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Symmetric Positive-Definite Constitutive Matrices
for Discrete Eddy-Current Problems
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We examine the construction of a symmetric positive definite conductance matrix for eddy-current problems, using a discrete ap-
proach. We construct a new set of piecewise uniform basis vector functions on both the primal and the dual complex. We define these
vector functions for both tetrahedra and prisms.
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I. INTRODUCTION

I N discrete approaches [1]–[4] for eddy-current problems,
the conductance matrix can be constructed geometrically ac-

cording to different techniques proposed in [5] or in [9], but
it is nonsymmetric. This fact leads to nonsymmetric stiffness
matrices when solving the eddy-current problems. Moreover,
these techniques hold only for the case of tetrahedra as primal
volumes.

The motivation of this paper is to show a general method,
extending [6] and [7], to construct consistent, symmetric pos-
itive-definite constitutive matrices for eddy-current problems,
based on a new set of piecewise uniform basis vector functions
defined both on the primal complex and on the dual complex.
These vector basis functions will be introduced for tetrahedra
and prisms with triangular base. In particular, we will introduce
vector basis functions on the dual complex and for prisms where
Whitney vector functions are not defined.

A numerical example will be used to compare the results
obtained using different conductance matrices, constructed on
both the primal and the dual cell complex based on tetrahedra
as primal volumes.

II. DISCRETE APPROACH FOR EDDY CURRENTS

In this section, we will briefly recall the basic ideas of a dis-
crete approach to solve eddy-current problems. The domain of
interest of the eddy-current problem can be partitioned into
a source region , consisting of a current driven coil, a pas-
sive conductive region , and an insulating region which
is the complement of and in . We introduce in a pair
of interlocked cell complexes [8], [1], [2]. The primal complex
consists of inner oriented cells such as nodes , edges , faces

, and volumes . We will consider as primal volumes both
tetrahedra and prisms with triangular base.1
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Color versions of Figs. 1–5 are available online at http://ieeexplore.ieee.org.
1The lateral edges of the prism are not necessarily orthogonal to the base of

the prism.

The dual complex is obtained from the primal according to
the barycentric subdivision, with outer oriented cells such as
dual volumes2 , dual faces , dual edges , and dual nodes .
For example, a dual node is the barycenter of the volume .

The interconnections between cells of the primal complex,
are defined by the usual connectivity matrices between pairs

, between pairs , and between pairs . Sim-
ilarly, the corresponding matrices for the dual complex are
(the minus sign is due to the assumption that a dual volume
is oriented by the outward normal, while a node is oriented as
a sink) between pairs , between pairs , and
between pairs . With respect to these cell complexes, we
recall the formulation [9], [10]. We search for the array

of the circulations of the magnetic vector potential along
primal edges of and for the array of scalar potential
associated with primal nodes of such that

(1)

where array is the sub-array of , associated with primal
edges in ; the matrix is associated with pairs of .
With we mean the th row of array , where is
the label of edge or of node . The array of currents crossing
the dual faces is denoted by ; if then is the source
current crossing the dual face , while if then .
Finally, ( , being the number of faces in )
is the reluctance constitutive matrix and is the conductance
matrix ( , being the number of edges in ).
The system (1) is singular and to solve it we rely on CG method
without gauge condition [12]. In system (1) the last set of equa-
tions may be eliminated, being arbitrary, and the so-called

-formulation [14] may be obtained as a particular case; how-
ever, the convergence of -formulation depends strongly on the
choice of the preconditioner as shown in [15], [16]. In the paper,
we used a SSOR preconditioner and solving the singular system
(1) provides a reduction of the effective condition number [14].

2This notation underlines the duality between a p-cell and its dual (3�p)-cell.
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In the case of tetrahedra, the techniques described in [5] or
[13] based on Whitney vector functions can be used to construct
constitutive matrices. However, these techniques lead to non-
symmetric matrices and cannot be used in the case of prisms.

In this paper, we will reformulate in a general way the ap-
proach described in [7] in order to treat tetrahedra or prisms in
the same way.

