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Discrete Constitutive Equations over Hexahedral Grids for Eddy-current
Problems

L. Codecasa1, R. Specogna2 and F. Trevisan3

Abstract: In the paper we introduce a method-
ology to construct discrete constitutive matri-
ces relating magnetic fluxes with magneto mo-
tive forces (reluctance matrix) and electro motive
forces with currents (conductance matrix) needed
for discretizing eddy current problems over hexa-
hedral primal grids by means of the Finite Integra-
tion Technique (FIT) and the Cell Method (CM).
We prove that, unlike the mass matrices of Finite
Elements, the proposed matrices ensure both the
stability and the consistency of the discrete equa-
tions introduced in FIT and CM.

Keyword: Discrete constitutive equations, dis-
crete geometric approach, eddy-currents.

1 Introduction

In the recent years, the role of geometry and
algebraic topology gained a considerable im-
portance in the research on computational elec-
tromagnetism. In this respect the fundamen-
tal works of T. Weiland with theFinite Inte-
gration Technique(FIT) [Clemens and Weiland
(2001)], E. Tonti withCell Method(CM) [Tonti
(1995)], [Tonti (2001)] and A. Bossavit [Bossavit
(1998b)], [Bossavit and Kettunen (2000)] reveal
a “Discrete Geometric Approach” (DGA) to solv-
ing directly Maxwell equations in an alternative
way with respect to the classical Galerkin method
in Finite Elements, [Castillo, Koning, Rieben,
and White (2004)], [Heshmatzadeh and Bridges

1 Dipartimento di Elettronica e Informazione, Politecnico
di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano,
Italy, codecasa@elet.polimi.it.

2 Dep. of Ingegneria Elettrica, Gestionale e Meccanica,
Università di Udine, Via delle Scienze 208, 33100 Udine,
Italy, ruben.specogna@uniud.it.

3 Dep. of Ingegneria Elettrica, Gestionale e Meccanica,
Università di Udine, Via delle Scienze 208, 33100 Udine,
Italy, trevisan@uniud.it.

(2007)]. Several applications of DGA to solv-
ing other physical problems have been devel-
oped by a number of authors since its introduc-
tion, i.e. [Cosmi (2001)], [Ferretti (2003)], [Fer-
retti (2004b)], [Ferretti (2004a)], [Cosmi (2005)],
[Cosmi (2008)].

The DGA allows the construction of an algebraic
system of equations by combining both the phys-
ical laws of electromagnetism, formulatedexactly
in a purely topological way and the constitutive
relations,approximatedin a geometric way on a
specified grid. Even though the DGA is general,
in this paper we will focus an eddy-current prob-
lem as a working example [Trevisan and Kettunen
(2006)].

For the sake of clarity, we will briefly retrace the
fundamental steps of the DGA in order to ad-
dress the reader towards the novelty content of our
work: the geometric construction of the discrete
constitutive relations on an hexahedra grid com-
plying with precise properties necessary for the
solution of a discrete formulation of eddy-current
problem.

Firstly a pair of oriented dual grids is introduced
in the domain of interest. One grid is denoted as
theprimal grid and the other as thedual grid. A
grid is a collection of oriented geometric elements
like nodes, edges, faces and volumes [Bossavit
(1998a)]. The geometric elements of one grid are
in a one-to-one correspondence with the geomet-
ric elements of the other grid. For example to a
face of the primal grid corresponds an edge of the
dual grid.

A second step is the unique association of the so
called integral orglobalvariables describing elec-
tromagnetic phenomena to a precise geometric el-
ements of the primal or dual grid, [Tonti (1998)].
For example, the magnetic induction flux is asso-
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ciated with the faces of the primal grid, the elec-
tric current is associated with the faces of the dual
grid while the magneto motive force is attached to
the edges of the dual grid.

As third step, the physical laws of electromag-
netism can be written directly in terms of ex-
act algebraic relations involving the global vari-
ables associated with the geometric elements of
the primal and dual grids. For instance Ampère’s
law relates the current crossing a dual face with
the magneto motive force along the dual edges
bounding that face.

In this way, the so called balance equations are
formed, which relay on the topology of the grids
only. On the contrary the discrete counterparts of
the continuous level constitutive relations are fi-
nite dimensional linear operators – i.e. matrices
– mapping in anapproximateway global vari-
ables associated with the geometric elements of
one grid to the global variables associated with
the corresponding geometric elements of the other
grid. To construct such matrices, we need met-
ric concepts (like lengths, areas and volumes) and
material properties; usually an element wise con-
stant material medium property is assumed. For
example, in our eddy currents problem, the mag-
netic induction fluxes – attached to the faces of
the primal grid – are transformed into the mag-
neto motive forces along the corresponding edges
of the dual grid; this matrix will be denoted as the
reluctance matrix; similarly, but at a different ge-
ometric level, the conductance matrix transforms
the electro motive forces along the edges of the
primal grid into the currents crossing the faces of
the dual grid.

By combining the balance equations with the con-
stitutive matrices, a final system of discretized
equations is deduced. It is a known result
[Bossavit and Kettunen (2000)], [Codecasa, Min-
erva, and Politi (2004)], that to ensure the con-
sistency and the stability of the final system, the
constitutive matrices are required to satisfy a pair
of fundamental properties:i) a consistency prop-
erty, ii ) a stability property. Since discrete con-
stitutive relations, as it is common, are assumed
to be constructed primal volume by primal vol-
ume, without loosing generality, we can consider

a primal grid over a single primal volume hav-
ing homogenoeus reluctivity or conductivity ac-
cording to the case; thence to ensure the consis-
tency property, the reluctance matrix is required
to exactly transform the fluxes through primal
faces of auniform magnetic induction into the
circulations along dual edges of the correspond-
ing uniformmagnetic field [Codecasa, Specogna,
and Trevisan (2007)]. Similarly, but at a dif-
ferent geometric level, the conductance matrix
complies with the consistency property when it
exactly transforms the circulations along primal
edges of auniformelectric field into the currents
through dual faces of the correspondinguniform
current density [Codecasa, Specogna, and Tre-
visan (2007)]. Finally the stability property is
guaranteed if the reluctance and conductance ma-
trices aresymmetric and positive definite.

