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Eddy-Currents Computation With T-
 Discrete Geometric
Formulation for an NDE Problem

Ruben Specogna and Francesco Trevisan
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We propose a discrete geometric formulation based on a magnetic scalar potential and on the circulation of an electric vector potential
to solve eddy-current problems for nondestructive evaluation of steel bars with longitudinal defects.

Index Terms—Discrete formulations, eddy-currents, nondestructive evaluations.

I. INTRODUCTION

WE PRESENT a discrete geometric formulation1 [1]–[3],
for eddy currents based on a magnetic scalar potential

and on the circulation of an electric vector potential associated
with nodes and edges of a tetrahedral mesh respectively [4].

With the geometric approach, Maxwell’s laws are trans-
lated—on a pair of grids one dual of the other— into algebraic
equations which hold exactly independently of the size of the
mesh. Whereas the discrete counterparts of the constitutive
equations—mapping circulations to fluxes or vice versa from
one grid to the other—are approximate mesh- and medium-de-
pendent relations. The way in which they are approximated
leads to a final stiffness matrix different from the one obtained
with the Galerkin approach; a further difference with finite
elements stems from the construction of the right-hand side of
the final system.

We will apply this formulation to design a device for non-
destructive evaluations (NDEs), based on the induction of eddy-
currents in a bar with circular cross section, where a thin longi-
tudinal defect is present.

II. DISCRETE GEOMETRIC FORMULATION

We denote with the domain of interest of our eddy-currents
problem. It can be partitioned into a source region , where
impressed currents are present, a conductive region and an
insulating region . We assume linearity of
the media and a permeability in and a resistivity in .
We introduce in a pair of interlocked cell complexes2 , ,
Fig. 1. The dual complex is simplicial; it consists of outer
oriented cells such as dual nodes , dual edges , dual faces
(triangles), and dual volumes (tetrahedra).

The primal complex is obtained from the dual according
to the barycentric subdivision. It consists of primal nodes ,
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1This formulation is part of the geometric approach for Maxwell’s equations
(GAME) code developed by the authors with the partial support of the Italian
Ministry for University and Research (MIUR).

2Informally, in the R ambient space, a cell complex can be understood as a
collection of a finite number of geometric entities denoted as p-cells like nodes
(0-cells), edges (1-cells), faces (2-cells), and volumes (3-cells) endowed with a
specific orientation; a precise definition of these concepts can be found in [1],
[2], and [6].

Fig. 1. Representation of the oriented geometric entities forming the pair of
the interlocked cell complexes for the case of a single tetrahedron ~v. The center
of mass of ~v defines the primal node n, and the centers of mass of ~f and ~e are
denoted with circles. The curved arrowed lines encircling a dual edge ~e denote
the outer orientation of that edge; an arrow denotes the inner orientation of a
primal edge e.

edges , faces , and volumes ; for example coincides with
the center of mass of (Fig. 1).

The mutual interconnections of the dual cell complex are
described by incidence matrices: between dual edges and
dual nodes , between dual faces and dual edges , and
between dual volumes and dual faces . The matrices

,3 and describe the mutual intercon-
nections of .

A. Physical Laws for Eddy-Currents at Discrete Level

We will formulate our eddy-currents problem in terms of ar-
rays of degrees of freedom (DoFs); the DoFs express the inte-
grals of field quantities over the geometric entities of , . The
DoFs can be associated in an univocal way to the corresponding
geometric entities of or , [6]. Thus we denote with the
array of the induction fluxes on primal faces , with the
array of e.m.f.s on primal edges , with the array of
m.m.f.s on dual edges and with the array of currents
crossing dual faces .

We may figure this association introducing the so-called Tonti
diagram (for a comprehensive description for different physical
theories see [7] and [8]). We will briefly retrace the concep-
tual construction of this diagram, customizing it for our specific

3The minus sign comes from the assumption that n is oriented as a sink,
whereas the boundary of ~v is oriented by the outer normal.
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Fig. 2. Tonti’s diagram for T-
 formulation.

eddy-currents formulation. The main advantage of the diagram
is to underline the geometric structure behind the Maxwell’s
equations, and as we will see, it helps in deducing the alge-
braic system of equations. The diagram should be visualized in
a 3-D space, and Fig. 2 gives a perspective view of it. On the
left side of the diagram, two vertical pillars are drawn, where
each DoF-array, typed inside an oval, is associated with the
corresponding geometric entity of the primal cell complex
( , , , from top to bottom respectively). On the right side
of the diagram, only one vertical pillar is drawn, where each
DoF-array, typed inside an oval, is associated with the corre-
sponding geometric element of the dual complex ( , , ,
from bottom to top respectively). The dashed circles represent
categories not used in the specific formulation. Along a vertical
pillar, we move from the variables associated to a geometric en-
tity to the variables associated with the successive geometric
entity, of the primal or of the dual complex, using the incidence
matrices. The link between the pair of vertical pillars on the left
side of the diagram is given by the time derivative; for a given
geometric entity, by taking the time derivative of a DoFs array
in the rear pillar, we obtain the corresponding DoFs array in
the front pillar. This process allows us to form, for each geo-
metric entity, the physical laws in discrete form. In this way, we
may obtain the Maxwell’s laws at discrete level, governing an
eddy-current problem in the frequency domain. From the left
pillars, we deduce Faraday’s law as

