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Discrete Constitutive Equations over Hexahedral Gridsfor Eddy-current
Problems
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Abstract: Inthe paper we introduce a method-
ology to construct discrete constitutive matri-
ces relating magnetic fluxes with magneto mo-
tive forces (reluctance matrix) and electro motive
forces with currents (conductance matrix) needed
for discretizing eddy current problems over hexa-
hedral primal grids by means of the Finite Integra-
tion Technique (FIT) and the Cell Method (CM).
We prove that, unlike the mass matrices of Finite
Elements, the proposed matrices ensure both the
stability and the consistency of the discrete equa-
tions introduced in FIT and CM.

Keyword: Discrete constitutive equations, dis-
crete geometric approach, eddy-currents.

1 Introduction

In the recent years, the role of geometry and
algebraic topology gained a considerable im-
portance in the research on computational elec-
tromagnetism. In this respect the fundamen-
tal works of T. Weiland with theFinite Inte-
gration TechniqugFIT) [Clemens and Weiland
(2001)], E. Tonti withCell Method(CM) [Tonti
(1995)], [Tonti (2001)] and A. Bossavit [Bossavit
(1998Db)], [Bossavit and Kettunen (2000)] reveal
a “Discrete Geometric Approach” (DGA) to solv-
ing directly Maxwell equations in an alternative
way with respect to the classical Galerkin method
in Finite Elements, [Castillo, Koning, Rieben,
and White (2004)], [Heshmatzadeh and Bridges
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(2007)]. Several applications of DGA to solv-
ing other physical problems have been devel-
oped by a number of authors since its introduc-
tion, i.e. [Cosmi (2001)], [Ferretti (2003)], [Fer-
retti (2004b)], [Ferretti (2004a)], [Cosmi (2005)],
[Cosmi (2008)].

The DGA allows the construction of an algebraic
system of equations by combining both the phys-
ical laws of electromagnetism, formulategactly

in a purely topological way and the constitutive
relations,approximatedn a geometric way on a
specified grid. Even though the DGA is general,
in this paper we will focus an eddy-current prob-
lem as a working example [Trevisan and Kettunen
(2006)].

For the sake of clarity, we will briefly retrace the
fundamental steps of the DGA in order to ad-
dress the reader towards the novelty content of our
work: the geometric construction of the discrete
constitutive relations on an hexahedra grid com-
plying with precise properties necessary for the
solution of a discrete formulation of eddy-current
problem.

Firstly a pair of oriented dual grids is introduced
in the domain of interest. One grid is denoted as
the primal grid and the other as thaual grid. A

grid is a collection of oriented geometric elements
like nodes, edges, faces and volumes [Bossavit
(1998a)]. The geometric elements of one grid are
in a one-to-one correspondence with the geomet-
ric elements of the other grid. For example to a
face of the primal grid corresponds an edge of the
dual grid.

A second step is the unique association of the so
called integral oglobalvariables describing elec-
tromagnetic phenomenato a precise geometric el-
ements of the primal or dual grid, [Tonti (1998)].
For example, the magnetic induction flux is asso-
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ciated with the faces of the primal grid, the elec-
tric current is associated with the faces of the dual
grid while the magneto motive force is attached to
the edges of the dual grid.

As third step, the physical laws of electromag-
netism can be written directly in terms of ex-
act algebraic relations involving the global vari-
ables associated with the geometric elements of
the primal and dual grids. For instance Ampére’s
law relates the current crossing a dual face with
the magneto motive force along the dual edges
bounding that face.

In this way, the so called balance equations are
formed, which relay on the topology of the grids
only. On the contrary the discrete counterparts of
the continuous level constitutive relations are fi-
nite dimensional linear operators — i.e. matrices
— mapping in anmapproximateway global vari-
ables associated with the geometric elements of
one grid to the global variables associated with
the corresponding geometric elements of the other
grid. To construct such matrices, we need met-
ric concepts (like lengths, areas and volumes) and
material properties; usually an element wise con-
stant material medium property is assumed. For
example, in our eddy currents problem, the mag-
netic induction fluxes — attached to the faces of
the primal grid — are transformed into the mag-
neto motive forces along the corresponding edges
of the dual grid; this matrix will be denoted as the
reluctance matrix; similarly, but at a different ge-
ometric level, the conductance matrix transforms
the electro motive forces along the edges of the
primal grid into the currents crossing the faces of
the dual grid.

By combining the balance equations with the con-
stitutive matrices, a final system of discretized
equations is deduced. It is a known result
[Bossavit and Kettunen (2000)], [Codecasa, Min-
erva, and Politi (2004)], that to ensure the con-
sistency and the stability of the final system, the
constitutive matrices are required to satisfy a pair
of fundamental properties) a consistency prop-
erty, ii ) a stability property. Since discrete con-
stitutive relations, as it is common, are assumed
to be constructed primal volume by primal vol-
ume, without loosing generality, we can consider
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a primal grid over a single primal volume hav-
ing homogenoeus reluctivity or conductivity ac-
cording to the case; thence to ensure the consis-
tency property, the reluctance matrix is required
to exactly transform the fluxes through primal
faces of auniform magnetic induction into the
circulations along dual edges of the correspond-
ing uniformmagnetic field [Codecasa, Specogna,
and Trevisan (2007)]. Similarly, but at a dif-
ferent geometric level, the conductance matrix
complies with the consistency property when it
exactly transforms the circulations along primal
edges of auniformelectric field into the currents
through dual faces of the correspondimngjform
current density [Codecasa, Specogna, and Tre-
visan (2007)]. Finally the stability property is
guaranteed if the reluctance and conductance ma-
trices aresymmetric and positive definite