Discrete constitutive relations, satisfying both the
consistency and stability properties, were ini-
tially introduced in a straightforward and natural
ways for pairs of orthogonal Cartesian dual grids
[Clemens and Weiland (2001)]. Recently, also for
a pair of dual grids in which the primal grid is
made of tetrahedra and the dual grid is obtained
by means of the barycentric subdivision of the
primal grid, constitutive relations satisfying both
the consistency and stability properties have been
introduced. In this respect, A. Bossavit showed
[Bossavit (1998b)], [Bossavit (1998a)] that the so
calledmass matricesconstructed in the Finite Ele-
ment Method (FEM) by means of Whitney’s edge
and face vector functions, not only satisfy the sta-
bility property but also the consistency property
above mentioned; thus such mass matrices for
tetrahedral grids can be borrowed as constitutive
matrices for the DGA. Besides, also the present
authors [Codecasa, Minerva, and Politi (2004)],
[Codecasa, Specogna, and Trevisan (2007)] pro-
posed for tetrahedra and prisms with triangular
bases a so calledenergetic approachto compute,
in a fully geometric way, an independent pair of
novel stable and consistent constitutive matrices
to be used in the Discrete Geometric Approach.

However for primal grids in which the volumes
are generic hexahedra, no constitutive matrices,
satisfying both the consistency and the stability
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properties, have been reported in literature. In this
paper, we will try to fill in this gap.

Firstly, we will show, by a counter-example that
the mass matrices constructed in the FEM for an
hexahedral primal grid, by means of the so called
mixed elementsedge and face vector functions
described in [Dular, Hody, Nicolet, Genon, and
Legros (1994)], even if they are symmetric and
positive definite and thus satisfy the stability prop-
erty ii ), donot satisfy the consistency propertyi)
for any choice of the dual grid in correspondence
of the hexahedral primal grid. Thus such mass
matrices for the hexahedral gridscannotbe bor-
rowed as constitutive matrices for the DGA.

Then we will propose novel discrete constitutive
matrices, satisfying both the consistency and sta-
bility properties, for pairs of dual grids in which
the volumes of the primal grid are generic hexa-
hedra and the dual grid is obtained by means of
the barycentric subdivision of theboundariesof
the volumes of the primal grid. Numerical exper-
iments will show that such novel discrete consti-
tutive relations can be constructed at a low com-
putational cost and that they lead to an accurate
approximation of the solution to our eddy current
problem.

The remainder of this paper is organized as fol-
lows. In section 2 the equations obtained by
the DGA for eddy-current problems are recalled.
Also it is verified that the mass matrices con-
structed in the FEM do not satisfy the consistency
property of discrete constitutive relations. The
novel method for constructing the discrete con-
stitutive relation is then presented in successive
steps. In sections 4, 5 we prove the main geomet-
ric properties needed to construct the discrete con-
stitutive matrices. Sections 6 and 7 are then ded-
icated to the construction of such matrices and to
prove the corresponding properties of consistency
and of symmetric positive definiteness they com-
ply with. Section 8 is devoted to the presentation
of numerical results. All ancillary results needed
in overall the paper are collected in Appendix A:,
Appendix B:, Appendix C:.

2 Discrete equations for eddy current prob-
lems

We state here a typical eddy current problem. The
domain of interestD contains a source regionDs

where prescribed currents are present and the con-
ducting regionDc. The insulating regionDa is the
complement ofDc andDs with respect toD. In
D we introduce a pair of interlocked primal-dual
grids whose interconnections are described by the
usual incidence matricesG between primal edges
e and primal nodesn andC between primal faces
f and primal edgese. The reluctivity and con-
ductivity of the media are assumed element-wise
constants.

We briefly recall the basic equations of a DGA
to solve eddy-current problems in the frequency
domain, [Trevisan (2004)], [Specogna and Tre-
visan (2005)], [Trevisan and Kettunen (2006)].
We search for the arrayA of the circulations of
the magnetic vector potential along primal edges
e of D and for the arrayχχχ of scalar potentialχ
associated with primal nodesn of Dc such that

(CTMCA)e = (Is)e ∀e∈ D\Dc

(CTMCA)e+ iω(NAc)e+ iω(NGχχχ)e = 0

∀e∈ Dc

iω(GTNAc)n+ iω(GTNGχχχ)n = 0 ∀n∈ Dc,

where the arrayIs contains the source currentsIs

crossing the dual faces inDs; Ac is the sub-array
of A, associated with primal edges inDc; the ma-
trix G is associated with pairs (e, n) of Dc only.
With (x)k we mean thek-th row of arrayx, where
k = {e,n} is the label of edgee or of noden. Fi-
nally the reluctance and conductance constitutive
matrices are denoted withM, N respectively such
that dim(M) = F , F being the number of faces in
D and dim(N) = Lc, Lc being the number of edges
in Dc. This system of equations is singular and to
solve it we rely on CG method without gauge con-
dition [Kameari and Koganezawa (1997)].

As shown in [Bossavit and Kettunen (2000)],
[Codecasa and Trevisan (2006)] in order to ensure
the consistency of the discrete system obtained by
the DGA, the constitutive matricesM, N, are both
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required to comply with the above mentioned con-
sistencyi) and stabilityii ) properties, [Codecasa,
Specogna, and Trevisan (2007)].

The existing technique for constructing the mass
matrices in the framework of finite elements over
an hexahedral primal grid, does not lead to con-
stitutive matrices complying with the consistency
property i). This is demonstrated in Appendix
C: by a simple counter-example. Hereafter we
will construct in a purely geometric way a pair
of novel constitutive matricesM, N which in-
stead satisfy both the consistencyi) and stability
ii ) properties forhexahedralprimal grids.