with (1)

where with symbol we mean the th row of the array ,
being the label of the corresponding geometric entity, and in

this case we set . Similarly, from the left rear pillar of the
diagram, we deduce the Gauss’ Law as

with (2)

Now, working on the right pillar, Ampère’s law becomes

with (3)

For completeness, we add also the continuity law

with (4)

even though it is implied by the (3), since holds.
Next, we introduce the array of magnetic scalar potentials
associated with the dual nodes and the array of

the circulations of electric vector potential along dual edges
such that

with

with (5)

hold. However, it is well known that, in the case of multiply
connected regions [9], the m.m.f.s along dual edges
cannot be described completely by the magnetic scalar poten-
tial alone. Therefore, according to the classical approach of the
thick cuts, we extend the definition of the circulations of the
electric vector potential along the dual edges belonging
to the so-called thick cuts regions ; each of these regions is
in one-to-one correspondence with primal faces whose collec-
tion forms a cut surface. The number of cut surfaces coincides
with the number of linearly independent currents in to which
correspond an equal number of additional unknown circulations

; algorithms to compute can be found in [10] and [11].

B. Constitutive Relations

In addition to the physical laws, we need the discrete coun-
terparts of the constitutive relations mapping a DoF array as-
sociated with a geometric entity of into the dual4 geometric
entity of ; in the diagram, they are represented as horizontal
links from right to left. The permeance matrix maps the DoF
array into the DoF array , and we write

(6)

The resistance matrix maps the DoF array into the DoF array
so that

(7)

holds. The permeance and the resistance matrices are some
square mesh- and medium-dependent matrices and have di-
mensions , being the number of dual edges in

and , being the number of dual faces in
. These matrices can be constructed according to different

techniques described in [4], [5], and [12]; we will dedicate
Section IV to construct and .

III. ALGEBRAIC SYSTEM

Tonti’s diagram is a useful tool to deduce the final system of
algebraic equations. We deduce the algebraic system of equa-
tions in terms of the and arrays, referred to the complex
only. By substituting (6) and the first of (5), into the (2), we
obtain

(8)

4The duality is made evident in the diagram, where the geometric entities on
the left and on the right part of the diagram correspond each other; for example
e $ ~f or f $ ~e.
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and similarly, substituting (6) and the second of (5) into (2), we
obtain

(9)

where are assigned, and we have that
with have prescribed values specified in the array

, related to the source currents in . Equations (8) and (9)
can be obtained from the diagram by following the path 1-2-3-4
in Fig. 2.

Now, by substituting (7), (6), (3) and the second of (5), into
(1), we may write

(10)

This equation can be obtained from the diagram following the
paths 2-5-6-7 and 2-3-7 in Fig. 2.

Finally, since to each thick cut domain in corresponds an
additional unknown , we need as many additional equations as
the number of the thick cut domains. Each of these additional
equations is deduced from (1) applied to the cut surface and to
its boundary respectively. To close the problem, we need proper
boundary conditions on dual nodes and edges on and inter-
face conditions on .

A. Integral Representation of Sources

In order to avoid the specification of the array in (9), we
adopt an integral representation of the effect of the source cur-
rents in . Thanks to the linearity of media, we can express
the DoF array of m.m.f.s along dual edges as
where is the array of m.m.f.s produced by the source cur-
rents in and is the array of m.m.f.s due to the eddy-cur-
rents in . Each entry of the array can be computed as

, where is the magnetic field expressed by
the Biot-Savart law from the source currents in and is a
dual edge. Applying (3) to , the following properties hold:

, where is the array of source cur-
rents indexed over the dual faces in ; moreover
holds .