III. APPROACH FOR BUILDING CONSTITUTIVE MATRICES

In this section, we provide a recipe to construct constitutive
matrices. To this aim, we will need different sets of vector basis
functions that will be defined in the next section. Here, we will
give the specifications they have to comply with. We will con-
struct the constitutive matrix at element level and then the global
matrix will be assembled by adding the contributions from the
single elements. Let be one primal volume, either a tetrahe-
dron or a prism and be one of the following geometric enti-
ties: , , , of ; we observe that , are pieces of the
th dual face or dual edge respectively, tailored in . A generic

vector function attached to is denoted by .
We denote by a vector field and by its integral

on the geometric entity ; similarly denotes the
integral of vector field with respect to the
geometric entity dual3 to . These are the so-called degrees
of freedom (DoF). For example, if is the electric displacement

, then is the flux of crossing dual face . Similarly if
is the electric field , then indicates the electromotive force
(EMF) along primal edge .

Using vector basis function associated with geometric en-
tity , we may express field as

(2)

where the subscript spans the set of labels of the geometric
entities in . For example, if is a generic primal edge, then

is the set of the labels of the six primal edges of .
Moreover, the elements of the set have to comply at least

with the following specifications:
i) they form a basis, so that ;

ii) they can represent a uniform field exactly.
Now, we consider in the following functional:

(3)

where , are a pair of vector fields in whose integrals
and are associated respectively with the geometric entities

, one dual of the other; the prime is used to stress that ,
are independent fields, not necessarily related by a constitutive
relation. Only the pair of fields , is related by a constitutive
relation of the kind (or its inverse), being the mate-
rial property.

3For example, the dual to edge e is the dual face ~e and the dual to dual edge
~f is the primal face f

We assume that the field in (3) is given as in (2),
, the set being arbitrary. Then (3) becomes

(4)

At this stage, we may design basis functions such that the fol-
lowing equality

(5)

holds, and in this case the functional (3) can be written as

(6)

where the , belong to independent sets of DoF.
We try to satisfy (5) exactly at least for an element-wise uni-

form field ; it will hold only approximately for a general field.
Then (5) yields

(7)

where the equality sign holds if the following property

iii)

is satisfied; we denote by the vector associated with the geo-
metric entity . It should be noted that this property reformu-
lates in a purely geometric way, for a uniform material property

, the consistency condition firstly presented in [17] and re-
called in [18] and [19].

The next step is to write , where
we used (2) for . Substituting it in (4) and comparing with (6)
we obtain

(8)

the set of being arbitrary and independent of the set of .
We observe that (8) is exact when the field is element-wise
uniform and property iii) holds. The numbers

are the entries of a constitutive matrix that is by
construction symmetric and positive-definite, relating the DoF
arrays and in the primal volume .

IV. VECTOR BASIS FUNCTIONS

In this section, we will construct the vector basis functions
attached to the geometric entity of volume . Then, the

vector functions are respectively: , attached to primal edge ,
, attached to dual face , , attached to primal face and

, attached to dual edge .
We introduce a generic subregion, say , of volume the

(either a tetrahedron or a prism), resulting from the intersec-
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Fig. 1. Representation of the support of v and of ~v . With the orientations
shown, for edge vector function, we have v (� ) = (�1) (�1)f =3V and
v (� ) = (+1) (+1)f =3V. For dual face vector function, we have v (� ) =
(�1)(�1)(12=V)~f and similarly v (� ) = (+1)(+1)(12=V)~f .

Fig. 2. Representation of the support of v and of ~v . With the orientations
shown, for edge vector function, we have v (� ) = (�1) (�1)f =2V and
v (� ) = (+1)(+1)f =2V. For dual face vector function, we have v (� ) =
(�1)(�1)(12=V)~f and similarly v (� ) = (+1)(+1)(12=V)~f .

tion between and a dual volume , see Figs. 1–3 for a de-
tailed view; geometrically is always a hexahedron and it is

Fig. 3. Representation of the generic subregion � one-to-one with node n
for a tetrahedron and a prism.

in a one-to-one correspondence with the primal node . As a
general rule, the support of is , where belongs
to the set of subregions having in common.

A. Primal Edge Vector Functions

The support of is and , are the
boundary nodes of the primal edge , Figs. 1, 2.

We denote by , the faces containing and respec-
tively and not containing and we introduce the area vectors

4, . Then is defined as

if
if

(9)

where is the incidence number between and , is
the incidence number between and , is the volume of

; in the case of tetrahedra , Fig. 1. For prisms

4Area vector f is normal to face f , its length is the area of f and it points
in a way congruent with the screw rule with respect to the inner orientation of
the face.
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if belongs to a base, otherwise holds, Fig. 2. In other
words, is a uniform vector in each subregion; for example in

it is proportional to the area vector associated with the primal
face opposite to edge , see Fig. 3.