Discrete constitutive relations, satisfying both the
consistency and stability properties, were ini-
tially introduced in a straightforward and natural
ways for pairs of orthogonal Cartesian dual grids
[Clemens and Weiland (2001)]. Recently, also for
a pair of dual grids in which the primal grid is
made of tetrahedra and the dual grid is obtained
by means of the barycentric subdivision of the
primal grid, constitutive relations satisfying both
the consistency and stability properties have been
introduced. In this respect, A. Bossavit showed
[Bossavit (1998b)], [Bossavit (1998a)] that the so
calledmass matricesonstructed in the Finite Ele-
ment Method (FEM) by means of Whitney’s edge
and face vector functions, not only satisfy the sta-
bility property but also the consistency property
above mentioned; thus such mass matrices for
tetrahedral grids can be borrowed as constitutive
matrices for the DGA. Besides, also the present
authors [Codecasa, Minerva, and Politi (2004)],
[Codecasa, Specogna, and Trevisan (2007)] pro-
posed for tetrahedra and prisms with triangular
bases a so calleghergetic approacho compute,

in a fully geometric way, an independent pair of
novel stable and consistent constitutive matrices
to be used in the Discrete Geometric Approach.
However for primal grids in which the volumes

are generic hexahedra, no constitutive matrices,
satisfying both the consistency and the stability
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properties, have been reported in literature. In this
paper, we will try to fill in this gap.

Firstly, we will show, by a counter-example that
the mass matrices constructed in the FEM for an
hexahedral primal grid, by means of the so called
mixed elementgdge and face vector functions
described in [Dular, Hody, Nicolet, Genon, and
Legros (1994)], even if they are symmetric and
positive definite and thus satisfy the stability prop-
ertyii ), donot satisfy the consistency propeiity

for any choice of the dual grid in correspondence
of the hexahedral primal grid. Thus such mass
matrices for the hexahedral gridannotbe bor-
rowed as constitutive matrices for the DGA.

Then we will propose novel discrete constitutive
matrices, satisfying both the consistency and sta-
bility properties, for pairs of dual grids in which
the volumes of the primal grid are generic hexa-
hedra and the dual grid is obtained by means of
the barycentric subdivision of theoundariesof

the volumes of the primal grid. Numerical exper-
iments will show that such novel discrete consti-
tutive relations can be constructed at a low com-
putational cost and that they lead to an accurate
approximation of the solution to our eddy current
problem.

The remainder of this paper is organized as fol-
lows. In section 2 the equations obtained by
the DGA for eddy-current problems are recalled.
Also it is verified that the mass matrices con-
structed in the FEM do not satisfy the consistency
property of discrete constitutive relations. The
novel method for constructing the discrete con-
stitutive relation is then presented in successive
steps. In sections 4, 5 we prove the main geomet-
ric properties needed to construct the discrete con-
stitutive matrices. Sections 6 and 7 are then ded-
icated to the construction of such matrices and to
prove the corresponding properties of consistency
and of symmetric positive definiteness they com-
ply with. Section 8 is devoted to the presentation
of numerical results. All ancillary results needed
in overall the paper are collected in Appendix A:,
Appendix B:, Appendix C:.

2 Discrete equations for eddy current prob-
lems

We state here a typical eddy current problem. The
domain of interesb contains a source regiddg
where prescribed currents are present and the con-
ducting regiorD. The insulating regiod;, is the
complement oD; and Dg with respect tdD. In

D we introduce a pair of interlocked primal-dual
grids whose interconnections are described by the
usual incidence matrices between primal edges

e and primal nodea andC between primal faces

f and primal edgee. The reluctivity and con-
ductivity of the media are assumed element-wise
constants.

We briefly recall the basic equations of a DGA
to solve eddy-current problems in the frequency
domain, [Trevisan (2004)], [Specognha and Tre-
visan (2005)], [Trevisan and Kettunen (2006)].
We search for the arrags of the circulations of
the magnetic vector potential along primal edges
e of D and for the arrayy of scalar potential
associated with primal nodesof D such that

(CTMCA)e= (1% YeeD\D.

(CTMCA)e+iw(NAc)e+iw(NGX)e=0
Ve e D¢

iw(GTNA)L+iw(G'TNGX)n=0 VneD,,

where the array® contains the source currenfs
crossing the dual faces Dg; Ac is the sub-array
of A, associated with primal edgeslin; the ma-
trix G is associated with pairg,(n) of D¢ only.
With (x)x we mean thé-th row of arrayx, where

k = {e/n} is the label of edge or of noden. Fi-
nally the reluctance and conductance constitutive
matrices are denoted witfl, N respectively such
that dimM ) = F, F being the number of faces in
D and dim{) = L, L being the number of edges
in Dc. This system of equations is singular and to
solve it we rely on CG method without gauge con-
dition [Kameari and Koganezawa (1997)].

As shown in [Bossavit and Kettunen (2000)],
[Codecasa and Trevisan (2006)] in order to ensure
the consistency of the discrete system obtained by
the DGA, the constitutive matricdd, N, are both
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required to comply with the above mentioned con-
sistencyi) and stabilityii ) properties, [Codecasa,
Specogna, and Trevisan (2007)].

The existing technique for constructing the mass
matrices in the framework of finite elements over
an hexahedral primal grid, does not lead to con-
stitutive matrices complying with the consistency
propertyi). This is demonstrated in Appendix
C: by a simple counter-example. Hereafter we
will construct in a purely geometric way a pair
of novel constitutive matrice$!, N which in-
stead satisfy both the consisteri¢yand stability

i) properties fohexahedraprimal grids.

3 Notation

Let T=u®V be the double tensor T obtained by
means of the tensor produgtof the two vectors

u, v. The product Tu between a double tensor T
and a vector u is a vector; the inner produetwu

is a scalar, v being a vector. Between the tensor
T =u®V and a vector a the following relation

uRva=(v-au

holds. The identity tensor is denoted with | and it
is such that lu= u holds.

