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Abstract. Electromagnetic modeling provides an interesting context to present a link
between physical phenomena and homology and cohomology the ories. Over the past
twenty-�ve years, a considerable effort has been invested b y the computational elec-
tromagnetics community to develop fast and general techniq ues for de�ning poten-
tials. When magneto-quasi-static discrete formulations b ased on magnetic scalar po-
tential are employed in problems which involve conductive r egions with holes, cutsare
needed to make the boundary value problem well de�ned. While an intimate connec-
tion with homology theory has been quickly recognized, heur istic de�nitions of cuts
are surprisingly still dominant in the literature.
The aim of this paper is �rst to survey several de�nitions of c uts together with their
shortcomings. Then, cuts are de�ned as generators of the �rs t cohomology group over
integers of a �nite CW-complex. This provably general de�ni tion has also the virtue
of providing an automatic, general and ef�cient algorithm f or the computation of cuts.
Some counter-examples show that heuristic de�nitions of cu ts should be abandoned.
The use of cohomology theory is not an option but the invaluab le tool expressly needed
to solve this problem.

AMS subject classi�cations : 55M05, 55N33, 55N99, 78M10, 78M25

Key words : Algebraic topology, (co)homology, computational electr omagnetics, cuts.

1 Introduction

There is a remarkable interest in the ef�cient numerical solu tion of large-scale three-
dimensional electromagnetic problems by Computer-Aided E ngineering (CAE) softwares
which enables a rapid and cheap design of practical devices together with their optimiza-
tion.
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Electromagnetic phenomena are governed by Maxwell's laws [1 ] and constitutive re-
lations of materials. This paper focuses on the numerical solution of magneto-quasi-static
Boundary Value Problems (BVP)—also called eddy-current pr oblems—which neglect the
displacement currentin the Amp�ere-Maxwell's equation [1–3]. This well-studied class has
quite a big number of industrial applications such as non-de structive testing, electromag-
netic breaking, metal separation in waste, induction heati ng, metal detectors, medical
imaging and hyperthermia cancer treatment.

The range of CAE applications is sometimes bounded by the hig h computational
cost needed to obtain the solution, hence state-of-the-art numerical methods are usu-
ally sought. Recently, the Discrete Geometric Approach (DG A) gained popularity, be-
coming an attractive method to solve BVP arising in various p hysical theories, see for
example [4–14]. The DGA bears strong similarities to compat ible or mimetic discretiza-
tions [15, 16], discrete exterior calculus [17] and �nite ele ment exterior calculus [18–20].
All these methods present some pedagogical advantages with respect to the standard
widely used Finite Element Method (FEM).

First of all, the topological nature of Maxwell's equations a nd the geometric structure
behind them allows to reformulate the mathematical descrip tion of electromagnetism di-
rectly in algebraic form. Such a reformulation can be formal ized in an elegant way by
using algebraic topology [5, 6, 8, 9, 16, 18–20]. Taking advantage of this formalism, as il-
lustrated in Section 3, physical variables are modeled as cochains and Maxwell's laws
are enforced by means of the coboundary operator. Informati on about the metric and the
physical properties of the materials is encoded in the const itutive relations, that are mod-
eled as discrete counterparts of the Hodge star operator [8, 11, 16, 20, 21] usually called
constitutive matrices[13]. By combining Maxwell's with constitutive matrices, an alge-
braic system of equations is directly obtained, yielding to a simple, accurate and ef�cient
numerical technique. The difference of the DGA with respect to similar methods lies in
the computation of the constitutive matrices, which in the D GA framework is based on a
closed-form geometric construction. For a computational d omain discretized by using a
geometric realization of a polyhedral cell complex, one may use the techniques described
in [22,23] and references therein, without losing the symme try, positive-de�niteness and
consistency of the constitutive matrices which guarantee t he convergence of the method.
Hence, we consider the most general situation of dealing wit h a polyhedral cell complex.

Our purpose is not to present the widely known DGA or similar d iscretizations, but
to use it as a working framework. This choice does not limit th e generality of the results,
since the standard Finite Element Method (FEM) and the Finite D ifferences (FD) can be
easily reinterpreted in the DGA framework as in [8,10,11,16 ,18–20,24,25]. Consequently
our results can be extended, without any modi�cation, to the c orresponding widely used
FEM formulation.

The paper is focused on a particular application of algebrai c topology, namely the def-
inition of potentials for the ef�cient numerical solution of eddy-currents Boundary Value
Problems (BVP). Electromagnetic potentials are auxiliary quantities frequently used to
enforce some of the Maxwell's laws implicitly. There are two f amilies of formulations for
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magneto-quasi-static problems, depending on the set of pot entials chosen, see for exam-
ple [2,3,14]. To better understand the link between (co)homology theory and physics, our
attention is focused on the h-oriented geometric formulations, namely the T-W [26, 27],
which are based on a magnetic scalar potential W. Those are much more ef�cient than
the complementary family of b-oriented A and A-c formulations [28], both in terms of
memory requirements and simulation time. The main reason is that usually h-oriented
formulations require about an order of magnitude less unkno wns. Nonetheless, when
h-oriented formulations involve electrically conductive r egions with holes (i.e., the �rst
homology group of some conductor is non-trivial), the de�nit ion of potentials is not
straightforward. Cuts are needed to be introduced to make the BVP well de�ned. How
to de�ne cuts and devise an ef�cient and automatic algorithm to compute them has been
an intellectual challenge for the computational electroma gnetics community for the last
twenty-�ve years. While a connection of this issue with homol ogy theory was quickly
recognized by Kotiuga [29] more than twenty years ago, heuris tic de�nition of cuts based
on intuition are surprisingly still dominant in the literat ure.

The aim of the paper is to rigorously present a systematic de�n ition of the potentials
employed in h-oriented formulations by taking advantage of homology and cohomology
theories. In particular, at the end of the presentation, we a re able to show that if cuts are
de�ned as generators of the �rst cohomology group over integer s of the insulating re-
gion, then all relevant discrete physical laws are satis�ed. The originality of the approach
presented in this paper lies also in the fact that the de�nitio n of potentials is tackled di-
rectly within a topological setting. In fact, thanks to the r eformulation of Maxwell's laws
by using the coboundary operator, homology and cohomology w ith integer coef�cients
are employed from the beginning for the potential de�nition i n place of the standard de
Rham cohomology, see for example [30], routinely used in the FEM context, see for exam-
ple [29,31–33]. In the FEM framework, the so-called non-local basis functionsare added to
the set of usual basis functions to be able to span the de Rham �r st cohomology group, see
for example [31,32,34–39]. Moreover, employing the DGA, new insights into the formula-
tion can be presented by exploiting the dualities arising wh en, as in the DGA framework,
two interlocked cell complexes—one dual of the other—are em ployed. For example, the
physical interpretation of the non-local basis functions a s non-local Faraday's equations
will become apparent.

The second purpose of the paper is to present a survey on de�nit ions of cuts already
presented in the literature showing their shortcomings. Co ncrete counter-examples show
why heuristic de�nitions should be abandoned and that cohomo logy is not one of the
possible options but something which is expressly needed to face this problem.

The paper is structured as follows. In Section 2, physical variables of the electro-
magnetic problem are modeled as complex-valued cochains. In Section 3, Maxwell's
laws casted in algebraic form are recalled. Section 4 shows the problem related with ex-
pressing Amp�ere's law with a magnetic scalar potential whe n dealing with conducting
regions with holes. Then, to solve this issue, cuts are de�ned as generators of the �rst
cohomology group over integers of the insulating region. In Section 5, theT-Wgeometric
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formulation to solve magneto-quasi-static BVP is described. Section 6 contains a survey
of the de�nitions of cuts presented in the literature togethe r with an illustration of their
shortcomings. In Section 7, a short discussion on how to compute the cohomology gener-
ators is presented. Finally, in Section 8, the conclusions are drawn. A brief survey on the
relevant topics of algebraic topology is provided in the App endix. For a more detailed
treatment of this topic together with some algorithms to com pute (co)homology groups
consult [40–46].

