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Abstract. Electromagnetic modeling provides an interesting context to present a link
between physical phenomena and homology and cohomology theories. Over the past
twenty-five years, a considerable effort has been invested by the computational elec-
tromagnetics community to develop fast and general techniques for defining poten-
tials. When magneto-quasi-static discrete formulations based on magnetic scalar po-
tential are employed in problems which involve conductive regions with holes, cuts are
needed to make the boundary value problem well defined. While an intimate connec-
tion with homology theory has been quickly recognized, heuristic definitions of cuts
are surprisingly still dominant in the literature.
The aim of this paper is first to survey several definitions of cuts together with their
shortcomings. Then, cuts are defined as generators of the first cohomology group over
integers of a finite CW-complex. This provably general definition has also the virtue
of providing an automatic, general and efficient algorithm for the computation of cuts.
Some counter-examples show that heuristic definitions of cuts should be abandoned.
The use of cohomology theory is not an option but the invaluable tool expressly needed
to solve this problem.
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1 Introduction

There is a remarkable interest in the efficient numerical solution of large-scale three-
dimensional electromagnetic problems by Computer-Aided Engineering (CAE) softwares
which enables a rapid and cheap design of practical devices together with their optimiza-
tion.
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Electromagnetic phenomena are governed by Maxwell’s laws [1] and constitutive re-
lations of materials. This paper focuses on the numerical solution of magneto-quasi-static
Boundary Value Problems (BVP)—also called eddy-current problems—which neglect the
displacement current in the Ampère-Maxwell’s equation [1–3]. This well-studied class has
quite a big number of industrial applications such as non-destructive testing, electromag-
netic breaking, metal separation in waste, induction heating, metal detectors, medical
imaging and hyperthermia cancer treatment.

The range of CAE applications is sometimes bounded by the high computational
cost needed to obtain the solution, hence state-of-the-art numerical methods are usu-
ally sought. Recently, the Discrete Geometric Approach (DGA) gained popularity, be-
coming an attractive method to solve BVP arising in various physical theories, see for
example [4–14]. The DGA bears strong similarities to compatible or mimetic discretiza-
tions [15, 16], discrete exterior calculus [17] and finite element exterior calculus [18–20].
All these methods present some pedagogical advantages with respect to the standard
widely used Finite Element Method (FEM).

First of all, the topological nature of Maxwell’s equations and the geometric structure
behind them allows to reformulate the mathematical description of electromagnetism di-
rectly in algebraic form. Such a reformulation can be formalized in an elegant way by
using algebraic topology [5, 6, 8, 9, 16, 18–20]. Taking advantage of this formalism, as il-
lustrated in Section 3, physical variables are modeled as cochains and Maxwell’s laws
are enforced by means of the coboundary operator. Information about the metric and the
physical properties of the materials is encoded in the constitutive relations, that are mod-
eled as discrete counterparts of the Hodge star operator [8, 11, 16, 20, 21] usually called
constitutive matrices [13]. By combining Maxwell’s with constitutive matrices, an alge-
braic system of equations is directly obtained, yielding to a simple, accurate and efficient
numerical technique. The difference of the DGA with respect to similar methods lies in
the computation of the constitutive matrices, which in the DGA framework is based on a
closed-form geometric construction. For a computational domain discretized by using a
geometric realization of a polyhedral cell complex, one may use the techniques described
in [22, 23] and references therein, without losing the symmetry, positive-definiteness and
consistency of the constitutive matrices which guarantee the convergence of the method.
Hence, we consider the most general situation of dealing with a polyhedral cell complex.

Our purpose is not to present the widely known DGA or similar discretizations, but
to use it as a working framework. This choice does not limit the generality of the results,
since the standard Finite Element Method (FEM) and the Finite Differences (FD) can be
easily reinterpreted in the DGA framework as in [8,10,11,16,18–20,24,25]. Consequently
our results can be extended, without any modification, to the corresponding widely used
FEM formulation.