4 Primal and dual grids

In the following sections we will consider a sin-
gle hexahedrow as primal grid, Fig. 1. Let the
conductivityo and the reluctivityy within v be
homogeneous, symmetric positive definite double
tensors.

Let |v| be the measure of the volunve Let fj,
withi=1,...,F = 6 be the primal facésf v, let

g with j =1,...,L = 12 be its primal edges and
let px withk=1,...,N = 8 be its primal nodes.
We denote imoman typea position vector r drawn
from an origin of a Cartesian reference frame to a
generic pointr within v. Let pc be the position
vector associated with the primal nople Let gy,

be the position vector of the barycenter of the face
fi defined by

g rds

fi:m fi

1By definition, the faces of an hexahedron are planar faces.
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Figure 1. Hexahedron, primal facef;, primal
e~dgeej, primal nodepi; dual volumev, dual face
f;, dual edges™and dual nodep.” Moreover the
barycentege, of edgeej and the barycenteyy, of
face fj are shown.

in which |f;| is the area off;, withi=1,...,F,
and letge, be the position vector of the barycenter
of the edgee;, with j =1,...,L.

Let p be the dual node im, as in Fig. 1. This node
can be arbitrarily chosen withiw) as a particular
case it can be the barycenterwof The segment
drawn betweerp and the barycentey;, defines
the dual edge "and it is in one to one correspon-
dence with the primal facé, withi=1 ... F.
The dual facd| is in a one to one correspondence
with the primal edge;, with j =1,--- L. In gen-
eral it isnota planar face and it is formed by the
union of two triangles; each triangle has as nodes
P, the barycentege, and the barycenteyy, of one
face fj of the two adjacent te;. The dual volume
Vi is in one to one correspondence with nqale

as in Fig. 1.

The primal geometric entitiegy, ;, fi andv are
endowed with an inner orientation. Similarly the
dual geometric entities lik@, €, ﬂ- and Vi are
endowed with an outer orientation [Tonti (1998)],
in such a way that the pairgy, %), (e;, fj), (fi,

&) and {, f) are oriented in a congruent way.

We denote with gthe edge vector associated with
edgeg;. Its amplitude and orientation coincide re-
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spectively with the length and orientation ef.
with j =1,...,L. We denote with;fthe face vec-
tor of f; defined by

fi :/_ n(r)ds

n(r) being the vector normal to and orientedfgs
withi=1,...F. Similarly § is the edge vector
associated witlgwithi=1,...,F, andfJ is the
face vector associated with, W|th j=1,...,L
We have that g f; >0 and f-& > 0 hold.

As a consequence of this particular choice of dual
grid, constructed by means of the barycenters of
the primal edges and primal faces, the following

two geometrical properties hold

Property 1 It resultsin
L ~

V|l = Zjej ®fj, 1)
1

Proof. Let a and b be a pair of spatially uniform vec-
tors. Itis

N
a-bdv= / a-bdv
/v Zk W

Besides, since a is spatially uniform and thus itis a
Ou(r) with u(r) = a-r, it results in

/a bdv=
/ O(u
/ - P))bdv- /Vk< (1)—u(pi))0 - bdv=
/,Nk<U<r>—u<pk>> n(r)ds=

5[,
+ z fos 0

being r(r) a unit vector normal to and oriented @8
atr. Itis

/\7 mf_(u(r) —u(py))b-n(r)ds=
/\,km( (9e;) — u(px)) b-n(r) ds+

—u(py)) - bdv=

)—u(pk))b-n(r)ds+

) —u(pk))b-n(r)ds

+ [ (u(r) —u(ge)) b-n(r)ds

\7kﬂfj

Besides it results in

L N
%j Zk/vkﬂfj (u(ge;) — u(p)) b-n(r)ds=
L ~

> j(ae)(b-f))

1

and

Sl 0

Lastly, from (23) in Lemma 2 of Appendix C: it results
in

N
Zk/ a-(r—pn(r)-bds=0, i=1,...,F
T VN fi

and the claim follows. =

—U(ge;)) b-n(r)ds=0.

Property 2 It resultsin
F

VI =5 & fi )
1

Proof. Let a and b be a pair of spatially uniform vec-
tors. Then itis b= Ou(r) with u(r) = b-r and it results
in

/a bdv=

/ a-0O(u (p)dv=

/D ))adv— /(u(r)—u(f)))Dadv:
| () - u@)an(nav=

Z/ ) —u(gy,))a-n(r)dv+

+ ;  (utgn) ~uip)anir) o

n(r) being a unit vector oriented as the outward normal
toov. Itis

2 JACCARIE)

F

an(rjdv= Y (a-fi)(b-&)

1

Besides it is
/b r—gg)n(r)-adv=0, i=1,...,F
and the claim follows. =
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Figure 2: Tetrahedron,, and associated base vec-
tors (lan, lon, I3n).

5 Subdivision of an hexahedron into tetrahe-
dra

An hexahedrorv can be thought as the union of
2L tetrahedrary, with h=1....2L. The ver-
tices of the tetrahedrom, are g, the pair of nodes
bounding an edge; and the barycentegy, of a
face f; adjacent toej, as shown in Fig. 2. We
expressly note that this subdivision of an hexahe-
dron into tetrahedron is just introduced for nam-
ing geometric entities used in the construction of
the discrete constitutive relations. We do not in-
tend to substitute the primal hexahedral grid with
a primal tetrahedral grid.

We associate to each tetrahedmp a triplet of
vectors forming a basis, Fig. 2. Precisely, we as-
sociate tary, the triplet(lqp, lon, 13n) defined as

(Ilha I2n, |3h) = (eja (gfi _gej)’ (gfi _r))) :

We also construct, as defined in Appendix B: for-
mula (16), the basis of face vectqiSn, Sh, San)
associated witltl1p, I2n, I3n).