3 Notation

Let T = u⊗v be the double tensor T obtained by
means of the tensor product⊗ of the two vectors
u, v. The product Tu between a double tensor T
and a vector u is a vector; the inner product v·Tu
is a scalar, v being a vector. Between the tensor
T = u⊗v and a vector a the following relation

u⊗va= (v ·a)u

holds. The identity tensor is denoted with I and it
is such that Iu= u holds.

4 Primal and dual grids

In the following sections we will consider a sin-
gle hexahedronv as primal grid, Fig. 1. Let the
conductivityσ and the reluctivityν within v be
homogeneous, symmetric positive definite double
tensors.

Let |v| be the measure of the volumev. Let fi,
with i = 1, . . . ,F = 6 be the primal faces1 of v, let
ej with j = 1, . . .,L = 12 be its primal edges and
let pk with k = 1, . . . ,N = 8 be its primal nodes.

We denote inroman typea positionvector r drawn
from an origin of a Cartesian reference frame to a
generic pointr within v. Let pk be the position
vector associated with the primal nodepk. Let gfi
be the position vector of the barycenter of the face
fi defined by

gfi =
1
| fi|

∫

fi
rds,

1 By definition, the faces of an hexahedron are planar faces.

gfi

ej

gej

pk

v

vk

fj

ei

~

~

~

p
~

Σik

fi

Figure 1: Hexahedronv, primal face fi, primal
edgeej , primal nodepk; dual volume ˜vk, dual face
f̃ j , dual edge ˜ei and dual node ˜p. Moreover the
barycentergej of edgeej and the barycentergfi of
face fi are shown.

in which | fi| is the area offi, with i = 1, . . .,F ,
and letgej be the position vector of the barycenter
of the edgeej , with j = 1, . . .,L.

Let p̃ be the dual node inv, as in Fig. 1. This node
can be arbitrarily chosen withinv; as a particular
case it can be the barycenter ofv. The segment
drawn between ˜p and the barycentergfi defines
the dual edge ˜ei and it is in one to one correspon-
dence with the primal facefi, with i = 1, . . .,F .
The dual facef̃ j is in a one to one correspondence
with the primal edgeej , with j = 1, · · · ,L. In gen-
eral it isnot a planar face and it is formed by the
union of two triangles; each triangle has as nodes
p̃, the barycentergej and the barycentergfi of one
face fi of the two adjacent toej . The dual volume
ṽk is in one to one correspondence with nodepk,
as in Fig. 1.

The primal geometric entitiespk, ej , fi andv are
endowed with an inner orientation. Similarly the
dual geometric entities like ˜p, ẽi, f̃ j and ṽk are
endowed with an outer orientation [Tonti (1998)],
in such a way that the pairs (pk, ṽk), (ej , f̃ j ), ( fi,
ẽi) and (v, p̃) are oriented in a congruent way.

We denote with ej the edge vector associated with
edgeej . Its amplitude and orientation coincide re-
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spectively with the length and orientation ofej .
with j = 1, . . . ,L. We denote with fi the face vec-
tor of fi defined by

f i =

∫

fi
n(r)ds,

n(r) being the vector normal to and oriented asfi,
with i = 1, . . .F . Similarly ẽi is the edge vector
associated with ˜ei, with i = 1, . . .,F, andf̃ j is the
face vector associated with̃f j , with j = 1, . . . ,L.
We have that ej · f̃ j > 0 and fi · ẽi > 0 hold.

As a consequence of this particular choice of dual
grid, constructed by means of the barycenters of
the primal edges and primal faces, the following
two geometrical properties hold

Property 1 It results in

|v|I =
L

∑ j
1

ej ⊗ f̃ j , (1)

Proof. Let a and b be a pair of spatially uniform vec-
tors. It is
∫

v
a·bdv=

N

∑k
1

∫

ṽk

a·bdv.

Besides, since a is spatially uniform and thus it is a=
∇u(r) with u(r) = a· r, it results in
∫

ṽk

a·bdv=

∫

ṽk

∇(u(r)−u(pk)) ·bdv=

∫

ṽk

∇ · (u(r)−u(pk))bdv−
∫

ṽk

(u(r)−u(pk))∇ ·bdv=

∫

∂ ṽk

(u(r)−u(pk))b ·n(r)ds=

F

∑i
1

∫

ṽk∩ fi
(u(r)−u(pk))b ·n(r)ds+

+
L

∑ j
1

∫

ṽk∩ f̃ j

(u(r)−u(pk))b ·n(r)ds,

being n(r) a unit vector normal to and oriented as∂ ṽk

at r. It is
∫

ṽk∩ f̃ j

(u(r)−u(pk))b ·n(r)ds=

∫

ṽk∩ f̃ j

(u(gej )−u(pk))b ·n(r)ds+

+

∫

ṽk∩ f̃ j

(u(r)−u(gej))b ·n(r)ds.

Besides it results in

L

∑ j
1

N

∑k
1

∫

ṽk∩ f̃ j

(u(gej)−u(pk))b ·n(r)ds=

L

∑ j
1

(a·ej )(b · f̃ j)

and

N

∑k
1

∫

ṽk∩ f̃ j

(u(r)−u(gej))b ·n(r)ds= 0.

Lastly, from (23) in Lemma 2 of Appendix C: it results
in

N

∑k
1

∫

ṽk∩ fi
a· (r−pk)n(r) ·bds= 0, i = 1, . . .,F

and the claim follows.

