on . In the following, we will consider linear
media only and holds.

Now, we will concentrate on the single tetrahedron
(or ), since the resultant force acting on the body,
is the sum of the contributions , with , from all

. In one given tetrahedron, (or ), there is only one nodal
shape function associated with a given node. The function
can be expressed as the sum of the Whitney nodal function
associated with (or ). Then, it is easy to show,
[12], that, in the primal complex (or in ), the gradient of
a Whitney nodal function can be written as

(6)
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where is the area vector whose magnitude equals the area
of the face opposite to node , Fig. 1(B) and that is per-
pendicular to and pointing in a way congruent (according to
the right-handed screw rule) with the orientation of that face.
The same relation holds in the complex provided we swap
the pair , with , respectively. Entry is the inci-
dence number between the orientations of and of . Sim-
ilarly between and of the incidence is . Finally

is the volume of the tetrahedron.

A. Geometric Reinterpretation Using the Formulation in

From the formulation (2), we can compute the fluxes , with
of the induction field on the four faces of , which

comply with the Gauss’ law at discrete level

(7)

where is the incidence number between the orientations
of and . This solution in terms of fluxes is consistent, by
construction, with an element-wise uniform B field, since the
reluctance matrix in (2) has been computed in order to comply
exactly with this requirement. For this reason, we can assume
that the B field is uniform in . Thus a possible way to deduce a
uniform B in from the fluxes, can be obtained by generalizing
what has been shown in [12], as

(8)

where , with , is the edge vector associated with
edge drawn from node , Fig. 1(B), is the induction flux
associated with face having node as a vertex; face pairs
with . Integers and are the incidence numbers be-
tween the orientations of , and , respectively.

Next, by substituting (6) in (5), the contribution to the total
force with respect to mesh becomes

(9)

and by substituting in it (8) for B and using (7) to express
, after reordering, we obtain

(10)

where

(11)

It should be noted that the vector contains all the geometric
information and medium parameters being a linear combination
of the edge vector associated with the edge drawn from the
common node and the face vector associated with the face

opposite to .

B. Geometric Reinterpretation Using the Formulation in

The formulation (4) allows the computation of the m.m.f.s
, with along the six dual edges of the tetrahe-

dron . Again, this solution in terms of magnetomotive forces
is consistent, by construction, with an element-wise uniform H
field, since the permeance matrix in (4) has been computed in
order to comply exactly with this requirement. Thus, we can as-
sume that the field H is uniform in . Then following a reasoning
similar to the one used to deduce (8) but at a different geometric
level, it can be shown that a uniform magnetic field H in such
that , can be expressed as

(12)

where , with , is the face vector associated with
dual face having node as vertex, is the m.m.f. associated
with the dual edge drawn from node ; also in this case the
dual face pairs with the dual edge . Integers and
are the incidence numbers between the inner orientations of the
pairs , and , respectively.

Next, by substituting (6) in (5), the contribution to the total
force with respect to mesh can be written as

(13)

and by substituting (12) in it for H after reordering, we obtain

(14)

where

(15)

Again the vector contains all the geometric information
and medium parameters, being a linear combination of the face
vector associated with the dual face having one vertex co-
incident with the node and the face vector associated with
the dual face opposite to .

IV. NUMERICAL EXPERIMENT AND RESULTS

In order to validate and compare the pair of complementary
formulation at the base of the force computation, we consid-
ered the problem of evaluating the resultant force acting on a
magnetic cylinder placed in the vicinity of a
circular coil (400 turns, 1 A per turn) . The magnetic and
the source domains are surrounded by air. The geometry is
axisymmetric and it is shown in Fig. 2.

We solved this problem as a pure 3-D magnetostatic problem
using the formulations and on a number of different com-
plementary meshes and ; for brevity in Table I, we
denoted such meshes with with and we re-
ported the number of tetrahedra of the corresponding simplicial
complexes.

The systems (2) and (4) are singular, and to solve them we
rely on CG method without gauge condition [18] with a SSOR
preconditioner. The CPU times needed to solve the systems on
a Pentium IV, 3-GHz, 2-GB RAM computer are also reported
in the table. As a reference, we considered a 2-D axisymmetric
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Fig. 2. Geometry of the test problem where the magnetic D and source D
domains are shown.

TABLE I
ERRORS AND CPU TIME FOR A AND 
 FORMULATIONS

Fig. 3. Convergence of the total forces as the refinement of the mesh is
increased.

analysis with the ANSYS code, yielding a total force (along the
direction) mN, using about 20 000 second-

order quadrilateral elements.
The percentage errors ,

are reported in the fourth and fifth rows
of Table I. As a numerical result, we verify that
always hold, where is the actual error affecting the force value
for a given coarseness of the mesh. In addition, we also verify
that holds approximately. The averaged error is

much lower than the corresponding error due to a single formu-
lation for the same grain of the mesh. In Fig. 3 we compared the
convergence of the computed total forces and toward
the reference value , as the refinement of the mesh in-
creases with ; the averaged value
is shown in addition.

V. CONCLUSION

We presented a geometric reinterpretation of the nodal force
computation method. It is based on the geometric treatment of
the Maxwell’s stress tensor, and it holds exactly under the as-
sumption of element-wise uniform fields within each tetrahe-
dron of the mesh. This same assumption is also at the base of the
computation of the consistent reluctance and permeance consti-
tutive matrices of a pair of discrete geometric formulation and

on a pair of complementary meshes respectively. The conver-
gence of the computed total force toward a reference value is
demonstrated numerically as the refinement of the mesh is in-
creased. Moreover, we numerically verify that the error in the
force computation can be reduced by averaging the force values
computed from each of the formulations.
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