Let now fj, andf;, be the pair of faces adjacent to
edgee;, as shown in Fig. 3. Letjcbe the edge
vector of the edge; drawn fromgfi2 togy, . Let
C; be face vector of the triangular faCg, whose
vertices aregp and the two extrema of ed@g, ori-
ented in such a way that €C; > 0 holds, with
j=1,...,L. The following result is now proven,

CMES, vol.1000, no.1, pp.1-15, 2009

Figure 3: Elementsjcand G, with j =1...L.

similarly to Properties 1 and 2.

Lemmal Itresultsin

L
|V||:ZjCj®Cj (3)
1

Proof. Let a, b be spatially uniform fields, so thata
Ou(r) with u(r) = a-r. Let p; be the pyramid whose
base is thef; face and has vertex p, with=1...F.
The lateral faces of these pyramids are the fdCes
with j =1...L. ltresultsin

/ a-bdv=
Pi

[ 0u(r) ~uigr) -bav=

[0 (u(r) - utgy) pdv-

/p (u(r) — u(gr))0-bdv=
[ - ulgy)p-n(rds=
api

J ) - u(gs)b- n(r)ds+

L
# 31 e, (0 —ulge))
+(UlGey) — u(gy)b- n(r) ds

Since it is straightforwardly

/f_(u(r) —u(gg))b-n(r)ds=0, i=1,...F
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and, foreach =1...L,itis

F
; APiﬂCj (u(r) — u(ge;))b-n(r)ds=0,

F
3 [, (U(G) ~u(gi))bnir)ds= (@) b

it results in
F L
[vla-b= Z/ a-bdv= zj(a'Cj)(b'Cj).
T JPi 1
Because a, b are arbitrary, (3) follows. m

Hereafter, using Lemma 1, a geometric prop-
erty involving the basis vectors introduced for the
tetrahedra, with h=1,...,2L, is proven which
will turn out to be crucial in sections 6, 7 for the
construction of the discrete constitutive relations.

Property 3 It results in
2L

21|V = 3 lan @ Sph. 4)
T

Proof. Let 1,, andt,, be the pair of tetrahedra adja-
cent to the edgej, as shown in Fig. 3. It results in

Sohy = l3ny X l1n,
= (lan, —lony) X lany +lon, X l1n,

= 2Cj — Sah -
Similarly
32h2 - _|3h2 X Ilhz
= (—lan, +12,) X I1n, —l2n, X lan,
= —2Cj — Sghy-
Thus
|2hl ®32h1 - 2|2hl & Cj T |2h1 ®S3h13 (5)
|2h2 ®32h2 - _2|2h2 & Cj - |2h2 ®S3:h2 (6)

By summing (5), (6) over all edges and by observing
that

|2hl —|2h2 = Cja

then

2L | 2L
zh|2h®82h:22jcj®cj_zh|2h®s3h' (7)
1 1 1

Summing (22) of Lemma 2 of Appendix C: over all
facesfi, withi=1... F, itresultsin

2L
zh|2h®33h =0.
1

Thus, from Lemma 1, the claim follows. =

6 Geometric construction of the discrete con-
ductance constitutiverelation

Let u be the array of the circulationg of the
electric field E along the primal edges, with
j=1,...,L. Similarly letUy be the array of the
circulationsUyp, Uop, Usy of the electric field E
along the edgels, lon, I3n, forh=1,...,2L.

For an electric field E spatiallyniformin v, by
taking the dot product of (1) with E, itis

1L .
E= = Sufi,
|V| jZl 1Ny

and thus the circulations of the arréjy can be
reconstructed from the circulations of the array

by

Un =Anu
where
) 1 0
Ap= |2h"f71‘ |2h"f7j‘ |2h"?7|" ,
_|3h.‘f71‘ |3h.‘f_i‘ |3h.‘%_

the first row having all zero elements but in
the column corresponding to the primal edge
which is adjacent to the tetrahedron

Let N, be the matrices which transform the cir-
culations of a uniform vector E along the three
edges of edge vectorg,] lon, I3, into the fluxes

of J= oE through the three faces of face vectors
Sih, Sh, S3h- These matrices are defined as in (19)
of Appendix B: by assuming £ ¢ and § = Sip,

S = Shand g = sz, Withh=1...2L. Thusthey
also are symmetric, positive definite. Now, using
Properties 1, 3, we can prove the following main
result.
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Property 4 Matrix

1 2L T
N=¢ ZhAh NiAn @)

satisfies both the consistency and stability proper-
ties of a conductance constitutive relation for the
DGA.

Proof. For an electric field E, spatially uniform wy it
is

l1nh-E
Apu = |2h~E

lah-E
and
Sth-J
NpApU = | Sp-Jd |,
Sgh - J

being J= oE. Then

! Sih-J
NuzézhAﬁ sh-d | =
1 Sh-J

—1?1 2L 2L ]
= 2|V||+zh|2h®32h+ zh|3h®33h J
61V T T

17, 2 2
o 2V S ln@sn+ S lsn @ san | J
|6 M T T |

Thus from Property 3, and since from Property 1 it is

2 F
Dhlan®@ssn =2% §efi =2,
T T

it results in
f1-J

Nu = :
fL-J

andN satisfies the consistency propeiity
SinceN] = Np, for eachh=1...2L, itresults in

2L 2L
NT = zhAﬁNﬁAh = zhAﬁNhAh =N
1 1

andN is symmetric

CMES, vol.1000, no.1, pp.1-15, 2009

SinceUENhUh >0, foreachh=1...2L, itresults in

1uTNu 1 % u'ATNRALU
= S h NhAp
2 1240

1 2L 4
1

>0.