The paper is focused on a particular application of algebraic topology, namely the def-
inition of potentials for the efficient numerical solution of eddy-currents Boundary Value
Problems (BVP). Electromagnetic potentials are auxiliary quantities frequently used to
enforce some of the Maxwell’s laws implicitly. There are two families of formulations for
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magneto-quasi-static problems, depending on the set of potentials chosen, see for exam-
ple [2,3,14]. To better understand the link between (co)homology theory and physics, our
attention is focused on the h-oriented geometric formulations, namely the T-Ω [26, 27],
which are based on a magnetic scalar potential Ω. Those are much more efficient than
the complementary family of b-oriented A and A-χ formulations [28], both in terms of
memory requirements and simulation time. The main reason is that usually h-oriented
formulations require about an order of magnitude less unknowns. Nonetheless, when
h-oriented formulations involve electrically conductive regions with holes (i.e., the first
homology group of some conductor is non-trivial), the definition of potentials is not
straightforward. Cuts are needed to be introduced to make the BVP well defined. How
to define cuts and devise an efficient and automatic algorithm to compute them has been
an intellectual challenge for the computational electromagnetics community for the last
twenty-five years. While a connection of this issue with homology theory was quickly
recognized by Kotiuga [29] more than twenty years ago, heuristic definition of cuts based
on intuition are surprisingly still dominant in the literature.

The aim of the paper is to rigorously present a systematic definition of the potentials
employed in h-oriented formulations by taking advantage of homology and cohomology
theories. In particular, at the end of the presentation, we are able to show that if cuts are
defined as generators of the first cohomology group over integers of the insulating re-
gion, then all relevant discrete physical laws are satisfied. The originality of the approach
presented in this paper lies also in the fact that the definition of potentials is tackled di-
rectly within a topological setting. In fact, thanks to the reformulation of Maxwell’s laws
by using the coboundary operator, homology and cohomology with integer coefficients
are employed from the beginning for the potential definition in place of the standard de
Rham cohomology, see for example [30], routinely used in the FEM context, see for exam-
ple [29, 31–33]. In the FEM framework, the so-called non-local basis functions are added to
the set of usual basis functions to be able to span the de Rham first cohomology group, see
for example [31,32,34–39]. Moreover, employing the DGA, new insights into the formula-
tion can be presented by exploiting the dualities arising when, as in the DGA framework,
two interlocked cell complexes—one dual of the other—are employed. For example, the
physical interpretation of the non-local basis functions as non-local Faraday’s equations
will become apparent.

The second purpose of the paper is to present a survey on definitions of cuts already
presented in the literature showing their shortcomings. Concrete counter-examples show
why heuristic definitions should be abandoned and that cohomology is not one of the
possible options but something which is expressly needed to face this problem.

The paper is structured as follows. In Section 2, physical variables of the electro-
magnetic problem are modeled as complex-valued cochains. In Section 3, Maxwell’s
laws casted in algebraic form are recalled. Section 4 shows the problem related with ex-
pressing Ampère’s law with a magnetic scalar potential when dealing with conducting
regions with holes. Then, to solve this issue, cuts are defined as generators of the first
cohomology group over integers of the insulating region. In Section 5, the T-Ω geometric
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formulation to solve magneto-quasi-static BVP is described. Section 6 contains a survey
of the definitions of cuts presented in the literature together with an illustration of their
shortcomings. In Section 7, a short discussion on how to compute the cohomology gener-
ators is presented. Finally, in Section 8, the conclusions are drawn. A brief survey on the
relevant topics of algebraic topology is provided in the Appendix. For a more detailed
treatment of this topic together with some algorithms to compute (co)homology groups
consult [40–46].

2 Physical variables as complex-valued cochains

Let K be a homologically trivial polyhedral cell complex in R3. Let Kc be a closed sub-
complex of K which models the conducting region. The K\int Kc is an insulating region
the closure of which is meshed by Ka, which is a closed sub-complex of K. The interface
of the conducting and insulating region is meshed by Kc∩Ka. Moreover, it is assumed
that Kc and Ka are non-empty. The dual sub-complexes are denoted by Ba and Bc, re-
spectively.

Since our aim is to solve the eddy-current problem in the frequency domain, the phys-
ical variables are modeled in this paper as complex-valued cochains†. According to Tonti’s
classification of physical variables [6,9,13], there is a unique association between a phys-
ical variable, such as electric current or magnetic flux [1, 6, 9], and an oriented geometric
element of the two cell complexes K and B. The cochain values, usually called Degrees of
Freedom (DoFs) in computational physics (see for example [14]), have a direct physical
interpretation: By using the so-called de Rham map [48], they are defined as integrals of
the electromagnetic differential forms over the elements of the complex‡.