2 Physical variables as complex-valued cochains

Let K be a homologically trivial polyhedral cell complex in R3. Let K c be a closed sub-
complex of K which models the conducting region. The Kn int K c is an insulating region
the closure of which is meshed by K a, which is a closed sub-complex of K . The interface
of the conducting and insulating region is meshed by K c\K a. Moreover, it is assumed
that K c and K a are non-empty. The dual sub-complexes are denoted by Ba and Bc, re-
spectively.

Since our aim is to solve the eddy-current problem in the freq uency domain, the phys-
ical variablesare modeled in this paper as complex-valued cochains†. According to Tonti's
classi�cation of physical variables [6,9,13], there is a uni que association between a phys-
ical variable, such as electric current or magnetic �ux [1, 6 , 9], and an oriented geometric
element of the two cell complexes K and B. The cochain values, usually called Degrees of
Freedom (DoFs) in computational physics (see for example [14]), have a direct physical
interpretation: By using the so-called de Rham map[48], they are de�ned as integrals of
the electromagnetic differential forms over the elements o f the complex‡.

The focus of this paper is on h-oriented formulations [26,27], so the following physical
variables and related association with geometrical elements of K or B are considered:

� hI , f i is the electric currentassociated to the facef 2K , see Fig. 1(a).hI , f i = 0 over the
faces f 2K a (with this de�nition, the current associated with the faces f 2K a\K c is
set to zero, since there is the need of a boundary condition that prevents the current
to �ow thought the boundary of the conductive region);

� hF,ei is the magneto-motive force(m.m.f.) associated to the edgee2K , see Fig. 1(b);

� hF̃ , fB i is the magnetic �ux associated to the dual face fB 2B , see Fig. 1(c);

� hŨ,eB i is the electro-motive force(e.m.f.) associated to the dual edge eB 2 B , see
Fig. 1(d).

†A frequency domain eddy-current problem implies that all ph ysical variables exhibit a time variation as
isofrequential sinusoids. By using the standard symbolic method, see [47], constant complex numbers called
phasorsare used to represent the sinusoids. If the eddy-current pro blem has to be solved in time domain, the
reals should be used in place of the complex numbers through t he paper without any further modi�cation.
‡For example, the magneto-motive force (m.m.f.) DoF relativ e to the 1-dimensional cell e is the integral of
the differential 1-form magnetic �eldover e.
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Figure 1: Association of the degrees of freedom to the oriented geometrical entities.

All these complex values, one for each 1- or 2-dimensional cell in the corresponding com-
plex, are the coef�cients of the corresponding complex-valu ed cochains denoted in bold-
face type. For a �xed chain and cochain basis, each cochain canbe represented as a vector
which is used in the computations. In the following, since no confusion can arise, the no-
tations for (co)chains and vectors representing them will b e the same.

3 Maxwell's equations in algebraic form and potentials anal ysis

In this section, the algebraic Maxwell's laws [5–7] are revie wed.
The discrete current continuity lawenforces the dot product of the currents associated

with faces belonging to the boundary of a volume v2K c, with dim v= 3, to be zero

hI ,¶vi = hdI ,vi = 0, 8v2K c. (3.1)

Focusing on the generic face f , the discrete Amp�ere's lawenforces the dot product of the
m.m.f. F on the boundary of the face f to match the current associated with f ,

hF,¶f i = hdF, f i = hI , f i , 8 f 2K . (3.2)

SincehI , f i = 0,8 f 2K a, F is a 1-cocycle inK a (however, it is not a cocycle in K ).
The discrete magnetic Gauss's lawenforces the dot product of the magnetic �uxes as-

sociated with the dual faces belonging to the boundary of a du al volume vB to be zero

hF̃ ,¶̃vB i = hd̃F̃ ,vB i = 0, 8vB 2B . (3.3)

Focusing on a dual face fB, the discrete Faraday's lawenforces the dot product of the
e.m.f. Ũ on the boundary of fB to match the opposite of the variation of the magnetic �ux
through the face fB. Considering problems in frequency domain, this translate s in

hŨ,¶̃ fB i = hd̃Ũ, fB i = h� iwF̃ , fB i , 8 fB 2B , (3.4)

where w is the angular frequency of the sinusoids equal to 2 p times the considered fre-
quency.
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The expressions just discussed of the four algebraic laws are called `local'. There exist
also the so-called `non-local' versions of each of them, which are obtained by considering
the balance not on exactly one geometrical entity but on a chain. It is straightforward
to see that if the region is homologically trivial each non-l ocal law can be obtained by
considering a linear combination of local laws. Therefore, in this case, the non local laws
do not bring any new information. As will be discussed in the n ext sections, this does
not hold for homologically non-trivial regions.

3.1 A preliminary de�nition of potentials

In this section a preliminary de�nition of potentials employ ed in the formulation is pre-
sented and analyzed by means of algebraic topology. For this preliminary de�nition let
us assume that the considered complexK c is homologically trivial. In particular, we use
the fact that, when the conductors and the whole domain are ho mologically trivial cell
complexes then, from a standard result on exact sequences, one has that the homology
of the insulating domain is also trivial. How to generalize t he de�nition of potentials in
case of homologically non-trivial regions is the subject of Section 4.1.

Let us �rst analyze the potentials employed in the insulating region K a. It has been
already indicated that F is a 1-cocycle inK a, hencehdF, f i = 0 holds 8 f 2 K a. Thus, since
K a is homologically trivial, a magnetic scalar potentialW 0-cochain can be introduced in
the insulating region such that

hdW,ei = hF,ei , 8e2K a. (3.5)

Let us analyze now the potentials employed in the conducting region K c. From (3.1),
we know that I is a 2-cocycle inK c, hencehdI ,vi = 0 holds 8v2K c. Thus, an electric vector
potentialT 1-cochain can be introduced in the conducting region such th at

hT,¶f i = hdT, f i = hI , f i , 8 f 2K c. (3.6)

Thanks to (3.2), the following holds

hdT, f i = hI , f i = hdF, f i , 8 f 2K c. (3.7)

Since F and T are 1-cochains such thatdF = dT, they differ by a 0-coboundary of a 0-
cochain O, i.e. F= T+ dO. Since it is required that the magnetic scalar potential is con-
tinuous inside K , we can extend the support of W also inside K c in such a way that
hW,ni = hO,ni for every node n 2K c. We want to remark, that those extensions are valid
also in case of homologically non-trivial complexes K c and K a and they are used further
in the paper. For brevity, let us de�ne also the cochain T as cochain in K . To this aim, we
assume thathT,ei = 0 for every edge e2K a.

To sum up, by using the potentials T and W, Amp�ere's law (3.2) and current con-
tinuity law (3.1) can be enforced implicitly by considering the following expression for
F

F= dW+ T. (3.8)
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Then, it is easy to show that employing this de�nition of poten tials Amp�ere's law
holds in K a (in fact, hdF, f i = hddW, f i = h0, f i = 0= hI , f i , 8 f 2K a, since the current is zero
in K a) and the current continuity law holds in all K (in fact, dI = ddT = 0). The remaining
laws will be enforced by a system of equations in Section 5.2.

4 De�nition of potentials

4.1 Non-local Amp�ere's law in homologically non-trivial d omains

Let us now remove the hypothesis of K c being homologically trivial. Amp�ere's law can
be written on a 1-cycle c2 Z1(K a) and a 2-chain s2 C2(K) such that ¶s= c:

hF,ci = hI ,si . (4.1)

Eq. (4.1) is an example of a non-local equation, since the algebraic constraint is not en-
forced on a geometric element, like (3.2), but involves geometric elements belonging to
a wider collection, in this case the support of s and its boundary c. In (4.1) we have not
speci�ed which 2-chain s has to be used for taking the dot product at the right-hand sid e
(in fact, s has been determined only up to its boundary ¶s= c). To solve this issue, we
show with next Theorem that the value hI ,si depends only on ¶s and, therefore, (4.1) is
well de�ned.