Also uTNu = 0 implies U{NyUp = 0 and thus
Up=Apu=0forallh=1...2L. ThenU;, = 0 for all
h=1...2L, or equivalentlyuj =0 forall j =1...L
that isu = 0. ThusN is positive definite ThusN also
satisfies the stability property). m

7 Geometric construction of the discrete re-
luctance constitutiverelation

We proceed in a way similar to the previous sec-
tion 6. Letg@ be the array of the fluxes of
the magnetic induction field B though the pri-
mal facesf;, withi = 1,...,F. Similarly let®y,

be the array of the fluxe®;,, @, P3n Of the
magnetic induction field B through the faces,

Sh, Szh corresponding to the tetrahedrag for
h=1,...,2L.

For a magnetic induction field B spatiallyiform

in v, by taking the dot product of (2) with B, itis

1 F
B:_ (név
P2

and thus fluxes of the arra@y, can be recon-
structed from the fluxes of the arrgyby

&, = Bho
where
Szh'% SQh'% Szh'%]
Bh = Ssrr% Ssrr% SSh'% ;
0 & 0 J

the third row having all zero elements but in the
column corresponding to the primal faewhich

is adjacent to the tetrahedrap and beingé =
sn- i /|fil2.
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Let My, be the matrices which transform the fluxes
of a uniform vector B through the three faces of
face vectors &, Sh, Ssh into the circulations of
H = vB along the three edges of edge vectags |
lon, I3n. These matrices are defined by (20) of Ap-
pendix B: by assuming £ v, and L =1, lo =12
and g =Iap, withh=1...2L. Thus they are also
symmetric, positive definite. Now, using Proper-
ties 2, 3, we can prove the following main result.

Property 5 Matrix

12L T
M :éththBh )

satisfies both the consistency and stability prop-
erties of a reluctance constitutive relation for the
DGA.

Proof. For a magnetic induction field B, spatially uni-
forminy, itis

Sih-B
Bh@=| sn-B
SRS
and
l1h-H
MiBh@= | lon-H |,
l3n-H
being H= vB. Then
12 lin-H
M@=2% B | lan-H | =
I lan-H

g (2 2 1
S Spln®sm+ Y lan@sn +2v1 | H
1 1

'“‘ 2L 2L
é_. <zh|lh®31h+ Zh|2h®52h+2|V||> H
M \ 4 T |

Thus from Property 3 , and since from Property 2 it is
2L L .

dplm@sin=2% g afj =2\l

1 1

from (??) it results in

andM satisfies the consistency propeity
SinceM| = My, for eachh=1...2L, it results in

2L 2L
MT = thﬁM;Bh = thﬁMhBh: M
1 1

andM is symmetric
SinceCDEMhCDh >0, foreachh=1...2L, itresults in

1 i
5@ M@=255 ,®nByMnBn®n
T

1 2L
:Tzzhmwhmh
1

>0.

Also @M@ = 0 implies ®Mp®, = 0 and thus
®,=Bpp=0forallh=1...2L. Then®y, =0 for
allh=1...2L, orequivalentlyg =0 foralli=1...F
thatis@ = 0. ThusM is positive definiteThusM also
satisfies the stability property). m

8 Numerical results

As a numerical test, we consider a geometry con-
sisting of a circular coil placed above an alu-
minum plate & = 4-10’S/m). The domain of
interestD of the eddy-current problem consists of
a cylinder of diameter of 60 mm and height 44.5
mm. It contains a circular current driven coil of
18 mm of outer diameter, 12 mm of inner diame-
ter and 10 mm height. The coil is placed above an
aluminum plate, denoted wifb., 4 mm thick and
with a radius of 30 mm. The coil and the plate are
surrounded by an air region. In the coil we force
a sinusoidal current = sin(wt) with a frequency

of f =5 kHz.

We introduced irD a number of different primal
grids made of a variable number of hexahedra up
to 42000 elements.

We assemble the final system of algebraic equa-
tions using the conductance and reluctance con-
stitutive matricedN andM here introduced.

Figures 4 and 5 show the convergence rate of the
magnetic induction and of the current density for
four meshes, one finer with respect to the other.
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We calculate the error in energy norm defined as

fD V|B— BRE|:|2dV
fD V|BRE|:|2dV

&g =

whereBgrek is the reference induction field com-
puted by means of a 2D axisymmetric FE accu-
rate solutionwith 200 000 triangular elements. As
quality factor for the mesh we choose the mean
length of the edges. In a similar way, we intro-
duce the quantity

£ = fDCO'|J—JRE|:|2dV
ch O'|JRE|:|2dV

whereJger is the reference current density field
computed by means of the 2D axisymmetric FE
solution. For comparison, we repeated the com-
putations using tetrahedra primal grids where, as
constitutive matrices, those described in [Code-
casa, Specogna, and Trevisan (2007)], [Codecasa,
Minerva, and Politi (2004)], [Specogna and Tre-
visan (2005)] for the case of tetrahedra can be
equivalently used. We observe that the solution
obtained over hexahedra grids is more accurate
than the solution computed over tetrahedra grids,
for each value of the mean length of the primal
edges.

A typical CPU time (on a Pentium IV 2GHz)
needed to iteratively solve the linear system with
a stop criterionon the residual 2-norm less then
10719, is about 88 sec. The assembly process of
the overall linear system requires less then 9 sec.