It can be easily verified that Properties i) and ii)
hold. Property iii) (see Figs. 1 and 2) follows from

, where
for tetrahedra and for prisms, and from the

geometric identity5 where
is the area vector of the portion of the dual face tailored

in .

B. Dual Face Vector Functions

The support of associated with a portion of dual face
in is , where subregions and have as
common face, Figs. 1, 2. Then is defined as

if

if
(10)

where , are the edge vectors associated respectively with
the portions of dual edges , in . For any dual face of a
tetrahedron and dual faces like in a prism (see Fig. 2)
holds, while for a dual face like in a prism, we have .
In other words, is a uniform vector in each subregion; for
example in it is proportional to the edge vector associated
with the dual edge opposite to the portion of dual face , see
Fig. 3.

Obviously, property i), i.e., holds. For ex-
ample, both for a tetrahedron and a prism , because

. In a prism, for dual faces like we have
that , where , represent now the edge
vectors associated with the portions of dual edges one-to-one
with the top and bottom faces of the prism, respectively. Also
property ii) holds.

Now, we will show that vector function complies with
property iii). We focus on associated with the dual face like

in a tetrahedron or in a prism, and we observe that
.

Let us consider, for simplicity, the tetrahedron with orienta-
tions shown in Fig. 1. Then, from elementary geometry, we have
that , hold. Moreover, for
faces and , having edge in common, and the edge vec-
tors of their bounding edges, we have and

. Thus, we obtain
. A similar result holds for dual face vector

functions associated with dual faces like or in a prism, see
Fig. 2.

C. Primal Face Vector Functions

The support of is the domain , where the
boundary of volume and face have a non-null intersec-
tion. For example, in a tetrahedron and in a prism the support
of for a face having nodes ( , , ) (see Figs. 1 and 2) is

; on the other hand, for a face of a prism like ( ,
, , ), the support is .

5This identity holds when the dual complex is obtained with the barycentric
subdivision.

Next, we denote by a generic subregion in the support
. We also denote by the primal edge vector associated

with edge drawn from the node and not belonging to the
boundary of . For example, considering the face having nodes
( , , ) in the tetrahedron or in the prism of Figs. 1 and 2,
the edge is , drawn from node .

Now, we define attached to , as

if (11)

where for a tetrahedron; in a prism, for a face like the
one having nodes ( , , ), while for a face like the
one having nodes ( , , , ), . The incidence num-
bers , , specify the incidence between the pairs ,

, respectively.
With a reasoning similar to the one presented in the previous

sections, it is easy to show that properties i), ii), and iii) hold for
.

D. Dual Edge Vector Functions

The support of a dual edge vector function is ,
where has as common edge. For example, in a tetrahedron
the support for a dual edge like (see Fig. 1) is ;
on the other hand (see Fig. 2), for a dual edge of a prism like ,
the support is .

Next, we consider a generic subregion in the support .
We denote by the dual face having only the barycenter of

in common with the dual edge ; is the corresponding
dual face vector associated with . For example, considering
the dual edge and subregion in the tetrahedron or in the
prism of Figs. 1 and 2, the dual face is .

Now, we define in , as

if (12)

where for a tetrahedron and a prism, for a dual edge
like ; in a prism for a dual edge like , , and the inci-
dence numbers , , refer to the pairs , ,
respectively.

Again, with a reasoning similar to the one presented in the
previous sections, it is easy to show that properties i), ii), and
iii) hold for .

V. CONSTITUTIVE MATRICES

We will write the reluctance and conductance constitutive
matrices explicitly by assigning to the general expressions ,

, , and in (8) the variables of the specific case. We de-
note by the number of edges of and with the number of
its faces; , for a tetrahedron while ,
for a prism.

A. Magnetic Matrix Using

The reluctance matrix for tetrahedron relates the induc-
tion fluxes associated with with the magnetomo-
tive forces (m.m.f.s) associated with , .
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Then, the entries are , where is the
reluctivity of and is the set of labels of the primal faces
of .