Theorem 4.1. Let s1 and s2 be two2-chains such that¶s1 = ¶s2 = c, where c2 Z1(K a). Then
hI ,s1i = hI ,s2i .

Proof. From the assumptions, s1� s22 Z2(K). SinceK is homologically trivial, there exists
b2 C3(K) such that ¶b= s1� s2. Consequently, s1 = s2+ ¶b holds. Then, hI ,s1i = hI ,s2i +
hI ,¶bi = hI ,s2i + hdI ,bi = hI ,s2i , since, due to (3.1),dI = 0.

Due to Theorem 4.1, one can state the following de�nition:

De�nition 4.1. The value Ic = hI ,si , for an arbitrary 1-cycle c2 Z1(K a) and a 2-chain s
such that c= ¶s, is called current linkedby the 1-cycle c.

Let us now show that the current linked by a 1-cycle c2 Z1(K a) is the same for all the
cycles in the homology class of c.

Theorem 4.2. The linked current Ic = hI ,si depends only on the H1(K a) class of the1-cycle
c= ¶s, where c2 Z1(K a). Thanks to non-local Amp�ere's law, the same holds for the dotproduct
hF,ci .

Proof. Let us take two cycles c1,c2 2 K a in the same homology class H1(K a). It means
that c1 = c2+ ¶s holds, where s2 C2(K a). Then, hF,c1i = hF,c2i + hF,¶si = hF,c2i + hdF,si =
hF,c2i + hI ,si . From the de�nition of I we have that hI , f i = 0 for every f 2 K a, therefore
hI ,si = 0, what completes the proof.
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Figure 2: (a) Two cycles,c1 and c2, in the sameH1(K a) class. (b) Example of two possible2-chains used to
evaluate the currents linked toc1 and c2. (c) The 2-chain s whose boundary1-chain is c1 � c2.

The idea of the proof of Theorem 4.2 is presented in Fig. 2 for the complement of a
solid double torus with respect to a cube which contains it (n ot represented in the picture
for the sake of clarity). The supports of two cycles c1 and c2 in the same homology class
are depicted in Fig. 2(a). The supports of two 2-chains s1 and s2 used to evaluate the
linked currents Ic1 = hI ,s1i and Ic2 = hI ,s2i are depicted in Fig. 2(b). Finally, in Fig. 2(c) it
is possible to see the support of a 2-chain s such that c1 = c2+ ¶s, which has been used in
the proof.

Using the scalar potential in K a, as the de�nition (3.8), yields to an inconsistency, since
Amp�ere's law may be violated on some 1-cycle c= ¶s2 Z1(K a). In fact, let us consider
a 1-cycle c2 H1(K a). Using the double torus example previously introduced, thi s cycle
may be for example the cycle c1 or c2 in Fig. 2(a). Now, due to (3.8), we have

hF,ci = hF,¶si = hT+ dW,¶si = hT,¶si + hdW,¶si = hddW,si = h0,si = 06= hI ,si ,

since hT,ei = 0 for every e2K a. The last inequality 0 6= hI ,si follows from the fact that the
current �owing through sis non-zero in general, since the support of shas to intersectK c.
According to next Theorem, the presented problem may occur o nly with cycles which are
non-trivial in H1(K a).

Theorem 4.3. Amp�ere's law is satis�ed for every1-boundary b inK a. The cycles that produce an
inconsistency in Amp�ere's law—because may link a non-zero current—are the cycles which are
non-trivial in the 1-st homology group H1(K a).

Proof. In the �rst case, the cycle c2 B1(K a) is bounding, which means that there exists
s2 C2(K a) such that ¶s= c. Sinces does not intersect K c, the dot product of the current I
and s is zero and the dot product of the m.m.f. F and c is also zero.

In the second case,c being non-zero in the �rst homology group H1(K a), such a chain
s2 C2(K a) does not exist. But, since the whole complex K is homologically trivial, there
exist a 2-chain s02 C2(K) such that ¶s0= c. Consequently one needs to have js0j\K c 6= Æ.
Thus, the support of s0has to extend in the current-carrying region K c and, consequently,
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Figure 3: (a) Two non-trivial elements ofH1(K a) called c1 and c2. (b) Let us consider2-chains in K whose
boundaries arec1 and c2. (c) Two independent currents,i1 and i2, evaluated through2-chains s1 and s2 or
through 2-chains s1 and s2. (d) The 1-cycles ¶s1 and ¶s2 are in the same homologyH1(K a) class as the
corresponding1-cycle c1 and c2. This is formalized in the following of the paper.

the current trough s0 (and linked by c) is non-zero in general. This causes in general an
inconsistency in Amp�ere's law for the cycles c non-trivial in H1(K a).

The idea of last proof can be presented by using again the double torus example. Let
us introduce two non-trivial elements of H1(K a) called c1 and c2 which are the represen-
tatives of generators of the �rst homology group H1(K a) and whose support is depicted
in Fig. 3(a). The support of two 2-chains si , i 2 f 1,2g, such that ¶si = ci , are represented in
Fig. 3(b). It is easy to see that the supports of these 2-chains have to intersectK c.

4.2 Independent currents

After showing the inconsistency arising in general from the de�nition of potentials pre-
sented in Section 3.1, some modi�cations in this de�nition are needed for Amp�ere's law
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to hold implicitly for every 1-cycle c2 Z1(K a) and a 2-chain s such that c= ¶s. We de�ne
in this Section a key ingredient for the new de�nition of poten tials, which is called set of
independent currents.

It has been already pointed out that the electric current is n onzero inside the conduct-
ing region K c only. Consequently, for every chain s2 C2(K) for which ¶s= c2 Z1(K a),
the current can be non-zero only on jsj\K c. SinceK c is a sub-complex of K , the restric-
tion of the 2-chain s to K c, denoted as s = sjK c, is an element of C2(K c). The supports
of such restrictions of the 2-chains s1 and s2 in the double torus example are the s1 and
s2 shown in Fig. 3(c). Since ¶s 2 C1(¶K c), we have that s 2 Z2(K c,¶K c). Consequently
s can be generated from H2(K c,¶K c) basis by adding the boundary of a suitable 3-chain
d2 C3(K c). The current through any chain non-zero in H2(K c,¶K c) is determined by the
current through the H2(K c,¶K c) basis elements (for trivial 2-chains and relative 2-chains
the current is zero as a consequence of local version of current continuity law (3.1)).

For the whole Section, let us �x the set of relative cycles s1,...,sn 2 Z2(K c,¶K c) rep-
resenting the homology group H2(K c,¶K c) generators. From the Theorem A.1 (see Ap-
pendix) one may write the following exact sequence of the pai r (K ,K a):

��� ¶�! H2(K a)
i ��! H2(K)

j��! H2(K ,K a)
¶�! H1(K a)

i ��! ��� .

The assumption that the mesh K is acyclic provides H2(K) = 0. Consequently, ¶ :
H2(K ,K a) ! H1(K a) is an isomorphism de�ned in the following way ¶:H2(K ,K a) 3 [a]!
[¶a]2 H1(K a).

Let us use Theorem A.3 (see Appendix) for the sub-complex A equal to K a and sub-
complex B equal to K c and X equal to K . SinceK a\K c= ¶K c, the following inclusion map
(K c,¶K c) ,! (K ,K a) induces the isomorphism H2(K c,K c\K a)= H2(K c,¶K c) ! H2(K ,K a).
Consequently, we have the following sequence of isomorphis ms

H2(K c,¶K c)
(K c,¶K c),! (K ,K a)����������! H2(K ,K a)

¶�! H1(K a),

where on the left-hand side there is the group generated by th e H2(K c,¶K c) generators
and on the right-hand side there is the group generated by the classes of cycles on which
the Amp�ere's law has to be enforced. The image of the generators of H2(K c,¶K c) through
the above isomorphism is referred to as independent cycles.