9 Conclusions

We proposed an approach to construct discrete
constitutive matrices for solving eddy-current
problems over hexahedral primal grids. The moti-
vation of the paper stems from the fact that the so
called “mass matrices" of the FEM for hexahedral
primal grids, computed using mixed elements, do
not satisfy the consistency property of DGA. In-
stead the novel constitutive matrices we propose,
were shown to ensure both the consistency and
the stability properties of DGA. Numerical ex-
periments demonstrated that the novel constitu-
tive matrices lead to accurate approximations of

CMES, vol.1000, no.1, pp.1-15, 2009

—<— Hexahedra real part

X Hexahedra imaginary part
Tetrahedra, real part
Tetrahedra, imaginary part|
O(h)

. . . . . . . e .
21 2.2 23 24 25 2.6 27 2.8 29 3
Iog(l/IMEAN)

Figure 4: The real and imaginary parts of the rel-
ative erroreg associated with magnetic induction
in D is shown, using different hexahedra primal
grids and the novel constitutive matrichs, N.

For comparison, the same error is computed us-
ing primal grids of tetrahedra.

oF —><— Hexahedra real part

X Hexahedra imaginary part
Tetrahedra, real part
Tetrahedra, imaginary part|
O(h)

. . . . .
.5 2.6 27 28 29

. . . .
21 22 23 24 2
log(1/1

vean)

Figure 5: The real and imaginary parts of the rel-
ative errore; associated with the current density
in D¢ is shown using with different hexahedra pri-
mal grids the novel constitutive matricés, N.

For comparison, the same error is computed also
using tetrahedral primal grids.

the solution of a reference eddy-current problem.
Moreover the solution over hexahedra grids seems
to be more accurate than the solution over tetrahe-
dra grids for the same value of the mean length of
primal edges. Finally the proposed matrices can
be obtained with a reduced computational effort
and without a numerical volume integration like
for the mass matrices in finite elements.
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Appendix A: Counter-example

In this section we propose a counter-example, in
order to show the inconsistency of the mass ma-
trices computed for a simple hexahedxdor any
choice of the dual grid.

Let the coordinates of the nodes of the hexae-
dronv in Fig. 6A bep; = (0,0,0), p2 = (2,0,0),

ps = (0,1,0), pa = (1,1,0), ps = (0,0,1), ps =
(2,0,1), py = (0,1,1), ps = (1,1,1). We de-
note with pg, with i = 1,...,F the intersection
between a primal facd; and the corresponding
dual edges” Let pg be the intersection between
a primal edges with the corresponding dual face
fi, withi=1,...,L. Letp be the dual node in

v. We stress that the poinfs,, pr,, andpg'do not
coincide, in general, with the barycenter of edge
g, face f; and hexahedromrespectively. In addi-
tion, a dual face?i is not required to be planar, in
general. For examplé, in Fig. 6B is not planar.
Nevertheless its area vector can always be written
as

1
1:l = E(pf5 - pfl) X (pel - pf’)v (lO)

where p, denotes the position vector correspond-
ing to the pointpy, withi=1,... F.
We recall that the entries of the mass matrices are

i
| p
o3

5

Figure 6: An hexahedron is shown with specified
orientations; for simplicity we label the facdg,
withk=1,...,F insuch a way that opposite faces
have successive subscripts.

11

defined as
(M5 Z/VWif-W,-fd\é (M9 Z/VWie'W?dV,

where (M ")j; is the generic entry of thE x F

face mass matrix constructed from th(:rI ¥ace
vector basis functions described in [Dular, Hody,
Nicolet, Genon, and Legros (1994)]. We note that
a unitary material parameter has been assumed.
Similarly (M¥€);; is the generic entry of the x L
edge mass matrix constructed from thg edge
vector basis functions described in [Dular, Hody,
Nicolet, Genon, and Legros (1994)]. We note that
a unitary material parameter has been assumed.

A necessary and sufficient condition for the
consistency ofM ' according to the definition
reported in [Bossavit and Kettunen (2000)],
[Bossavit (2002)] and [Codecasa, Minerva, and
Politi (2004)] is

MPf=8 (11)

wheref andé are Fx3 arrays, whoseth row rep-
resent the three components of the face vegtor f
and of the dual edge vectoy Espectively, with
i=1,...,F.

Similarly a necessary and sufficient condition for
the consistency oM€, according to the defini-
tion reported in [Bossavit and Kettunen (2000)],
[Bossavit (2002)] and [Codecasa, Minerva, and
Politi (2004)], is

Mee=f, (12)
wheree, f are Lx3 arrays, whosé-th row rep-
resent the three components of the edge vegtor e
and of the dual face vectdy respectively, with
i=1,...,L.

Hereafter we will prove that conditions (12) and
(11) arenot satisfied for any choice of the dual
grid.

Inconsistency of M f

By direct computation, the right hand side of (11)
yields

row;(M ff) = (0,0,3log2/4), withi=1,2

row, (M 'f) = (0,3/4,0), withi =3, 4
row; (M ff) = (—=1/4,1/2,0), withi=5,6.
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where with row we denote thé-th row of an ar-
ray. Let us consider the edge vectoys@® associ-
ated with the dual edges, &, respectively; in or-
der to guarantee that & are parallel to the vec-
tors row(M ff) = (0,0,3log2/4), with i = 1, 2,
it is necessary thap, "pr,, P, are on a straight
line. Thus assuming fop = (X2, Y2, X2) it results
in pr, = (X2,¥2,0), pr, = (X2,¥2,1). Thenitis

; log2= (rowy (M 'f) +rows(M ff)) - @, =
(Y2=0)+(1-y2) =1
which is clearly impossible.