Property 2 It results in

|v|I =
F

∑i
1

ẽi ⊗ f i (2)

Proof. Let a and b be a pair of spatially uniform vec-
tors. Then it is b= ∇u(r) with u(r) = b· r and it results
in
∫

v
a·bdv=

∫

v
a·∇(u(r)−u(p̃))dv=

∫

v
∇ · (u(r)−u(p̃))adv−

∫

v
(u(r)−u(p̃))∇ ·adv=

∫

∂v
(u(r)−u(p̃))a·n(r)dv=

F

∑i
1

∫

fi
(u(r)−u(g fi))a·n(r)dv+

+
F

∑i
1

∫

fi
(u(g fi)−u(p̃))a·n(r)dv,

n(r) being a unit vector oriented as the outward normal
to ∂ v. It is

F

∑i
1

∫

fi
(u(g fi)−u(p̃))a·n(r)dv=

F

∑i
1

(a· f i)(b · ẽi)

Besides it is
∫

fi
b · (r−g fi)n(r) ·adv= 0, i = 1, . . .,F

and the claim follows.
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τh

v

l1h

l2h

l3h

Figure 2: Tetrahedronτh, and associated base vec-
tors(l1h, l2h, l3h).

5 Subdivision of an hexahedron into tetrahe-
dra

An hexahedronv can be thought as the union of
2L tetrahedraτh, with h = 1, . . .,2L. The ver-
tices of the tetrahedronτh are p̃, the pair of nodes
bounding an edgeej and the barycentergfi of a
face fi adjacent toej , as shown in Fig. 2. We
expressly note that this subdivision of an hexahe-
dron into tetrahedron is just introduced for nam-
ing geometric entities used in the construction of
the discrete constitutive relations. We do not in-
tend to substitute the primal hexahedral grid with
a primal tetrahedral grid.

We associate to each tetrahedronτh, a triplet of
vectors forming a basis, Fig. 2. Precisely, we as-
sociate toτh the triplet(l1h, l2h, l3h) defined as

(l1h, l2h, l3h) =
(

ej , (gfi −gej ), (gfi − p̃)
)

.

We also construct, as defined in Appendix B: for-
mula (16), the basis of face vectors(s1h, s2h, s3h)

associated with(l1h, l2h, l3h).

Let now fi1 and fi2 be the pair of faces adjacent to
edgeej , as shown in Fig. 3. Let cj be the edge
vector of the edgec j drawn fromgfi2

to gfi1
. Let

Cj be face vector of the triangular faceCj , whose
vertices are ˜p and the two extrema of edgeej , ori-
ented in such a way that cj ·Cj > 0 holds, with
j = 1, . . .,L. The following result is now proven,

gej

Cj ejτh2

cj

τh1
gf i1

v
f i1

p
~

f i2

gf i2

Figure 3: Elements cj and Cj , with j = 1. . .L.

similarly to Properties 1 and 2.

Lemma 1 It results in

|v|I =
L

∑ j
1

c j ⊗Cj (3)

Proof. Let a, b be spatially uniform fields, so that a=
∇u(r) with u(r) = a· r. Let ρi be the pyramid whose
base is thefi face and has vertex p̃, withi = 1. . .F .
The lateral faces of these pyramids are the facesCj

with j = 1. . .L. It results in
∫

ρi

a·bdv=

∫

ρi

∇(u(r)−u(g fi)) ·bdv=

∫

ρi

∇ · (u(r)−u(g fi))bdv−
∫

ρi

(u(r)−u(g fi))∇ ·bdv=

∫

∂ρi

(u(r)−u(g fi))b ·n(r)ds=

∫

fi
(u(r)−u(g fi))b ·n(r)ds+

+
L

∑ j
1

∫

∂ρi∩Cj

(

(u(r)−u(gej))+

+(u(gej )−u(g fi))
)

b ·n(r)ds.

Since it is straightforwardly
∫

fi
(u(r)−u(g fi))b ·n(r)ds= 0, i = 1, . . .,F
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and, for eachj = 1. . .L, it is

F

∑i
1

∫

∂ρi∩Cj

(u(r)−u(gej))b ·n(r)ds= 0,

F

∑i
1

∫

∂ρi∩Cj

(u(gej )−u(g fi))b ·n(r)ds= (a· c j)(b ·C j),

it results in

|v|a·b=
F

∑i
1

∫

ρi

a·bdv=
L

∑ j
1

(a· c j)(b ·C j).

Because a, b are arbitrary, (3) follows.

Hereafter, using Lemma 1, a geometric prop-
erty involving the basis vectors introduced for the
tetrahedraτh with h = 1, . . . ,2L, is proven which
will turn out to be crucial in sections 6, 7 for the
construction of the discrete constitutive relations.

Property 3 It results in

2I |v|=
2L

∑h
1

l2h⊗s2h. (4)

Proof. Let τh1 andτh2 be the pair of tetrahedra adja-
cent to the edgeej , as shown in Fig. 3. It results in

s2h1 = l3h1 × l1h1

= (l3h1 − l2h1)× l1h1 + l2h1 × l1h1

= 2Cj −s3h1 .

Similarly

s2h2 = −l3h2 × l1h2

= (−l3h2 + l2h2)× l1h2 − l2h2 × l1h2

= −2Cj −s3h2.

Thus

l2h1 ⊗s2h1 = 2l2h1 ⊗C j − l2h1 ⊗s3h1 , (5)

l2h2 ⊗s2h2 = −2l2h2 ⊗C j − l2h2 ⊗s3h2. (6)

By summing (5), (6) over all edgesej and by observing
that

l2h1 − l2h2 = c j ,

then

2L

∑h
1

l2h⊗s2h = 2
l

∑ j
1

c j ⊗C j −
2L

∑h
1

l2h⊗s3h. (7)

Summing (22) of Lemma 2 of Appendix C: over all
facesfi , with i = 1. . .,F, it results in

2L

∑h
1

l2h⊗s3h = 0.

Thus, from Lemma 1, the claim follows.

6 Geometric construction of the discrete con-
ductance constitutive relation

Let u be the array of the circulationsu j of the
electric field E along the primal edgesej , with
j = 1, . . . ,L. Similarly let Uh be the array of the
circulationsU1h, U2h, U3h of the electric field E
along the edgesl1h, l2h, l3h, for h = 1, . . .,2L.