What we showed in this Section motivates the following de�nit ion:

De�nition 4.2. The complex numbers being the dot-products of the current I with the
representatives of a basisf sj g of H2(K c,¶K c) are called independent currentsf i j g in K c

i j = hI ,sj i ,j 2 f 1,��� ,b1(K a)g.

We want to point out that the f sj g are integer H2(K c,¶K c) homology generators.
When evaluating the dot-product, we trivially interpret th em as complex homology
group generators.
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Since the isomorphism H2(K c,¶K c) ! H2(K ,K a) is induced by the inclusion map,
s1,��� ,sn form also a set of cycles representing the basis ofH2(K ,K a). When passing by
the isomorphism induced by the boundary map ¶ : H2(K ,K a) ! H1(K a), one gets that
¶s1,��� ,¶sn is a set of cycles representing a basis inH1(K a).

4.3 De�nition of cuts

First of all, let us note that it suf�ces to enforce Amp�ere's l aw on the cycles [¶s1],��� ,[¶sn].
Then, for every other cycle [c] 2 H1(K a) such that [c] = [ å n

i= 1 l i¶si ], the current linked by
c is equal to å n

i= 1 l ihI ,si i = å n
i= 1 l i i i , which follows from the fact that dot product of the

m.m.f. on boundaries is zero.
Now, taking into account the arguments in the last Section, w e would like to modify

the de�nition (3.8) of F in K a in such a way that Amp�ere's law is satis�ed for all cycles
c2 Z1(K a). SinceF is a 1-cocycle in K a, we are going to construct a family of 1-cocycles
f cign

i= 1 in K a over Z which, after being multiplied by the independent currents f i j gn
i= 1,

are added to T. In particular, the family of 1-cocycles f ci gn
i= 1 should verify hci ,¶sj i = dij

for every i,j 2 f 1,��� ,ng. We are going to show that, for this purpose, the representat ives
of a basis of the 1-st cohomology group H1(K a) dual to the H1(K a) basis [¶s1],��� ,[¶sn ]
are needed. To prove the existence of the dual basis, let us recall the Universal Coef�cient
Theorem for cohomology.

Theorem 4.4 ([40], Theorem 3.2). If a complexK a has (integer) homology groups Hn(K a), then
the cohomology groups Hn(K a,G) are determined by splitting exact sequences

0! Ext(Hn� 1(K a),G) ! Hn(K a,G) h�! Hom(Hn(K a),G) ! 0.

In this paper, there is no need to go into the de�nition of the Ext functor. The key
property is that Ext(Q,G) = 0 if Q is a free group. For further details and proof of this
property consult [40].

For a class[d] 2 Hn(K a,G), since d is a cocycle, one has 0= hdd,zi = hd,¶zi for every
z 2 Zn+ 1(K a). From the above equality, it follows that djBn(K a) = 0. Let us de�ne the
restriction d0 = djZn (K a) . Sinced0jBn(K a) = 0, then d0 2 Hom(Hn(K a),G). This shows the
correctness of the de�nition of the map h([d]) = d0 2 Hom(Hn(K a),G) used in the exact
sequence in Theorem 4.4. Finally, we need to show that, for d,d02 [d], one hash(d)= h(d0).
Sinced,d02 [d], there exists e2 C0(K) such that d= d0+ de. Let us take a cycle f 2 C1(K),
then we have ¶f = 0. Consequently hd, f i = hd0+ de, f i = hd0, f i + hde, f i = hd0, f i . Therefore,
the value of the map h does not depend on the representatives of the cocycle andh is well
de�ned.

In our case the group G is the group of integers and the Universal Coef�cient Theorem
for cohomology is used for n = 1. In this case, the exact sequence from Theorem 4.4 has
the form

0! Ext(H0(K a),Z ) ! H1(K a,Z ) h�! Hom(H1(K a),Z ) ! 0.
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For the complex K a we have that H0(K a) = Z p for some p2 Z , p> 0. This provides
that H0(K a) is a free group. From the cited property of the Ext functor, it follows that
Ext(H0(K a),Z ) = 0. From the exactness of the sequence, one has thath : H1(K a,Z ) !
Hom(H1(K a),Z ) is an isomorphism.

Due to Theorem A.2 (see Appendix) the homology group H1(K a) is torsion free.
This provides, from Theorem 3.61 in [49], that it is isomorph ic to the direct sum of
dim (H1(K a)) = n copies of Z . From the set of cycles¶s1,��� ,¶sn forming a H1(K a) basis,
a set of functions zi , i 2 f 1,��� ,ng such that zi ([¶sj ])= dij form a basis of Hom(H1(K a),Z ).
From the description of the isomorphism h: H1(K a,Z ) ! Hom(H1(K a),Z ), it is straight-
forward that h� 1(zi ) is a cochainci being an element of the H1(K a,Z ) basis we are looking
for.

In the presented reasoning we have started from the set of ind ependent currents and
end up to the cohomology basis. The Reader should be aware that exactly the same
reasoning can be made the other way around. Namely, if one starts from the H1(K a)
basis, then is able to �nd the corresponding H2(K ,K a) basis, which directly corresponds
to some basisH2(K c,¶K c) yielding a set of independent currents.

The following Theorem follows easily form what has been alre ady said.

Theorem 4.5. Let f cigb1(K a)
i= 1 be the cocycles representing the H1(K a) basis. Letf ¶si g

b1(K a)
i= 1

be the cycles representing the dual H1(K a) basis. Once we rede�ne the m.m.f. asF = dW+
T+ å

b1(K a)
i= 1 i i ci , then the current linked by the cycles in the homology class of¶si is equal to ii .

Amp�ere's law(4.1) holds for every1-cycle c2 Z1(K a). Hence, the potentials are now consistently
de�ned.

Further in this paper we assume that the cocycles f cigb1(K a)
i= 1 representing the H1(K a)

basis are de�ned in the whole complex K . Therefore, we assume thathci ,ei = 0 for every
i 2 f 1,��� ,b1(K a)g and for every e2K cnKa.

Thus we are now able to give the de�nition of cuts:

De�nition 4.3. The cuts f cj gb1(K a)
j= 1 are de�ned as representatives of the �rst cohomology

group generators over integers of the insulating region K a.

To illustrate the presented idea let us consider the two �xed g enerators c1 and c2

for H1(K a) relative to the previous example, see Fig. 4(a). In the same �gure, a concrete
example of a representative of a H1(K a) cohomology generator—dual to the H1(K a) gen-
erator c1—is shown. The edges in the picture are the ones that constitute the support of
c1. The integers associated to these edges are given in such a way that hc1,c1i = 1 and
hc1,c2i = 0.

4.3.1 Interpretation of cuts on the dual complex

For a de�nition of dual complex B please refer to the Appendix. Some results presented
in this Section are part of an old-fashioned proof of Poincar é-Lefschetz duality for man-
ifolds with boundary. For this paper, the following restric ted version of the duality is
used:



60 P. D�otko and R. Specogna / Commun. Comput. Phys., 14 (2013), pp. 48-76

S1

c1

c2

c1

c2

c1

a) b)

Figure 4: (a) The two generatorsc1 and c2 and the support of thec1 1-cochain is shown for the double torus
example. (b) The dual facesfB, dual to edges in the support ofc1, from a 2-chain S1 on the barycentric
complex.

Theorem 4.6 (Poincaré-Lefschetz duality). H1(K a) �= H2(Ba,¶Ba).