I nconsistency of M€

By direct computation, the right hand side of (12)
yields

row;(M®) = (1/4,1/8,0), withi=1,...,4
row; (M%) = (0,3/8,0), withi=5,...,8
row;(M®e) = (0,0,5/12), withi=29,10

row;(M®) = (0,0,1/3),  withi=11 12

Let f; be the face vector of the dual fadg,
with j =1,....L computed as in (10). It is
straightfoward to see that in order to guarantee
thatf; are parallel to the vectors re{°e) with
i=1,...,12, itis necessary that three plarmas
e, T® exist, having normalg2/1/5,1/1/5,0),
(0,1,0) and (0,0,1) respectively, such thaps,,
ps, lay on the intersection ofn, 7®, ps,, ps, lay
on the intersection ofp, 1 and py,, pr, lay on
the intersection ofn, 8. Similarly it is neces-
sary that three plangs, p», p3 exist, having nor-
mals (2/+/5,1/4/5,0), (0,1,0) and (0,0,1) re-
spectively, such thape,, Pe,, Pe;, Pe, lay onp,

Pes: Pes, Pers Pes 12Y ONP2, Pey, Pesgr Perss Pey, 1Y
on p3. We note thatn, 75, 78 are parallel respec-

tively to p1, p2, p3, butitis not necessary that they
coincide.

Thus, assumings, = (0,y1,21), pt, = (X1,1,21),

it results inps, = (1 —y1)/2+x1,¥1,0), ps, =
(1 =y1)/2+ %,¥1,1), pr, = (2 y1,Y1,2),
P, = (x1+1/2,0,2;). Besides, assuming =
(X2,¥2,22), it results inpg, = (Y2/2+ x2,0,0),
Pe, = (Y2/2+%2,1,0), pe; = (Y2/2+ %2,0,1),
Pe, = (Y2/2+%2,1,1), Pe; = (0,Y2,0), Py = (2

CMES, vol.1000, no.1, pp.1-15, 2009

Y2,¥2,0), Pe; = (0,y2,1), Pez = (2—Y2,¥2,1),
Pey = (07 07 22)1 Peg = (27 07 22)1 Pe; = (07 lv 22)1
Pe, = (1,1,20).

Thenitresults in

2 = (rowy (M%) + rows(M°e)) -3 = 5 (1 +12)
(13)

and in

g = (rowg(M®e) +row;o(M®)) -a, =

%(2—y1)(y1+y2) +%Yi (14)

being & = (1,0,0), & = (0,1,0), & = (0,0,1).
By using Eg. (13) in Eqg. (14) it follows

1
Y% —Yy1+ é = (0
which clearly has no real solution.

Appendix B: Reciprocal basis

s‘/ /

Figure 7: Parallelepiped.

Let I, I, I3 be a triplet of vectors which are not
coplanar. They can be interpreted as the edge
vectors of a triplet of edgels, |,, I3 of a paral-
lelepipedV as in Fig. 7. We recall that hecip-
rocalbasis|, 15, I5 associated with the basis I,

I3 is uniquely defined by

3
Zi|i®|ir:|
1

and it is such that

li_y x|
II[’: i—1 i+1 ’ (15)
lig xliya-1i
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in whichi =1,...,3 and index operations are
modulo 3. From (15) an arbitrary vector a can
be expressed as

3
a= _Zl(a' I,

and an arbitrary vector b can be expressed as

3
b:_;(b-li)l{.

Now lets be the face of the parallelepip&tin
the plane ofj_; andl;, 1, and oriented in such a
way that $-I; = [V|, s being the face vector o,
|V| being the volume o¥ and index operations
being modulo 3. Theniitis

s =i |V], i=1...,3, (16)
and thus it results in
1 3
a=—» (a-s)lj, (17)
|V| Z (b-1j)s;, (18)

Let now T be a tensor relating vectors a, b by a
Th. Then from (18) it results in

a-Sq'—ZSq L

v (b-1j)  i=1,...,3 (19)
=1

Thus the fluxes of vector a through the faces
s, with i =1...,3, are expressed by a linear
combination of the circulations of vector b along
the edges;) with i = 1,...,3. This mapping is
represented by a 83 matrix whose entries are
s-Tsj/|V|withi, j=1,...,3. We note that if the
tensor T is symmetric positive definite, also such
matrix is symmetric, positive definite.

Similarly from (17) it results in

31Tl

i =
ah=2 V]

Thus the circulations of vector a along the edges
li,withi=1,...,3, are expressed by a linear com-
bination of the fluxes of vector b through the faces

(b-s)  i=1,...3 (20

13

Py

Figure 8: Geometric elements of tliequadran-
gle.

s, withi=1,...,3. This mapping is represented
by a 3x 3 matrix whose entries are-ITl;/|V|
with i, j =1,...,3. We note that if the tensor T
is symmetric positive definite, also such matrix is
symmetric, positive definite.

Appendix C: Geometric relations for quad-
rangles

Let f be a generic quadrangle. Lmtbe the nodes

of f, having position vectorsgpwithk=1,...,4.

Let & be the edges of, withk=1,...,4. Nodes

are assumed to be numbered counterclockwise.
Edges are assumed to be oriented from ngge

to nodepy.1; operations on indexes are modulo
4.

The dual grid off has facesf, and edges”
with k=1,...,4. Let the dual node of be the
barycenter of denoted ag; and let the dual edge
& be a segment drawn frogy to the barycenter
Oe Of &, withk=1,...,4.