B. Magnetic Matrix Using

As a first step, we construct matrix for tetrahedron re-
lating with , . Its entries are

, where is the permeability of
and is the set of labels of the primal faces of . The

second step is to invert it and we obtain , where the re-
luctance matrix for tetrahedron , relates the induction fluxes

associated with with m.m.f.s associated
with .

C. Conductance Matrix Using

Conductance matrix for tetrahedron relates the EMFs
associated with with currents associated

with , . Then, the entries are
, where is the conductivity of and is the

set of labels of the primal edges of .

D. Conductance Matrix Using

Similarly, we construct matrix for tetrahedron relating
with , whose entries are

, where is the resistivity of and is
the set of labels of the primal edges of . Then we invert
it, obtaining , where the conductance matrix for
tetrahedron , relates the EMFs associated with
with the currents associated with .

VI. NUMERICAL RESULTS AND COMPARISONS

As numerical test, we consider a geometry consisting of a cir-
cular coil placed above an aluminum plate. The domain of in-
terest of the eddy-current problem (a cylinder of diameter of
60 mm and height 44.5 mm), has been partitioned into a source
region (a circular current driven coil of 18 mm of outer diam-
eter, 12 mm of inner diameter, and 10 mm height) placed above
a conducting region consisting of an aluminium plate 4 mm
thick and with a radius of 30 mm. The insulating region is
the complement of and in . In , we force a sinusoidal
current source with a frequency of kHz.

We assemble the system (1) using the conductance consti-
tutive matrices , for tetrahedra, respectively. For compar-
ison, we also used the symmetric and nonsymmetric conduc-
tance constitutive matrices computed according to the methods
described in previous papers [11] and [9], respectively; these
methods make use of the Whitney edge vector functions [5],
[13] and, therefore, they are limited to the primal complex. We
solve the final system with a QMR solver for complex sym-
metric and nonsymmetric matrices according to the case; in both
the cases, we use a SSOR preconditioner.

To study convergence, we start from a couple of meshes
named Mesh 1 (10510 tetrahedra) and Mesh 2 (40643 tetra-
hedra). Then, we use the uniform refinement technique to
produce finer meshes. This technique for anisotropic meshes
provides more regular results. Therefore, by uniform refine-
ment of Mesh 1 we obtain Mesh 3 (84080 tetrahedra) and

Fig. 4. Convergence rate of the error for the real (subscript R) and
the imaginary (subscript I) parts of the magnetic induction calculated
using various constitutive matrices (WNS = Whitney non-symmetric,
WS = Whitney symmetric, EP = ���, ED = ~���). In both the axes we used a
log scale, in abscissa the average length of the element is considered.

Fig. 5. Convergence rate of the error for the real (subscript R) and the
imaginary (subscript I) parts of the eddy current density calculated
using various constitutive matrices (WNS = Whitney non-symmetric,
WS = Whitney symmetric, EP = ���, ED = ~���). In both the axes we used a
log scale, in abscissa the average length of the element is considered.

Mesh 5 (672640 tetrahedra); similarly from the Mesh 2 (40643
tetrahedra) we obtain Mesh 4 (325144 tetrahedra).

Figs. 4 and 5 show the convergence rate of the magnetic in-
duction and the current density with different constitutive ma-
trices. We calculate the error in energy norm defined as

where is the reference induction field computed by
means of a 2-D axisymmetric finite-element accurate solution.
As quality factor for the mesh, we choose the mean length of
the edges. For comparison using Mesh 5, the CPU time (on a
Pentium IV 2 GHz) needed to solve iteratively the linear system
with a stop criterion on the residual 2-norm less then 10 ,
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is of 69 min and 9 min, respectively, for nonsymmetric and
symmetric conductance matrices obtained from Whitney edge
vector functions, 7 min and 9 min for and , respectively.

VII. CONCLUSION

We proposed an approach for both tetrahedra and prisms with
triangular base which allows to construct symmetric positive-
definite constitutive matrices. The approach relies on a set of
piecewise uniform vector basis functions defined in a fully geo-
metric way on both the primal and the dual complex, where
Whitney vector functions do not exist. This peculiarity makes
the implementation straightforward and efficient. A numerical
example evidences the convergence rate of the different approx-
imated solutions and the significant saving of time when the
proposed symmetric, positive-definite constitutive matrices are
used instead of the the nonsymmetric matrices.
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