The modern proof of this famous Theorem bases on the idea of cup product, as for
instance in [40]. However, the original proof proposed by Po incaré himself§, is based on
the concept of dual cell structure, which has been described in this paper in Section 8. For
the classical proof of Poincaré-Lefschetz duality, one may consult [50] or [51]. In this proof
the dualization operator Dis de�ned on the complex K a in the way that, for a 1-cell c2K a,
the corresponding dual 2-cell Dc2B a is assigned. The presented map turns out to induce
the isomorphism in the Poincaré-Lefschetz duality (for fu rther details consult [50]).

Consequently, form the Poincaré-Lefschetz duality, once the 1-cocycles that represent
a basisf c1,��� ,cng of H1(K a) are provided, it is clear that the set of dual 2-cycles d1,��� ,dn

de�ned in the following way:

di = å
S2B a

as
i S, where as

i = hci ,D � 1Si

are the relative cycles that represent a basis ofH2(Ba,¶Ba). These cycles are denoted as

f Sig
b1(K a)
i= 1 . The visualization of the presented duality for the propose d example can be

seen in Fig. 4. On the left, the cohomology generator ci is represented, while, on the right,
the representative Si of the generator of H2(Ba,¶Ba) is depicted.

5 T-W magneto-quasi-static formulation

After the potential de�nition, in this Section we analyze how to solve the magneto-quasi-
static BVP.

§Which turned out not to be complete, but was corrected later o n by the Poincaré's successors.



P. D�otko and R. Specogna / Commun. Comput. Phys., 14 (2013), pp. 48-76 61

5.1 Constitutive matrices

The discrete counterparts of the constitutive laws links k-cochains in K with (3� k)-
cochains in B:

F̃ = mF, (5.1a)

Ũ
�
�
Bc

= $ I jK c
. (5.1b)

The constitutive matrices provide a relation between cocha ins on the primal and cochains
on the dual complex (see Section 8). The square matrixmis called permeance matrixand
is the approximate discrete counterpart of the constitutiv e relation B= mH at continuous
level, mbeing the permeability assumed element-wise constant and H and B are the mag-
netic �eld and the magnetic �ux density vector �elds, respecti vely. The square matrix $
is called resistivity matrix and is the approximate discrete counterpart of the constitu tive
relation E = $J at continuous level, $ being the resistivity assumed element-wise a con-
stant and E and J are the electric �eld and the current density v ector �elds, respectively.
$ is de�ned to be zero for geometric elements in K anKc.

Describe in detail how to construct the constitutive matric es$ and mgoes beyond the
purpose of this paper. Methods valid for a general polyhedral mesh are described for
example in [22,23] and references therein.

5.2 Algebraic equations

In this Section, the constitutive matrices described in Section 5.1 are combined with the
local algebraic laws presented in Section 3 to obtain an algebraic system of equations.

Up to now, we know that Amp�ere's law holds in K a and current continuity law holds
in K . Hence, we have to enforce the other laws by means of a linear system of equations.

To do this, let us start from the magnetic Gauss's law (3.3) hd̃F̃ ,vB i = 0 and let us use
the constitutive relation (5.1a) F̃ = mF. Consequently, we get hd̃mF,vB i = 0. The de�nition

of potentials F= dW+ T+ å
b1(K a)
j= 1 i jcj from Theorem 4.5 is substituted in the last equation.

In this way, the �nal equation is obtained:

d̃mdW+ d̃mT+
b1(K a)

å
j= 1

d̃mcj i j = 0. (5.2)

Now, Faraday's law has still to be enforced in the conducting region (due to the
boundary condition hT,ei = 0 on edgese2 ¶K c, the e.m.f. is not needed in the insulat-
ing region by using this formulation, see for example [2, p. 1 030] for a more detailed
explanation). To do this, let us start from the local Faraday 's law (3.4) hd̃Ũ+ iwF̃ , fB i = 0,
8 fB 2 B c. Now, let us substitute the constitutive relations (5.1) in the above equation. In
this way, we obtain hd̃$I + iwmF, fB i = 0, 8 fB 2B c. Let us now use the local Amp�ere's law
(3.2) in K c by substituting dF= I

hd̃$dF+ iwmF, fB i = 0, 8 fB 2B c.
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For the sake of brevity, let us de�ne a matrix R= d̃$d+ iwm. Hence, we can write

hRF, fB i =

*

R

 

dW+ T+
b1(K a)

å
j= 1

i j c
j

!

, fB

+

= 0, 8 fB 2B c.

SinceRdW= iwmdW, we obtain:

*

iwmdW+ RT+
b1(K a)

å
j= 1

Rcj i j , fB

+

= 0, 8 fB 2B c. (5.3)

The unknowns are the coef�cients of the cochain W associated with each node and the
coef�cients of T associated with edges belonging to K cnKa (in fact, hT,ei = 0, 8e2 K a).
We have written Eqs. (5.2) and (5.3) corresponding to these unknowns. But we have also
the independent currents i j as additional unknowns. Which are the needed additional
equations and where do they come from?

5.3 Non-local Faraday's equations and the �nal linear syste m of equations

The dot product of the e.m.f. hŨ,bi with every bounding 1-cycle b 2 C1(Bc) is easily
determined by using a non-local Faraday's law

hŨ,bi = h� iwF̃ ,si , b2 B1(Bc) and b= ¶s,

which is a linear combination of local Faraday's laws alread y enforced by (5.3). Similarly
to what developed about the independent currents in Section 4.2, the linked �ux F̃ c =
hF̃ ,si , linked by the cycle b, does not depend on the 2-chain s. This is because the local
Gauss's magnetic law (3.3) hold thanks to (5.2). Hence, suchnon-local equations written
on boundaries do not bring any new constraint.

On the opposite, hŨ,hi over a 1-cycle h2 C1(Bc) nonzero in H1(Bc) cannot be deter-
mined by using only cochains in Bc. This is becausehŨ,hi depends on cochains in Bc and
Ba through the non-local Faraday's law. Namely hŨ,hi has to match the magnetic �ux
variation h� iwF̃ ,si through a 2-chain ssuch that c= ¶s. The key point is that the support
of s extends also in the sub-complex Ba.

We need to show that the 2-chains used to take dot product with the magnetic �ux,
whose boundary are the H1(Bc) generators, are generators for H2(B,Bc). Similarly to
what done with the currents, we need just the H2(Ba,¶Ba) generators and the reasoning
presented in this Section is analogous to the one presented in Section 4.3. Let us take a
�xed set of 1-cocycles f c1,��� ,cng, ci 2 C1(K a) for i 2 f 1,��� ,ng, representing the basis of
H1(K a). The set of cycles f d1,��� ,dng, di 2 C2(Ba,¶Ba) for i 2 f 1,��� ,ng, de�ned in Sec-
tion 4.3.1, represents a basis ofH2(Ba,¶Ba). Let us write the long exact sequence of the
pair (B,Bc):

��� ¶�! Hn(Bc)
i ��! Hn(B)

j��! Hn(B,Bc)
¶�! Hn� 1(Bc)

i ��! ��� .
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Since B is acyclic, Hn(B) is trivial. Therefore, from the exactness of the sequence,
¶ : Hn(B,Bc) ! Hn� 1(Bc) is an isomorphism. Let us now use the Theorem A.3 (see
Appendix) for X = B, A = Bc and B = Ba and n = 2. This gives us the isomorphism
H2(Ba,Ba\B c) = H2(Ba,¶Ba) ,! H1(B,Bc). Consequently, we have the sequence of iso-

morphisms H2(Ba,¶Ba) ,! H2(B,Bc)
¶�! H1(Bc). Therefore, the set of cyclesf ¶d1,��� ,¶dng,

¶di 2 C1(Bc) for i 2 f 1,��� ,ng, represent a basis ofH1(Bc).
Now, the non-local Faraday's equations are expressed as

hŨ,¶dj i = h� iwF̃ ,dj i , j 2 f 1,��� ,b1(K a)g. (5.4)