The focus of this paper is on h-oriented formulations [26,27], so the following physical
variables and related association with geometrical elements of K or B are considered:

• 〈I, f 〉 is the electric current associated to the face f ∈K, see Fig. 1(a). 〈I, f 〉=0 over the
faces f ∈Ka (with this definition, the current associated with the faces f ∈Ka∩Kc is
set to zero, since there is the need of a boundary condition that prevents the current
to flow thought the boundary of the conductive region);

• 〈F,e〉 is the magneto-motive force (m.m.f.) associated to the edge e∈K, see Fig. 1(b);

• 〈Φ̃, fB〉 is the magnetic flux associated to the dual face fB∈B, see Fig. 1(c);

• 〈Ũ,eB〉 is the electro-motive force (e.m.f.) associated to the dual edge eB ∈ B, see
Fig. 1(d).

†A frequency domain eddy-current problem implies that all physical variables exhibit a time variation as
isofrequential sinusoids. By using the standard symbolic method, see [47], constant complex numbers called
phasors are used to represent the sinusoids. If the eddy-current problem has to be solved in time domain, the
reals should be used in place of the complex numbers through the paper without any further modification.
‡For example, the magneto-motive force (m.m.f.) DoF relative to the 1-dimensional cell e is the integral of
the differential 1-form magnetic field over e.
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Figure 1: Association of the degrees of freedom to the oriented geometrical entities.

All these complex values, one for each 1- or 2-dimensional cell in the corresponding com-
plex, are the coefficients of the corresponding complex-valued cochains denoted in bold-
face type. For a fixed chain and cochain basis, each cochain can be represented as a vector
which is used in the computations. In the following, since no confusion can arise, the no-
tations for (co)chains and vectors representing them will be the same.

3 Maxwell’s equations in algebraic form and potentials analysis

In this section, the algebraic Maxwell’s laws [5–7] are reviewed.
The discrete current continuity law enforces the dot product of the currents associated

with faces belonging to the boundary of a volume v∈Kc , with dim v=3, to be zero

〈I,∂v〉= 〈δI,v〉=0, ∀v∈Kc. (3.1)

Focusing on the generic face f , the discrete Ampère’s law enforces the dot product of the
m.m.f. F on the boundary of the face f to match the current associated with f ,

〈F,∂ f 〉= 〈δF, f 〉= 〈I, f 〉, ∀ f ∈K. (3.2)

Since 〈I, f 〉=0,∀ f ∈Ka, F is a 1-cocycle in Ka (however, it is not a cocycle in K).
The discrete magnetic Gauss’s law enforces the dot product of the magnetic fluxes as-

sociated with the dual faces belonging to the boundary of a dual volume vB to be zero

〈Φ̃,∂̃vB〉= 〈δ̃Φ̃,vB〉=0, ∀vB∈B. (3.3)

Focusing on a dual face fB , the discrete Faraday’s law enforces the dot product of the
e.m.f. Ũ on the boundary of fB to match the opposite of the variation of the magnetic flux
through the face fB . Considering problems in frequency domain, this translates in

〈Ũ,∂̃ fB〉= 〈δ̃Ũ, fB〉= 〈−iωΦ̃, fB〉, ∀ fB∈B, (3.4)

where ω is the angular frequency of the sinusoids equal to 2π times the considered fre-
quency.
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The expressions just discussed of the four algebraic laws are called ‘local’. There exist
also the so-called ‘non-local’ versions of each of them, which are obtained by considering
the balance not on exactly one geometrical entity but on a chain. It is straightforward
to see that if the region is homologically trivial each non-local law can be obtained by
considering a linear combination of local laws. Therefore, in this case, the non local laws
do not bring any new information. As will be discussed in the next sections, this does
not hold for homologically non-trivial regions.

3.1 A preliminary definition of potentials

In this section a preliminary definition of potentials employed in the formulation is pre-
sented and analyzed by means of algebraic topology. For this preliminary definition let
us assume that the considered complex Kc is homologically trivial. In particular, we use
the fact that, when the conductors and the whole domain are homologically trivial cell
complexes then, from a standard result on exact sequences, one has that the homology
of the insulating domain is also trivial. How to generalize the definition of potentials in
case of homologically non-trivial regions is the subject of Section 4.1.