The dual facefy is the union of trlanglec (hav-
ing verticesgs, pk, Je, ,) and trlanglefJr (having
vertlcesgf Pk, Je). The union of facesf+ and
ka is referred to ade, . The following relatlons
are proven
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Lemma 2 Itresultsin

4
Sl fl(Pk—gr) =0 (21)
T
4
> I fal(9e—9r) =0 (22)
T
4
[, (r—p«)ds=0 (23)
f
1 k
Proof. Itis

4
3l ful (pk—g1) =

k|f~|:r|(pk—gf)+|F|;+1|(pk+l—gf) =

r—\MA M s -

l\)ll—‘

5 BT D (P —91) + (P — 1))+

4 1
z kD |]c |—|fk+1|)(pk—pk+l)
T
Thus since f,"| = | f,_ 4| holds and since

2R+ D (P91 + (Pt — 1) =

3
5/, ((—=9nds

fk Ufk+1

it results in

2 - 3
>l Tl (P—gr) = 5/(r—gf)ds: 0.
1 f

and (21) follows. Besides, since

4 ~

zk|fk|(pk—gf):

4

z |]c |(Px — 9¢) +Zk|fk+l| Pki1—0Of) =

f f
k%(pk—gf)*’ %(pml—gf) =

& M s 1

> ! fecl (e — 91),
1

from (21) also (22) follows. Lastly, since it is

Zk/ r—pyx)ds=
4
Jir-gnds= 3, [ (pe-ondo=

4 ~
= Dkl fl(Pk—gr),
1
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from (21) also (23) follows. m

We note that clearly Lemma 2 holds also for ar-
bitrary numerations and orientations of the edges
and nodes of .

References

Bossavit, A. (1998): Computational Electro-
magnetismAcademic Press.

Bossavit, A. (1998): How weak is the Weak So-
lution in finite elements methods?IEEE Trans.
Mag. vol. 34, pp. 2429-2432.

Bossavit, A. (2002): Generating Whitney Forms
of Polynomial Degree One and HigherlEEE
Trans. on Mag.vol. 38, pp. 341-344.

Bossavit, A.; Kettunen, L. (2000):  Yee-like
Schemes on Staggered Cellular Grids: A synthe-
sis Between FIT and FEM ApproacheslEEE
Trans. on Mag.vol. 36, pp. 861-867.

Cadtillo, P.; Koning, J.; Rieben, R.; White,

D. (2004): A Discrete Differential Forms
Framework for Computational Electromagnetism.
CMES vol. 5, pp. 331-346.

Clemens, M.; Weiland, T. (2001): Dis-
crete Electromagnetism with the Finite Integra-
tion Technique. Progress In Electromagnetics
Research (PIER) Monograph Serje®l. 32, pp.
65-87.

Codecasa, L.; Minerva, V.; Paliti, M. (2004):
Use of Barycentric Dual Grids for the Solution
of Frequency Domain Problems by FITIEEE
Trans. on Mag.vol. 40, pp. 1414-1419.

Codecasa, L.; Specogna, R.; Trevisan, F.
(2007): Symmetric Positive-Definite Consti-
tutive Matrices for Discrete Eddy-Current Prob-
lems. IEEE Trans. on Mag.vol. 43, pp. 510-515.

Codecasa, L.; Trevisan, F. (2006): Piece-
wise uniform bases and energetic approach for
discrete constitutive matrices in electromagnetic
problems. Int. Journal for Numerical Methods in
Engineeringvol. 65, pp. 548-565.



CMES Galley Proof Only Please Return in 48 Hours.

Discrete Constitutive Equations over Hexahedral Grids

Cosmi, F. (2001): Numerical Solution of
Plane Elasticity Problems with the Cell Method.
CMES vol. 2, pp. 365-372.

Cosmi, F. (2005): Elastodynamics with the Cell
Method. CMES vol. 8, pp. 191-200.

Cosmi, F. (2008): Dynamics Analysis of
Mechanical Components: a Discrete Model For
Damping. CMES vol. 27, pp. 187-195.

Dular, P.; Hody, J.-Y.; Nicolet, A.; Genon, A.;
Legros, W. (1994): Mixed Finite Elements As-
sociated with a Collection of Tetrahedra, Hexahe-
dra and Prisms. IEEE Trans. on Mag.vol. 40,
pp. 2980-2983.

Ferretti, E. (2003): Crack Propagation Model-
ing by Remeshing Using the Cell Method (CM).
CMES vol. 4, pp. 51-72.

Ferretti, E. (2004): A Cell Method (CM) Code
for Modeling the Pullout Test Step-wis€cCMES
vol. 6, pp. 453-476.

Ferretti, E. (2004):  Crack-Path Analysis for
Brittle and Non-Brittle Cracks: A Cell Method
Approach. CMES vol. 6, pp. 227-244.

Heshmatzadeh, M.; Bridges, G. E. (2007): A
Geometrical Comparison between Cell Method
and Finite Element Method in Electrostatics.
CMES vol. 18, pp. 45-58.

Kameari, A.; Koganezawa, K. (1997). Con-
vergence of ICCG method in FEM using edge el-
emements without gauge conditiotEEE Trans.
Mag, vol. 41, pp. 1223-1226.

Specogna, R.; Trevisan, F. (2005): Discrete
constitutive equations il — x geometric eddy-
current formulation. IEEE Trans. Mag.vol. 41,
pp. 1259-1263.

Tonti, E. (1995): On the geometrical structure of
elecromagnetism.Ed. Bologna, Italy: Pitagora
Editrice, vol. Gravitation, Electromagnetism and
Geometrical Structures for the 80th birthday of A.
Lichnerowicz, pp. 281-308.

Tonti, E. (1998): Algebraic topology and com-
putational electromagnetism4-th International

15

Workshop on Electric and Magnetic Fields, Mar-
seille (Fr) 12-15 Maypp. 284-294.

Tonti, E. (2001): A direct discrete formulation
of field laws: the Cell Method CMES vaol. 2, pp.
237-258.

Trevisan, F. (2004): 3-D Eddy Current Analysis
With the Cell Method for NDE ProblemslEEE
Trans. Mag, vol. 40, pp. 1314-1317.

Trevisan, F.; Kettunen, L. (2006): Geometric
interpretation of finite dimensional eddy current
formulations. Int. Jou. for Numerical Methods in
Engineeringvol. 67, pp. 1888-1908.



CMES Galley Proof Only Please Return in 48 Hours.