For an electric field E spatiallyuniform in v, by
taking the dot product of (1) with E, it is

E =
1
|v|

L

∑
j=1

u j f̃ j ,

and thus the circulations of the arrayUh can be
reconstructed from the circulations of the arrayu
by

Uh = Ahu

where

Ah =















0 · · · 1 · · · 0

l2h · f̃1
|v| · · · l2h · f̃ j

|v| · · · l2h · f̃L
|v|

l3h · f̃1
|v| · · · l3h · f̃ j

|v| · · · l3h · f̃L
|v|















,

the first row having all zero elements but in
the column corresponding to the primal edgeej

which is adjacent to the tetrahedronτh.

Let Nh be the matrices which transform the cir-
culations of a uniform vector E along the three
edges of edge vectors l1h, l2h, l3h into the fluxes
of J= σE through the three faces of face vectors
s1h, s2h, s3h. These matrices are defined as in (19)
of Appendix B: by assuming T= σ and s1 = s1h,
s2 = s2h and s3 = s3h, with h = 1. . .2L. Thus they
also are symmetric, positive definite. Now, using
Properties 1, 3, we can prove the following main
result.
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Property 4 Matrix

N =
1
6

2L

∑h
1

AT
h NhAh (8)

satisfies both the consistency and stability proper-
ties of a conductance constitutive relation for the
DGA.

Proof. For an electric field E, spatially uniform inv, it
is

Ahu =





l1h ·E
l2h ·E
l3h ·E





and

NhAhu =





s1h · J
s2h · J
s3h · J



 ,

being J= σE. Then

Nu =
1
6

2L

∑h
1

AT
h





s1h · J
s2h · J
s3h · J



=



















1
6

f̃1

|v| ·
(

2|v|I +
2L

∑h
1

l2h⊗s2h +
2L

∑h
1

l3h⊗s3h

)

J

...

1
6

f̃L

|v| ·
(

2|v|I +
2L

∑h
1

l2h⊗s2h +
2L

∑h
1

l3h⊗s3h

)

J



















.

Thus from Property 3, and since from Property 1 it is

2L

∑h
1

l3h⊗s3h = 2
F

∑i
1

ẽi ⊗ f i = 2|v|I,

it results in

Nu =







f̃1 · J
...

f̃L · J







andN satisfies the consistency propertyii ).

SinceNT
h = Nh, for eachh = 1. . .2L, it results in

NT =
2L

∑h
1

AT
h NT

h Ah =
2L

∑h
1

AT
h NhAh = N

andN is symmetric.

SinceUT
h NhUh ≥ 0, for eachh = 1. . .2L, it results in

1
2

uTNu =
1
12

2L

∑h
1

uTAT
h NhAhu

=
1
12

2L

∑h
1

UT
h NhUh

≥0.

Also uTNu = 0 implies UT
h NhUh = 0 and thus

Uh = Ahu = 0 for all h= 1. . .2L. ThenU1h = 0 for all
h = 1. . .2L, or equivalentlyu j = 0 for all j = 1. . .L
that isu = 0. ThusN is positive definite. ThusN also
satisfies the stability propertyii ).

7 Geometric construction of the discrete re-
luctance constitutive relation

We proceed in a way similar to the previous sec-
tion 6. Let φφφ be the array of the fluxesφi of
the magnetic induction field B though the pri-
mal facesfi, with i = 1, . . .,F. Similarly let ΦΦΦh

be the array of the fluxesΦ1h, Φ2h, Φ3h of the
magnetic induction field B through the facess1h,
s2h, s3h corresponding to the tetrahedronτh, for
h = 1, . . . ,2L.

For a magnetic induction field B spatiallyuniform
in v, by taking the dot product of (2) with B, it is

B =
1
|v|

F

∑
i=1

φiẽi,

and thus fluxes of the arrayΦΦΦh can be recon-
structed from the fluxes of the arrayφφφ by

ΦΦΦh = Bhφφφ

where

Bh =













s2h · ẽ1
|v| · · · s2h · ẽi

|v| · · · s2h · ẽL
|v|

s3h · ẽ1
|v| · · · s3h · ẽi

|v| · · · s3h · ẽL
|v|

0 · · · ξi · · · 0













,

the third row having all zero elements but in the
column corresponding to the primal facefi which
is adjacent to the tetrahedronτh and beingξi =
s3h · f i/|f i|2.
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Let Mh be the matrices which transform the fluxes
of a uniform vector B through the three faces of
face vectors s1h, s2h, s3h into the circulations of
H = νB along the three edges of edge vectors l1h,
l2h, l3h. These matrices are defined by (20) of Ap-
pendix B: by assuming T= ν , and l1 = l1h, l2 = l2h

and l3 = l3h, with h = 1. . .2L. Thus they are also
symmetric, positive definite. Now, using Proper-
ties 2, 3, we can prove the following main result.

Property 5 Matrix

M =
1
6

2L

∑h
1

BT
h MhBh (9)

satisfies both the consistency and stability prop-
erties of a reluctance constitutive relation for the
DGA.

Proof. For a magnetic induction field B, spatially uni-
form in v, it is

Bhφφφ =





s1h ·B
s2h ·B
s3h ·B





and

MhBhφφφ =





l1h ·H
l2h ·H
l3h ·H



 ,

being H= νB. Then

Mφφφ =
1
6

2L

∑h
1

BT
h





l1h ·H
l2h ·H
l3h ·H



=



















1
6

ẽ1

|v| ·
(

2L

∑h
1

l1h⊗s1h +
2L

∑h
1

l2h⊗s2h +2|v|I
)

H

...

1
6

ẽF

|v| ·
(

2L

∑h
1

l1h⊗s1h +
2L

∑h
1

l2h⊗s2h +2|v|I
)

H



















.