Let us first analyze the potentials employed in the insulating region Ka. It has been
already indicated that F is a 1-cocycle in Ka, hence 〈δF, f 〉=0 holds ∀ f ∈Ka. Thus, since
Ka is homologically trivial, a magnetic scalar potential Ω 0-cochain can be introduced in
the insulating region such that

〈δΩ,e〉= 〈F,e〉, ∀e∈Ka. (3.5)

Let us analyze now the potentials employed in the conducting region Kc. From (3.1),
we know that I is a 2-cocycle in Kc, hence 〈δI,v〉=0 holds ∀v∈Kc. Thus, an electric vector
potential T 1-cochain can be introduced in the conducting region such that

〈T,∂ f 〉= 〈δT, f 〉= 〈I, f 〉, ∀ f ∈Kc. (3.6)

Thanks to (3.2), the following holds

〈δT, f 〉= 〈I, f 〉= 〈δF, f 〉, ∀ f ∈Kc. (3.7)

Since F and T are 1-cochains such that δF = δT, they differ by a 0-coboundary of a 0-
cochain O, i.e. F=T+δO. Since it is required that the magnetic scalar potential is con-
tinuous inside K, we can extend the support of Ω also inside Kc in such a way that
〈Ω,n〉= 〈O,n〉 for every node n∈Kc. We want to remark, that those extensions are valid
also in case of homologically non-trivial complexes Kc and Ka and they are used further
in the paper. For brevity, let us define also the cochain T as cochain in K. To this aim, we
assume that 〈T,e〉=0 for every edge e∈Ka.

To sum up, by using the potentials T and Ω, Ampère’s law (3.2) and current con-
tinuity law (3.1) can be enforced implicitly by considering the following expression for
F

F=δΩ+T. (3.8)
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Then, it is easy to show that employing this definition of potentials Ampère’s law
holds in Ka (in fact, 〈δF, f 〉= 〈δδΩ, f 〉= 〈0, f 〉=0= 〈I, f 〉, ∀ f ∈Ka, since the current is zero
in Ka) and the current continuity law holds in all K (in fact, δI=δδT=0). The remaining
laws will be enforced by a system of equations in Section 5.2.

4 Definition of potentials

4.1 Non-local Ampère’s law in homologically non-trivial domains

Let us now remove the hypothesis of Kc being homologically trivial. Ampère’s law can
be written on a 1-cycle c∈Z1(Ka) and a 2-chain s∈C2(K) such that ∂s= c:

〈F,c〉= 〈I,s〉. (4.1)

Eq. (4.1) is an example of a non-local equation, since the algebraic constraint is not en-
forced on a geometric element, like (3.2), but involves geometric elements belonging to
a wider collection, in this case the support of s and its boundary c. In (4.1) we have not
specified which 2-chain s has to be used for taking the dot product at the right-hand side
(in fact, s has been determined only up to its boundary ∂s= c). To solve this issue, we
show with next Theorem that the value 〈I,s〉 depends only on ∂s and, therefore, (4.1) is
well defined.

Theorem 4.1. Let s1 and s2 be two 2-chains such that ∂s1 = ∂s2 = c, where c∈Z1(Ka). Then
〈I,s1〉= 〈I,s2〉.

Proof. From the assumptions, s1−s2∈Z2(K). Since K is homologically trivial, there exists
b∈C3(K) such that ∂b= s1−s2. Consequently, s1 = s2+∂b holds. Then, 〈I,s1〉= 〈I,s2〉+
〈I,∂b〉= 〈I,s2〉+〈δI,b〉= 〈I,s2〉, since, due to (3.1), δI=0.

Due to Theorem 4.1, one can state the following definition:

Definition 4.1. The value Ic = 〈I,s〉, for an arbitrary 1-cycle c ∈ Z1(Ka) and a 2-chain s
such that c=∂s, is called current linked by the 1-cycle c.

Let us now show that the current linked by a 1-cycle c∈Z1(Ka) is the same for all the
cycles in the homology class of c.