A novel way to express the jth non local Faraday law in term of the unknowns is to
pre-multiplying by cjT :¶

cjT �
dŨ+ iwF̃

�
= 0,

and using the same passages as when obtaining (5.2) we get

�
iwcjT md

�
W+

�
cjT R

�
T+

b1(K a)

å
j= 1

�
cjT Rcj

�
i j = 0. (5.5)

By multiplying (5.2) by iw and considering also Eqs. (5.3) and (5.5), the following �nal

symmetric algebraic system having T jK cnKa
, W and the f i j g

b1(K a)
j= 1 as unknowns reads as

iwd̃mdW+ iwd̃mT+
b1(K a)

å
j= 1

iwd̃mcj i j = 0, (5.6a)

*

iwmdW+ RT+
b1(K a)

å
j= 1

Rcj i j , fB

+

= 0, 8 fB 2B cnBa, (5.6b)

�
iwcjT md

�
W+

�
cjT R

�
T+

b1(K a)

å
j= 1

�
cjT Rcj

�
i j = 0, j 2 f 1,��� ,b1(K a)g, (5.6c)

hT,ei = 0, 8e2K a. (5.6d)

The source of the problem can be enforced by considering one of the currents i j as known,
substituting it into (5.6), and moving its contribution on t he right-hand side of the system.
Alternatively, one can force an e.m.f. by putting its value o n the right-hand side of the
system at the position of the correspondent non-local Farad ay's equation, see [26].

¶ This correspond to algebraically sum local Faraday's equat ions enforced on dual faces belonging to the
support of the considered cut. Since the contributions in th e interior cancel out, what remains is the non
local Faraday's law enforced on the boundary of the consider ed cut, for more details see [27]. The cochains
on primal complex are denoted by column vectors ci . For the sake of parsimony in the notation, the chains
di on the dual complex dual to ci are denoted by ciT .
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6 A survey on the de�nitions of cuts

In this Section, three families of de�nition of cuts presente d in the literature in the last
twenty-�ve years are reviewed. Due to the use of the Finite Ele ments with nodal basis
functions, most de�nitions concentrate on the so-called thin cuts, which are 2-chains on
the primal complex. With the modern Finite Elements employi ng edge elements basis
functions, cuts de�ned as in this paper—called thick cuts—are needed in place of the
thin cuts. Even though it is dif�cult to generate a thick cut fr om a thin cut in general,
see [27], the de�nitions of thin cuts presented in the followi ng may be easily adapted
as attempts to de�ne thick cuts also. With nodal basis functio ns, there is the need to
impose a potential jump across the thin cuts. This is usually performed by “cutting”
the cell complex in correspondence of the thin cuts doubling the nodes belonging to each
cut. This method requires non self-intersecting thin cuts a nd provides some complication
when cuts intersect, see for example [52]. On the contrary, the use of edge elements, as
done in this paper, yields to a straightforward implementat ion even when cuts intersect
or, as frequently happens, have self-intersections.

6.1 Embedded sub-manifolds

Kotiuga, starting from 1986, published many papers about the de�nition of cuts, proof of
their existence and the development of an algorithm to compu te them, see [29,33,53,54].
He de�ned thin cuts as embedded sub-manifolds being generato rs of the second relative
homology group basis H2(K a,¶K a). He proposed also an algorithm to automatically gen-
erate cuts: �rst a H1(Ba) basis is computed by employing a reduction technique based o n
a tree-cotree decomposition followed by a reordering and a c lassical Smith Normal Form
computation [43]. Then, a non-physical Poisson problem is solved for each cut. Finally,
cuts are extracted as iso-surfaces of the non-physical problems solutions.

This de�nition, although a real breakthrough, is too conserv ative when employing
the modern edge element basis functions. In fact, in this case there is no need for cuts to
be embedded surfaces, so the solution of the non-physical problems—which is computa-
tionally quite costly—can be avoided.

6.2 Homotopy-based de�nition

After Kotiuga's de�nition, many researchers were persuaded a bout the existence of an
easier and more intuitive way to tackle this problem. In our o pinion, two reasons di-
verted researchers on heuristic solutions: the �rst is due to the fact that algebraic topol-
ogy, namely cohomology theory, was—and probably still is—n ot well known to sci-
entists working in computational electromagnetics. The se cond—perhaps even more
important—was the lack of ef�cient algorithms for the comput ation in a reasonable time
of cohomology generators.
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In [30], Bott and Tu stated “By some divine justice the homoto py groups or a �nite
polyhedron or a manifold seem as dif�cult to compute as they ar e easy to de�ne.” In
fact, a homotopy-based de�nition of cuts has been introduced becoming soon the most
popular one. The idea is to introduce a set of 2-cells whose removal transform the insu-
lating region into a connected and simply-connected one [39 ,55–58]k. Nonetheless, when
dealing with homotopy, one falls easily into intractable pr oblems, with a consequent lack
of rigorous proofs and details of the algorithms in all the ci ted papers.

It has been already shown, for example in [59–61] that there exist cuts that do not ful�l
the homotopy-based de�nition. Namely, in case of a knot's com plement, the cut realiza-
tion as embedded sub-manifold—which is a Seifert surface—h as to leave the complement
multiply-connected [61]. Even though this counter-exampl e was quite clear, dealing with
knotted conductors is extremely uncommon in practice, even though some applications
of knotted conductors come up naturally in the context of for ce-free magnetic �elds, see
for example [62, 63]. Therefore, as a matter of fact, scientists keep using this wrong de�-
nition for cuts under the (in most cases implicit) assumptio n of dealing with non-knotted
conductors.

So, it has been concluded that problems in the homotopy-based de�nition arise only
when dealing with knot's complement which, as written expli citly by Bossavit [14, p.
238], are really marginal in practice.

Nonetheless, computational electromagnetics community s eems not to be aware that
problems do happen frequently even with the most simple exam ple possible, namely a
conducting solid torus in which the current �ow. In fact, in t his paper we present for
the �rst time a concrete counter-example that the homotopy-b ased de�nition of cuts is
not only too restrictive but wrong. What is even more serious is that it makes very hard
even to detect if a potential cut is correct or not, which clea rly shows that this heuristic
de�nition of cuts should be abandoned.

The counter-example is as follows. Consider a solid torus, w hich represents K c, and
its complement K a with respect to a ball, which contains the solid torus. By gro wing an
acyclic sub-complex and taking the complement, the set of 2-cells in Fig. 5 is obtained as
(thin) cut. Two views are shown in the picture by cutting the s et of 2-cells with a vertical
plane (Fig. 5(a)) and a horizontal plane (Fig. 5(b)). The triangulated torus represents the
K c complex (the torus is not cut with the planes in the picture fo r the sake of clarity. The
ball which contains K c is not shown either for the same reason.). The set of 2-cells is
formed by a Bing's house [64] plus a cylinder. Informally, th e torus K c is placed in the
`upper chamber' of the Bing's house and the hole of the torus i s connected to the tunnel
used to enter the upper chamber by the cylinder.

It is easy to see that once one removes the set of 2-cells from the complex K a, what
remains becomes connected and simply-connected. Hence, this set of 2-cells ful�l the
homotopy-based de�nition of cut, but of course this is not a cu t since the 1-cyclec crosses

kThis is an attempt for a homotopy-based de�nition of thin cut s. Ren in [31] modi�es this de�nition for the
thick cuts. A thick cut is de�ned as a set of 3-cells whose remo val transform the insulating region into a
simply-connected one.
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a) b)

c c

Figure 5: The Bing's house counter-example.

one time the cut without linking any current. Moreover, it is v ery hard in practice to
detect this situation, which makes this de�nition—and relat ed algorithms—not suit-
able even with the simplest example. Of course, an analogous counter-example about
homotopy-based de�nition of cuts exists also for the de�nitio n of cuts as cohomology
generators (i.e. thick cuts) by replacing the thin cut by a th ick cut.