Thus from Property 3 , and since from Property 2 it is

2L

∑h
1

l1h⊗s1h = 2
L

∑ j
1

ej ⊗ f̃ j = 2|v|I,

from (??) it results in

Mφφφ =







ẽ1 ·H
...

ẽF ·H







andM satisfies the consistency propertyi).

SinceMT
h = Mh, for eachh = 1. . .2L, it results in

MT =
2L

∑h
1

BT
h MT

h Bh =
2L

∑h
1

BT
h MhBh = M

andM is symmetric.

SinceΦΦΦT
h MhΦΦΦh ≥ 0, for eachh = 1. . .2L, it results in

1
2

φφφ TMφφφ =
1
12

2L

∑h
1

ΦΦΦT
h BT

h MhBhΦΦΦh

=
1
12

2L

∑h
1

ΦΦΦT
h MhΦΦΦh

≥0.

Also φφφTMφφφ = 0 implies ΦΦΦT
h MhΦΦΦh = 0 and thus

ΦΦΦh = Bhφφφ = 0 for all h = 1. . .2L. ThenΦ1h = 0 for
all h= 1. . .2L, or equivalentlyφi = 0 for all i = 1. . .F
that isφφφ = 0. ThusM is positive definite. ThusM also
satisfies the stability propertyii ).

8 Numerical results

As a numerical test, we consider a geometry con-
sisting of a circular coil placed above an alu-
minum plate (σ = 4 · 107S/m). The domain of
interestD of the eddy-current problem consists of
a cylinder of diameter of 60 mm and height 44.5
mm. It contains a circular current driven coil of
18 mm of outer diameter, 12 mm of inner diame-
ter and 10 mm height. The coil is placed above an
aluminum plate, denoted withDc, 4 mm thick and
with a radius of 30 mm. The coil and the plate are
surrounded by an air region. In the coil we force
a sinusoidal currentIs = sin(ωt) with a frequency
of f =5 kHz.

We introduced inD a number of different primal
grids made of a variable number of hexahedra up
to 42000 elements.

We assemble the final system of algebraic equa-
tions using the conductance and reluctance con-
stitutive matricesN andM here introduced.

Figures 4 and 5 show the convergence rate of the
magnetic induction and of the current density for
four meshes, one finer with respect to the other.
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We calculate the error in energy norm defined as

εB =

√

∫

D ν |B−BREF|2 dv
∫

D ν |BREF|2 dv
,

whereBREF is the reference induction field com-
puted by means of a 2D axisymmetric FE accu-
rate solutionwith 200000 triangular elements. As
quality factor for the mesh we choose the mean
length of the edges. In a similar way, we intro-
duce the quantity

εJ =

√

∫

Dc
σ |J−JREF|2dv
∫

Dc
σ |JREF|2 dv

,

whereJREF is the reference current density field
computed by means of the 2D axisymmetric FE
solution. For comparison, we repeated the com-
putations using tetrahedra primal grids where, as
constitutive matrices, those described in [Code-
casa, Specogna, and Trevisan (2007)], [Codecasa,
Minerva, and Politi (2004)], [Specogna and Tre-
visan (2005)] for the case of tetrahedra can be
equivalently used. We observe that the solution
obtained over hexahedra grids is more accurate
than the solution computed over tetrahedra grids,
for each value of the mean length of the primal
edges.

A typical CPU time (on a Pentium IV 2GHz)
needed to iteratively solve the linear system with
a stop criterionon the residual 2-norm less then
10−10, is about 88 sec. The assembly process of
the overall linear system requires less then 9 sec.

9 Conclusions

We proposed an approach to construct discrete
constitutive matrices for solving eddy-current
problems over hexahedral primal grids. The moti-
vation of the paper stems from the fact that the so
called “mass matrices" of the FEM for hexahedral
primal grids, computed using mixed elements, do
not satisfy the consistency property of DGA. In-
stead the novel constitutive matrices we propose,
were shown to ensure both the consistency and
the stability properties of DGA. Numerical ex-
periments demonstrated that the novel constitu-
tive matrices lead to accurate approximations of

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

log(1/l
MEAN

)

lo
g(

ε B
)

Hexahedra real part
Hexahedra imaginary part
Tetrahedra, real part
Tetrahedra, imaginary part
O(h)

Figure 4: The real and imaginary parts of the rel-
ative errorεB associated with magnetic induction
in D is shown, using different hexahedra primal
grids and the novel constitutive matricesM, N.
For comparison, the same error is computed us-
ing primal grids of tetrahedra.

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

log(1/l
MEAN

)

lo
g(

ε J)

Hexahedra real part
Hexahedra imaginary part
Tetrahedra, real part
Tetrahedra, imaginary part
O(h)

Figure 5: The real and imaginary parts of the rel-
ative errorεJ associated with the current density
in Dc is shown using with different hexahedra pri-
mal grids the novel constitutive matricesM, N.
For comparison, the same error is computed also
using tetrahedral primal grids.

the solution of a reference eddy-current problem.
Moreover the solutionover hexahedra grids seems
to be more accurate than the solution over tetrahe-
dra grids for the same value of the mean length of
primal edges. Finally the proposed matrices can
be obtained with a reduced computational effort
and without a numerical volume integration like
for the mass matrices in finite elements.
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Appendix A: Counter-example

In this section we propose a counter-example, in
order to show the inconsistency of the mass ma-
trices computed for a simple hexahedronv for any
choice of the dual grid.

Let the coordinates of the nodes of the hexae-
dronv in Fig. 6A bep1 = (0,0,0), p2 = (2,0,0),
p3 = (0,1,0), p4 = (1,1,0), p5 = (0,0,1), p6 =

(2,0,1), p7 = (0,1,1), p8 = (1,1,1). We de-
note with pfi , with i = 1, . . .,F the intersection
between a primal facefi and the corresponding
dual edge ˜ei. Let pei be the intersection between
a primal edgeei with the corresponding dual face
f̃i, with i = 1, . . . ,L. Let p̃ be the dual node in
v. We stress that the pointspei , pfi , and p̃ do not
coincide, in general, with the barycenter of edge
ei, face fi and hexahedronv respectively. In addi-
tion, a dual facef̃i is not required to be planar, in
general. For examplẽf1 in Fig. 6B is not planar.
Nevertheless its area vector can always be written
as

f̃1 =
1
2
(pf5 −pf1)× (pe1 −pp̃), (10)

where pfi denotes the position vector correspond-
ing to the pointpfi with i = 1, . . .,F.