Theorem 4.2. The linked current Ic = 〈I,s〉 depends only on the H1(Ka) class of the 1-cycle
c= ∂s, where c∈Z1(Ka). Thanks to non-local Ampère’s law, the same holds for the dot product
〈F,c〉.

Proof. Let us take two cycles c1,c2 ∈Ka in the same homology class H1(Ka). It means
that c1 = c2+∂s holds, where s∈C2(Ka). Then, 〈F,c1〉= 〈F,c2〉+〈F,∂s〉= 〈F,c2〉+〈δF,s〉=
〈F,c2〉+〈I,s〉. From the definition of I we have that 〈I, f 〉= 0 for every f ∈Ka, therefore
〈I,s〉=0, what completes the proof.
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Figure 2: (a) Two cycles, c1 and c2, in the same H1(Ka) class. (b) Example of two possible 2-chains used to
evaluate the currents linked to c1 and c2. (c) The 2-chain s whose boundary 1-chain is c1−c2.

The idea of the proof of Theorem 4.2 is presented in Fig. 2 for the complement of a
solid double torus with respect to a cube which contains it (not represented in the picture
for the sake of clarity). The supports of two cycles c1 and c2 in the same homology class
are depicted in Fig. 2(a). The supports of two 2-chains s1 and s2 used to evaluate the
linked currents Ic1

= 〈I,s1〉 and Ic2 = 〈I,s2〉 are depicted in Fig. 2(b). Finally, in Fig. 2(c) it
is possible to see the support of a 2-chain s such that c1 = c2+∂s, which has been used in
the proof.

Using the scalar potential in Ka, as the definition (3.8), yields to an inconsistency, since
Ampère’s law may be violated on some 1-cycle c= ∂s∈ Z1(Ka). In fact, let us consider
a 1-cycle c∈ H1(Ka). Using the double torus example previously introduced, this cycle
may be for example the cycle c1 or c2 in Fig. 2(a). Now, due to (3.8), we have

〈F,c〉= 〈F,∂s〉= 〈T+δΩ,∂s〉= 〈T,∂s〉+〈δΩ,∂s〉= 〈δδΩ,s〉= 〈0,s〉=0 6= 〈I,s〉,

since 〈T,e〉=0 for every e∈Ka. The last inequality 0 6= 〈I,s〉 follows from the fact that the
current flowing through s is non-zero in general, since the support of s has to intersect Kc.
According to next Theorem, the presented problem may occur only with cycles which are
non-trivial in H1(Ka).

Theorem 4.3. Ampère’s law is satisfied for every 1-boundary b in Ka. The cycles that produce an
inconsistency in Ampère’s law—because may link a non-zero current—are the cycles which are
non-trivial in the 1-st homology group H1(Ka).

Proof. In the first case, the cycle c ∈ B1(Ka) is bounding, which means that there exists
s∈C2(Ka) such that ∂s= c. Since s does not intersect Kc, the dot product of the current I

and s is zero and the dot product of the m.m.f. F and c is also zero.
In the second case, c being non-zero in the first homology group H1(Ka), such a chain

s∈C2(Ka) does not exist. But, since the whole complex K is homologically trivial, there
exist a 2-chain s′∈C2(K) such that ∂s′= c. Consequently one needs to have |s′|∩Kc 6=∅.
Thus, the support of s′ has to extend in the current-carrying region Kc and, consequently,
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Figure 3: (a) Two non-trivial elements of H1(Ka) called c1 and c2. (b) Let us consider 2-chains in K whose
boundaries are c1 and c2. (c) Two independent currents, i1 and i2, evaluated through 2-chains s1 and s2 or
through 2-chains σ1 and σ2. (d) The 1-cycles ∂σ1 and ∂σ2 are in the same homology H1(Ka) class as the
corresponding 1-cycle c1 and c2. This is formalized in the following of the paper.

the current trough s′ (and linked by c) is non-zero in general. This causes in general an
inconsistency in Ampère’s law for the cycles c non-trivial in H1(Ka).

The idea of last proof can be presented by using again the double torus example. Let
us introduce two non-trivial elements of H1(Ka) called c1 and c2 which are the represen-
tatives of generators of the first homology group H1(Ka) and whose support is depicted
in Fig. 3(a). The support of two 2-chains si, i∈{1,2}, such that ∂si = ci, are represented in
Fig. 3(b). It is easy to see that the supports of these 2-chains have to intersect Kc.