6.3 Axiomatic de�nition

An axiomatic de�nition of cuts is frequently used in mathemat ical papers, see for ex-
ample [65–76]. Cuts are de�ned as 2-manifolds with boundary f Sjgn

j= 1 which ful�l the
following set of axioms:

� The boundary of Sj is located at the boundary of the meshed region in which the
cuts are searched for;

� Sj \ Si = Æfor i 6= j;

� Wn
S n

i= 1Si is pseudo-Lipschitz and simply-connected.

Once such a set of cuts is provided, the results presented in those papers can be used.
However, the presented de�nition of cuts is too restrictive f or practical applications. One
can easily see that even in case of two chained conductors it is not possible to �nd a set
of cuts for which Sj \ Si = Æholds. The same holds for many practical con�gurations, for
example, electric transformers.

Moreover, this axiomatic de�nition does not point to an algori thm to �nd cuts auto-
matically, which is fundamental for practical problems sin ce it is practically impossible
to de�ne cuts `by hand' for serious problems.
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7 Cohomology computation

A detailed survey on the state-of-the-art algorithms to com pute cohomology group gen-
erators used in electromagnetic modeling can be found in [46 ]. The solution proposed
in this paper is to change the available codes for computing h omology group genera-
tors (see [44, 45]) to compute the cohomology group generators. The necessary changes,
described in detail in [46], are very easy to implement.

In order to obtain a computationally ef�cient code, a so-call ed shavingprocedure for
cohomology has to be applied. A reductionin (co)homology is a procedure of removing
from the complex some cells in such a way that the (co)homolog y groups of the com-
plex remains unchanged. Then, the classical Smith Normal Form [43] computation with
hyper-cubical computational complexity can be performed o n the reduced complex. A
shavingis a reduction of the complex such that the representatives of generators in the
reduced complex are also representatives of generators in the initial complex. As it is
explained in [46], the algorithm presented in [77] is a shavi ng for cohomology computa-
tions.

Due to a number of ef�cient reduction techniques used (namely , [77] followed by
[78]), in all the tested cases the Smith Normal Form computat ion has been not used at all.
The state-of-the-art is the implementation of the acyclic s ub-complex shaving with look-
up tables [46], whose computational complexity is linear an d is able to reduce almost
always the complex down to its cohomology generators.

An example of cut generated for the complement of a trefoil kn ot-shaped conductor
is presented in Fig. 6.

Figure 6: A trefoil knot conductor together with the dual faces dual to edges belonging to the support of the
cut.

We would like to point out that it is necessary for the potenti al de�nition to compute
the 1st cohomology group generators over integers and this cannot be substituted by any
�eld Z p for p prime. In fact, let us consider Z 2 as an example. In Fig. 7(a), a two turn
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a) b)

Figure 7: (a) A two turn conductor. (b) The support of a 2-chain dual to a representative of aH1(K a,Z 2)
generator.

conductor is shown. In Fig. 7(b), the support of a 2-chain dua l to a representative of a
H1(K a,Z 2) generator is presented. When a cycle surrounding the two bra nches of the
conductor is considered, it does not intersect the support o f the chain. It is easy to verify
that on this cycle the Amp�ere's law does not hold. Similar ex amples can be constructed
for any coef�cient �eld Z p.

8 Conclusions

In this paper, is has been discussed how the (co)homology theories are fundamental for
the de�nition of potentials in computational physics. In par ticular, a systematic de�nition
of potentials employed in the magneto-quasi-static T-W formulation has been presented.
It has been demonstrated that the entities called cuts in computational electromagnetics
are a basis of the �rst cohomology group over integers of the in sulating region. The lim-
itations on the de�nition of cuts presented in the literature are shown by using concrete
counter-examples, which should persuade the Reader that cohomology is not one of the
possible options but something which is expressly needed to the de�nition of potential.

Appendix: Basic concepts in algebraic topology

In this Section, some basic concepts of algebraic topology are reviewed. Let us �rst intro-
duce the concept of �nite regular CW-complex. An n-cell en is an open subset of a Hausdorff
spaceX homeomorphic to the n-dimensional unit ball Bn

1(0) � Rn. An n-cell en is said to
be attachedto the closed subsetK � X if there exists a continuous map f : Bn

1(0) ! en such
that f maps the open ball Bn

1(0) homeomorphically onto en and f (¶Bn
1(0)) � K in a way

that en \ K = Æ. The map f is referred to as characteristic map. The �nite CW-complexes
are de�ned in the following way:
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De�nition A.1. Let X denote a Hausdorff space. A closed subsetK � X is called a (�nite)
CW-complexof dimension N, if there exists an ascending sequence of closed subspaces
K0 � K1 � ��� � KN = K such that the following holds.

(i) K0 is a �nite space.

(ii) For n 2 f 1,��� ,Ng, the set Kn is obtained from Kn� 1 by attaching a �nite collection
Kn of n-cells.

In this case, the subsetKn is called the n-skeletonand the elements of K0 are called the
verticesof K. An N-dimensional CW-complex is called regular if for each cell en, where
n 2 f 1,��� ,Ng, there exists a characteristic map f : Bn

1(0) ! en which is a homeomorphism
on Bn

1(0). In this case, we say that the m-cell em is a faceof an n-cell en, if the inclusion
em � en holds, see [79]. Moreover, since our aim is to model physical objects, we restrict
to the case of regular CW-complexes embedded in R3. Finally, by a polyhedral meshwe
mean a cellular decomposition of the considered space, which is a regular CW-complex
such that each cell of the complex is a polyhedron. In the paper we use the terms mesh
and regular CW-complex interchangeably.

Let K be a collection of cells of the regular CW-complex K. Let k:K i � 1�K i !f� 1,0,1g
for i 2 Z be the so-called incidence indexwhich assigns to a pair of cells their incidence
number (for further details consult [79]). Let G denote the module of integers (Z ), real
(R) or complex (C) numbers. The group of formal sums å e2K i

aee, where ae2 G for ev-
ery e2 K i , is the group of i-chainsof the complex K and is denoted by Ci(K ,G). For a
chain c= å e2K i

aee the support jcj of c consist of all elements e2 K i such that ae6= 0. For
two chains c= å e2K i

aee and d= å e2K i
bee their scalar product is hc,di = å e2K i

aebe. The
group of cochains Ci(K ,G) is formally de�ned as the group of maps from elements of
Ci(K ,G) to G with coordinatewise addition. However, it is possible and c onvenient for
the computations to represent a cochain as a chain. Namely, to determine the value of a
map c� : Ci(K ,G) ! G on any i-chain, it suf�ces to know the value of c� on every e2 K i .
In this way, it is possible to associate to the cochain c� a chain c such that for any other
chain d2 Ci(K ,G) the value of cochain c� on chain d is equal to hc,di . For a cochain c� its
support jc� j consists of all the cells whose value of c� is nonzero.

In this paper, two kind of cochains are considered. The �rst ar e the integer-valued
cochains—for example, the representatives of the �rst cohom ology group generators over
integers. The second are the complex-valued cochains, which model physical variables
in the proposed application as discussed in Section 2.

Let us de�ne the boundary map ¶i : Ci(K ,G) ! Ci � 1(K ,G). For an element e2 K i we
de�ne

¶ie= å
f 2K i � 1

k( f ,e) f

and extend it linearly to the map from Ci(K ,G) to Ci � 1(K ,G). The coboundary map
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di :Ci(K ,G) ! Ci+ 1(K ,G) is de�ned for e2K i by

die= å
f 2K i+ 1

k(e, f ) f

and extended linearly to the map from Ci(K ,G) to Ci+ 1(K ,G). It is standard that ¶i � 1¶i =
didi � 1= 0 for every i2Z , see [40]. Moreover, the coboundary map is dual to boundary ma p
in homology. In fact, it can be equivalently de�ned with the eq uality hdc� ,di = hc� ,¶di for
every c� 2 Ci � 1(K ,G) and for every d2 Ci (K ,G), see [40].