We recall that the entries of the mass matrices are

f5

f1

f4

f3 f2

f6

p1

p2

p3

p4

p5

p6

p7

p8

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

p1

p2

e1

rf5

rf1

re1

p
~

f1
~

A B

Figure 6: An hexahedron is shown with specified
orientations; for simplicity we label the facesfk,
with k= 1, . . .,F in such a way that opposite faces
have successive subscripts.

defined as

(M f )i j =

∫

v
w f

i ·w
f
j dv, (Me)i j =

∫

v
we

i ·we
j dv,

where(M f )i j is the generic entry of theF × F

face mass matrix constructed from the wf
i face

vector basis functions described in [Dular, Hody,
Nicolet, Genon, and Legros (1994)]. We note that
a unitary material parameter has been assumed.
Similarly (Me)i j is the generic entry of theL×L
edge mass matrix constructed from the we

i edge
vector basis functions described in [Dular, Hody,
Nicolet, Genon, and Legros (1994)]. We note that
a unitary material parameter has been assumed.

A necessary and sufficient condition for the
consistency ofM f according to the definition
reported in [Bossavit and Kettunen (2000)],
[Bossavit (2002)] and [Codecasa, Minerva, and
Politi (2004)] is

M f f = ẽ, (11)

wheref andẽ are F×3 arrays, whosei-th row rep-
resent the three components of the face vector fi

and of the dual edge vector ẽi respectively, with
i = 1, . . .,F .

Similarly a necessary and sufficient condition for
the consistency ofMe, according to the defini-
tion reported in [Bossavit and Kettunen (2000)],
[Bossavit (2002)] and [Codecasa, Minerva, and
Politi (2004)], is

Mee = f̃, (12)

wheree, f̃ are L×3 arrays, whosei-th row rep-
resent the three components of the edge vector ei

and of the dual face vectorf̃ i respectively, with
i = 1, . . .,L.

Hereafter we will prove that conditions (12) and
(11) arenot satisfied for any choice of the dual
grid.

Inconsistency of M f

By direct computation, the right hand side of (11)
yields

rowi(M f f) = (0,0,3log2/4), with i = 1, 2
rowi(M f f) = (0,3/4,0), with i = 3, 4
rowi(M f f) = (−1/4,1/2,0), with i = 5, 6.
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where with rowi we denote thei-th row of an ar-
ray. Let us consider the edge vectors ẽ1, ẽ2 associ-
ated with the dual edges ˜e1, ẽ2 respectively; in or-
der to guarantee that ẽ1, ẽ2 are parallel to the vec-
tors rowi(M f f) = (0,0,3log2/4), with i = 1, 2,
it is necessary that ˜p, pf1, pf2 are on a straight
line. Thus assuming for ˜p = (x2,y2,x2) it results
in pf1 = (x2,y2,0), pf1 = (x2,y2,1). Then it is

3
2

log2= (row1(M f f)+ row2(M f f)) ·az =

(y2−0)+(1−y2) = 1

which is clearly impossible.

Inconsistency of Me

By direct computation, the right hand side of (12)
yields

rowi(Mee) = (1/4,1/8,0), with i = 1, . . . ,4
rowi(Mee) = (0,3/8,0), with i = 5, . . . ,8
rowi(Mee) = (0,0,5/12), with i = 9, 10
rowi(Mee) = (0,0,1/3), with i = 11, 12.

Let f̃ j be the face vector of the dual facẽf j ,
with j = 1, . . .,L computed as in (10). It is
straightfoward to see that in order to guarantee
that f̃ j are parallel to the vectors rowi(Mee) with
i = 1, . . .,12, it is necessary that three planesπ1,
π2, π3 exist, having normals(2/

√
5,1/

√
5,0),

(0,1,0) and (0,0,1) respectively, such thatpf1,
pf2 lay on the intersection ofπ1, π2, pf3, pf4 lay
on the intersection ofπ2, π3 and pf5, pf6 lay on
the intersection ofπ1, π3. Similarly it is neces-
sary that three planesρ1, ρ2, ρ3 exist, having nor-
mals (2/

√
5,1/

√
5,0), (0,1,0) and (0,0,1) re-

spectively, such thatpe1, pe2, pe3, pe4 lay on ρ1,
pe5, pe6, pe7, pe8 lay onρ2, pe9, pe10, pe11, pe12 lay
on ρ3. We note thatπ1, π2, π3 are parallel respec-
tively to ρ1, ρ2, ρ3, but it is not necessary that they
coincide.

Thus, assumingpf3 = (0,y1,z1), pf6 = (x1,1,z1),
it results in pf1 = ((1− y1)/2+ x1,y1,0), pf2 =
((1 − y1)/2 + x1,y1,1), pf4 = (2 − y1,y1,z1),
pf5 = (x1 + 1/2,0,z1). Besides, assuming ˜p =
(x2,y2,z2), it results in pe1 = (y2/2 + x2,0,0),
pe2 = (y2/2 + x2,1,0), pe3 = (y2/2 + x2,0,1),
pe4 = (y2/2+x2,1,1), pe5 = (0,y2,0), pe6 = (2−

y2,y2,0), pe7 = (0,y2,1), pe8 = (2− y2,y2,1),
pe9 = (0,0,z2), pe10 = (2,0,z2), pe11 = (0,1,z2),
pe12 = (1,1,z2).