Similarly holds, where is the
array of the eddy currents in ; moreover

holds.
Next, since relations (5) hold also for , we may write

with and
with , where is the array of the circula-
tion of the electric vector potential due to the eddy currents in

. Therefore (8), (9), and (10) can be rewritten respectively as

(11)

IV. CONSTRUCTION OF THE CONSTITUTIVE MATRICES

To construct the permeance and resistance constitutive
matrices we will resort to the edge and face vector base func-
tions defined in [5], [13], and [14] within a different geometric

context. Therefore, we will recall briefly their geometric con-
struction tailoring them to the specific geometry of our cell com-
plexes , . As proven in the above-cited papers, these base
functions assure that symmetry, positive-definiteness, and con-
sistency5 properties are satisfied for both the matrices , . To
construct , we will refer to a single tetrahedron with a uni-
form permeability or resistivity ; the constitutive matrices for
the overall mesh of tetrahedra are obtained by summing up the
contributions from the single elements. We will denote with
the four dual nodes of tetrahedron and with the four primal
volumes in ; each is an hexahedron in a one-to-one corre-
spondence with a node , Fig. 1. We denote with V the volume
of .

A. Resistance Constitutive Matrix

The entries of matrix , of dimension 4 4 for tetrahedron
are computed as

(12)

where is the face vector function associated with the dual
face of tetrahedron ; the nodes of the face are denoted by

, , respectively. The support of is the union of the
three primal volumes having a nonnull intersection with face

; we denote these primal volumes as , , and the corre-
sponding dual nodes as , , respectively. We also denote
with , , the edge vectors associated with edges , ,

drawn from the nodes , , and not belonging to the
boundary of .

Then, the face vector function attached to is defined as

if
if
if

(13)

where is the incidence number between outer orientations
of the pair and ; is the incidence number between outer
orientations of the pair , and similarly for the others.

B. Permeance Constitutive Matrix

The entries of matrix , of dimension 6 6 for tetrahedron
, are computed as

(14)

where is the edge vector function associated with the dual
edge of tetrahedron ; the nodes of the edge are denoted
by , respectively. The support of is the union of the
two primal volumes having a nonnull intersection with edge ;
we denote these primal volumes as , and the corresponding
dual nodes as , respectively. We also denote with , the

5A precise definition of the notion of consistency for constitutive matrices is
given in [2].
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Fig. 3. (Left) Voltage variation versus the receiving coil index (from 1 to 12)
for different relative angular locations between the coils and the defect (with
label 1 the defect is under coil 4, with the label 2 the defect is located between
coils 3 and 4). (Right) The conducting barD , the pair of source coilsD , and
the array of receiving coils are shown.

face vectors6 associated with the faces , . The face has
one vertex only coincident with the node , and the face has
one vertex only coincident with the node .

Then, the edge vector function attached to is defined as

if

if
(15)

where is the incidence number between and , and
is the incidence number between and .

V. APPLICATION AND RESULTS

The application concerns the design of a device for the detec-
tion of long longitudinal defects that can be present during the
hot mill rolling process of the steel bars with circular cross-sec-
tion. The bar consists of a conducting AISI 310 steel cylinder
(34 mm of diameter and conductivity of 1.236 S/m), where
a longitudinal perfectly insulating defect is assumed, 0.5 mm
deep from the surface of the cylinder and 0.2 mm thick. A pair
of source coils (30 mm of inner radius, 39 mm of outer radius,
1 mm height, 7 turns each, mA per turn, kHz,
counter series connected, 30 mm of axial distance between the
coils) encircling the bar are considered as sources. A set of 12
evenly spaced circular coils (3 mm of inner radius, 6.5 mm outer
radius, 6 mm height, 400 turns) with axis directed as the radii
of the bar are considered in between the pair of source coils.

When detecting long defects, a reference signal for each coil
is not available, and therefore it is not possible to use a differen-
tial detection system. To detect the defect we use an inversion
technique based on a neural network.

To have an estimate of the expected voltage variations in the
coils due to the presence of the defect, we computed the voltage
variations between the voltage on each coil
when the defect is present and the voltage on the same coil
without the defect.

To this aim we need to solve a pair of eddy-currents prob-
lems; we used the GAME code with the formulation and

6This is a vector normal to the face oriented as the outer orientation of the
face and with amplitude equal to the area of the face.

integral representation of sources (11). The mesh used consists
of about 218 000 tetrahedrons, 257000 edges and 37 629 nodes.
The defect has been modeled as a volume discretized with a col-
lection of tetrahedra. The results, compared with an independent

- formulation [12], are shown in Fig. 3 together with the ge-
ometry of the problem. The time to solve each linear system,
obtained from the same mesh of tetrahedra, on a Pentium IV
3-GHz laptop, 2-GB RAM, is 126 s for the formulation,
while the - formulation takes 176 s.

VI. CONCLUSION

We presented a discrete geometric formulation for the so-
lution of eddy-currents problems based on a magnetic scalar
potential on dual nodes and on the circulation of the electric
vector potential on dual edges. The constitutive matrices are
constructed geometrically in such a way that consistency and
stability are guaranteed. The numerical code has been used to
design a device for the detection of long longitudinal defects in
circular bars. The computed voltage variations on the receiving
coils for different relative positions of the defect, are in a very
good agreement with those from an independent formulation

- previously developed.
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