The boundary operator gives rise to a classi�cation of chains . The group of i-
cyclesis Z i(K ,G) = f c 2 Ci(K ,G)j¶c = 0g. The group of i-boundariesis Bi(K ,G) = f c 2
Ci(K ,G)j there exist d2 Ci+ 1(K ,G)j¶d= cg. Intuitively, a cycle is a chain whose bound-
ary vanishes while a boundary is a cycle which can be obtained as the boundary of
some higher dimensional chain. The ith homology groupis the quotient H i (K ,G) =
Z i(K ,G)/ Bi(K ,G). The cycles that are not boundaries are nonzero in H i(K ,G). The cy-
cles that differ a by a boundary are in the same equivalence class. Given a chainc, by [c]
we denote its homology class, i.e. the class containing all the cycles homologous to c. By
generators of the ith homology group we mean a minimal set of classes which gener ates
H i(K ,G). In the following, for the sake of brevity, by generators we a lso mean the cycles
being representatives of the considered classes that generate H i(K ,G).

Dually, with the coboundary operator the cochains may be cla ssi�ed. The group of
i-cocyclesis Z i(K ,G) = f c2 Ci(K ,G)jdc= 0g. The group of i-coboundariesis Bi(K ,G) =
f c2 Ci (K ,G)j there exist d2 Ci � 1(K ,G)jdd= cg. The ith cohomology groupis the quotient
H i(K ,G) = Z i (K ,G)/ Bi(K ,G). By generators of the ith cohomology group we mean a
minimal set of classes which generatesH i(K ,G). Also in this case, for the sake of brevity,
by generators we also mean the cocycles being representatives of the considered classes
that generate H i(K ,G).

In the following, we will use also the standard concept of the so-called relative
(co)homology. In relative (co)homology, some parts of the c omplex may be consid-
ered irrelevant. Let K be the considered regular CW-complex and S � K be a closed
sub-complex of K . The concept of relative homology bases on the de�nition of relative
chains Ci(K ,S,G) = Ci(K ,G)/ Ci(S,G). The de�nition of relative cycles Z i(K ,S,G), rela-
tive boundaries Bi(K ,S,G) and relative homology group H i (K ,S,G) remain unchanged
with respect to the absolute version once relative chains are used. Exactly the same ap-
proach is also employed in de�ning relative cohomology.

In Theorem A.2, it will be recalled that there is no torsion [40] in the homology and
cohomology groups dealing with regular CW-complexes embed ded in R3. A direct con-
sequence of the Universal Coef�cient Theorem for cohomology , see [40], is that in the
considered torsion-free case the generators of the cohomology group over integers and
the generators of the cohomology group over complex numbers are in a bijective cor-
respondence (for further details see [41]). Therefore, all the computations are rigor-
ously performed by using integer arithmetic and the obtaine d cohomology generators
are valid cohomology generators also in the case of complex coef�cients. The theory of
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(co)homology computations for regular CW-complexes can be found in [79]. The impor-
tant point is that for (co)homology computations only the in cidence indexesk between
cells of K are needed. This fact provides an easy way of representing CW-complexes for
the (co)homology computations with a computer by using a poi nter-based data structure.
Once the theory is provided, any of the existing libraries li ke [44] or [45] used to compute
homology of, for instance, cubical sets can be adopted for cohomology computation of
an arbitrary regular CW-complex.

Let us now introduce the concept of exact sequences. Let A1,��� ,Am+ 1 be abelian groups
and let ai : A i ! A i+ 1 for i 2 f 1,��� ,mg be homomorphisms between them. The sequence

A1
a1�! A2

a2�! ���
am� 1��! Am

am�! Am+ 1

is called an exact sequence if Im(ai )= Ker(ai+ 1) for every i 2 f 1,��� ,m� 1g. For m= 4 and
A1= A4= 0 the exact sequence

0! A2
a2�! A3

a3�! A4 ! 0

is referred to as short exact sequence. The so-called exact sequence of the reduced homol-
ogy provides us a tool to relate the homology group of the spac e X, its subspaceA and
the relative homology of the pair (X,A).

Theorem A.1 (see Theorem 2.16, [40]). If X is a regular CW-complex and A� X is a sub-
complex of X, then there is a long exact sequence

��� ¶�! Hn(A)
i ��! Hn(X)

j��! Hn(X,A) ¶�! Hn� 1(A)
i ��! ��� .

The map ¶:Hn(X,A) ! Hn� 1(A) maps a class[a]2 Hn(X,A) to a class[¶a]2 Hn� 1(A).
It is straightforward that, when Hn(X) is trivial, from the exactness of the sequence, ¶ :
Hn(X,A) ! Hn� 1(A) is an isomorphism.

To state, in Section 4, the dualities between �rst homology an d �rst cohomology
groups of subsets of R3 the following theorems are required:

Theorem A.2 ([40], Proposition A.4, Corollary 3.44) . If X � Rn is a �nite CW-complex, then
H i(X,Z ) is 0 for i � n and torsion free for i= n � 1 and i= n � 2.

For n = 3 Theorem A.2 states that the �rst and the second homology grou p of a �nite
CW-complexes embeddable in R3 are torsion free.

For CW-complexes the following—stronger from standard—ve rsion of excision theo-
rem holds:

Theorem A.3 (Corollary 2.24, [40]). If the CW-complex X is the union of sub-complexes A and
B, then the inclusion(B,A \ B) ,! (X,A) induces an isomorphism Hn(B,A \ B) ! Hn(X,A) for
all n.
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Dual chain complex

A polyhedral mesh is used to model the domain of interest of th e electromagnetic prob-
lem. Let us �x the polyhedral mesh K = f Kngn2N . Let us now de�ne the dual mesh B.
The construction is a straightforward extension of the cons truction of the dual mesh for
a simplicial complex explained in Fig. 8, see [43].

a) b) c) d)

eB
f

fB

e
vBnB

v

Figure 8: (a) A cell v of a simplicial complex and its one-to-one node of the barycentric complex nB; (b) A face
f of the simplicial complex and its one-to-one edge of the barycentric complexeB; (c) An edgeeof the simplicial
complex and its one-to-one face of the barycentric complexfB; (d) One-to-one correspondence between a node
n of the simplicial complex and the volume of the barycentric complex vB .

Let n0= dim K be the dimension of the complex K . For every cell c2 Ki for i2f 0,��� ,n0g
by c̃2 Bn0� i let us denote the corresponding element in dual mesh B. For every c2 Kn0, the
corresponding element c̃2 B0 is simply the barycenter of c. The remaining cells of B are
de�ned recursively in the following way. For c2 Ki for i 2 f 0,��� ,n0� 1g, let f c1,��� ,cng=
jdcj and let B(c) denotes the barycenter of c. Then c̃=

S n
i= 1

S
x2 c̃i

f [x,B(c)]g, where [x,y]
denotes the line segment joining x and y. In the paper, we denote by ¶̃ and d̃ the boundary
and coboundary operator in the dual complex B. To let the chain complex of B be dual—
in purely algebraic sense—to the chain complex of K , the boundary operator is de�ned
as follows:

h¶c,di K = h¶̃d̃,c̃i B 8c2 Ci(K), d2 Ci � 1(K) for i 2 N .

We would like to point out that the presented construction is valid only in the case of
manifolds without boundary. In case of the presence of a boun dary, �rst the complex
dual to the boundary is constructed. Then, the two dual compl exes, namely the one
described above and the complex dual to the boundary, are mer ged in an obvious way.
Nonetheless, the construction of the dual complex is fundam ental only to develop the for-
mulation while, for the computations, the explicit constru ction of the dual complex can
be avoided. The historical context of the idea of barycentri c dual complex is mentioned
in Section 4.3.1.
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