Then it results in

1
2

= (row1(Mee)+ row3(Mee)) ·ax =
1
2
(y1 +y2)

(13)

and in

5
6

= (row9(Mee)+ row10(Mee)) ·az =

1
2
(2−y1)(y1+y2)+

1
2

y2
1, (14)

being ax = (1,0,0), ay = (0,1,0), az = (0,0,1).
By using Eq. (13) in Eq. (14) it follows

y2
1−y1 +

1
3

= 0

which clearly has no real solution.

Appendix B: Reciprocal basis

s
2

s
3

Figure 7: ParallelepipedV.

Let l1, l2, l3 be a triplet of vectors which are not
coplanar. They can be interpreted as the edge
vectors of a triplet of edgesl1, l2, l3 of a paral-
lelepipedV as in Fig. 7. We recall that herecip-
rocal basis lr1, lr2, lr3 associated with the basis l1, l2,
l3 is uniquely defined by

3

∑i
1

l i ⊗ lri = I

and it is such that

lri =
l i−1× l i+1

l i−1× l i+1 · l i
, (15)
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in which i = 1, . . .,3 and index operations are
modulo 3. From (15) an arbitrary vector a can
be expressed as

a=
3

∑
i=1

(a· lri ) l i,

and an arbitrary vector b can be expressed as

b =
3

∑
i=1

(b· l i) lri .

Now let si be the face of the parallelepipedV in
the plane ofl i−1 and l i+1, and oriented in such a
way that si · l i = |V|, si being the face vector ofsi,
|V| being the volume ofV and index operations
being modulo 3. Then it is

si = lri |V|, i = 1, . . .,3, (16)

and thus it results in

a=
1
|V|

3

∑
i=1

(a·si) l i, (17)

b =
1
|V|

3

∑
j=1

(b· l j)sj , (18)

Let now T be a tensor relating vectors a, b by a=
Tb. Then from (18) it results in

a·si =
3

∑
j=1

si ·Tsj

|V| , (b· l j) i = 1, . . .,3. (19)

Thus the fluxes of vector a through the faces
si, with i = 1, . . . ,3, are expressed by a linear
combination of the circulations of vector b along
the edges li, with i = 1, . . . ,3. This mapping is
represented by a 3× 3 matrix whose entries are
si ·Tsj/|V| with i, j = 1, . . . ,3. We note that if the
tensor T is symmetric positive definite, also such
matrix is symmetric, positive definite.

Similarly from (17) it results in

a· l i =
3

∑
j=1

l i ·Tl j

|V| , (b·sj) i = 1, . . .,3. (20)

Thus the circulations of vector a along the edges
l i, with i = 1, . . .,3, are expressed by a linear com-
bination of the fluxes of vector b through the faces

gf

pk

pk+1

pk-1

gekek

f

f
k
+~

gek-1

f
k
-~

f
k+1
-~

f
e
k

f
k

~

ek-1

ek
~

Figure 8: Geometric elements of thef quadran-
gle.

si, with i = 1, . . . ,3. This mapping is represented
by a 3× 3 matrix whose entries are li · Tl j/|V|
with i, j = 1, . . . ,3. We note that if the tensor T
is symmetric positive definite, also such matrix is
symmetric, positive definite.

Appendix C: Geometric relations for quad-
rangles

Let f be a generic quadrangle. Letpk be the nodes
of f , having position vectors pk, with k = 1, . . .,4.
Let ek be the edges off , with k = 1, . . . ,4. Nodes
are assumed to be numbered counterclockwise.
Edgesek are assumed to be oriented from nodepk

to nodepk+1; operations on indexes are modulo
4.

The dual grid of f has facesf̃k and edges ˜ek

with k = 1, . . .,4. Let the dual node off be the
barycenter off denoted asgf and let the dual edge
ẽk be a segment drawn fromgf to the barycenter
gek of ek, with k = 1, . . .,4.

The dual facef̃k is the union of trianglẽf−k (hav-
ing verticesgf , pk, gek−1) and trianglef̃ +

k (having
verticesgf , pk, gek). The union of faces̃f +

k and
f̃−k+1 is referred to asfek. The following relations
are proven
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Lemma 2 It results in
4

∑k
1

| f̃k|(pk−gf ) = 0 (21)

4

∑k
1

| fek|(gek −gf ) = 0 (22)

4

∑k
1

∫

f̃k
(r−pk)ds= 0 (23)

Proof. It is
4

∑k
1

| f̃k|(pk−g f ) =

4

∑k
1

| f̃ +
k |(pk−g f )+ | f̃−k+1|(pk+1−g f ) =

4

∑k
1

1
2
(| f̃ +

k |+ | f̃−k+1|)((pk−g f )+(pk+1−g f ))+

+
4

∑k
1

1
2
(| f̃ +

k |− | f̃−k+1|)(pk−pk+1).

Thus since| f +
k | = | f−k+1| holds and since

1
2
(| f̃ +

k |+ | f̃−k+1|)((pk−g f )+(pk+1−g f )) =

3
2

∫

f +
k ∪ f −k+1

(r−g f )ds,

it results in
4

∑k
1

| f̃k|(pk−g f ) =
3
2

∫

f
(r−g f )ds= 0.

and (21) follows. Besides, since

4

∑k
1

| f̃k|(pk−g f ) =

4

∑k
1

| f +
k |(pk−g f )+

4

∑k
1

| f−k+1|(pk+1−g f ) =

4

∑k
1

| fek|
2

(pk−g f )+
| fek|

2
(pk+1−g f ) =

4

∑k
1

| fek|(gek −g f ),

from (21) also (22) follows. Lastly, since it is

4

∑k
1

∫

f̃k
(r−pk)ds=

∫

f
(r−g f )ds−

4

∑k
1

∫

f̃k
(pk−g f )ds=

−
4

∑k
1

| f̃k|(pk−g f ),

from (21) also (23) follows.

We note that clearly Lemma 2 holds also for ar-
bitrary numerations and orientations of the edges
and nodes off .
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