4.2 Independent currents

After showing the inconsistency arising in general from the definition of potentials pre-
sented in Section 3.1, some modifications in this definition are needed for Ampère’s law
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to hold implicitly for every 1-cycle c∈Z1(Ka) and a 2-chain s such that c= ∂s. We define
in this Section a key ingredient for the new definition of potentials, which is called set of
independent currents.

It has been already pointed out that the electric current is nonzero inside the conduct-
ing region Kc only. Consequently, for every chain s∈C2(K) for which ∂s= c∈ Z1(Ka),
the current can be non-zero only on |s|∩Kc . Since Kc is a sub-complex of K, the restric-
tion of the 2-chain s to Kc, denoted as σ = s|Kc

, is an element of C2(Kc). The supports
of such restrictions of the 2-chains s1 and s2 in the double torus example are the σ1 and
σ2 shown in Fig. 3(c). Since ∂σ ∈C1(∂Kc), we have that σ ∈ Z2(Kc,∂Kc). Consequently
σ can be generated from H2(Kc,∂Kc) basis by adding the boundary of a suitable 3-chain
d∈C3(Kc). The current through any chain non-zero in H2(Kc,∂Kc) is determined by the
current through the H2(Kc,∂Kc) basis elements (for trivial 2-chains and relative 2-chains
the current is zero as a consequence of local version of current continuity law (3.1)).

For the whole Section, let us fix the set of relative cycles σ1,. . .,σn ∈ Z2(Kc,∂Kc) rep-
resenting the homology group H2(Kc,∂Kc) generators. From the Theorem A.1 (see Ap-
pendix) one may write the following exact sequence of the pair (K,Ka):

···
∂
−→H2(Ka)

i∗−→H2(K)
j∗
−→H2(K,Ka)

∂
−→H1(Ka)

i∗−→ ··· .

The assumption that the mesh K is acyclic provides H2(K) = 0. Consequently, ∂ :
H2(K,Ka)→H1(Ka) is an isomorphism defined in the following way ∂ :H2(K,Ka)∋ [α]→
[∂α]∈H1(Ka).

Let us use Theorem A.3 (see Appendix) for the sub-complex A equal to Ka and sub-
complex B equal to Kc and X equal to K. Since Ka∩Kc=∂Kc, the following inclusion map
(Kc,∂Kc) →֒(K,Ka) induces the isomorphism H2(Kc,Kc∩Ka)=H2(Kc,∂Kc)→H2(K,Ka).
Consequently, we have the following sequence of isomorphisms

H2(Kc,∂Kc)
(Kc,∂Kc)→֒(K,Ka)
−−−−−−−−−−→H2(K,Ka)

∂
−→H1(Ka),

where on the left-hand side there is the group generated by the H2(Kc,∂Kc) generators
and on the right-hand side there is the group generated by the classes of cycles on which
the Ampère’s law has to be enforced. The image of the generators of H2(Kc,∂Kc) through
the above isomorphism is referred to as independent cycles.

What we showed in this Section motivates the following definition:

Definition 4.2. The complex numbers being the dot-products of the current I with the
representatives of a basis {σj} of H2(Kc,∂Kc) are called independent currents {ij} in Kc

ij = 〈I,σj〉, j∈{1,··· ,β1(Ka)}.

We want to point out that the {σj} are integer H2(Kc,∂Kc) homology generators.
When evaluating the dot-product, we trivially interpret them as complex homology
group generators.
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Since the isomorphism H2(Kc,∂Kc)→ H2(K,Ka) is induced by the inclusion map,
σ1,··· ,σn form also a set of cycles representing the basis of H2(K,Ka). When passing by
the isomorphism induced by the boundary map ∂ : H2(K,Ka)→ H1(Ka), one gets that
∂σ1,··· ,∂σn is a set of cycles representing a basis in H1(Ka).

4.3 Definition of cuts

First of all, let us note that it suffices to enforce Ampère’s law on the cycles [∂σ1],··· ,[∂σn].
Then, for every other cycle [c]∈H1(Ka) such that [c]= [∑n

i=1λi∂σi], the current linked by
c is equal to ∑

n
i=1λi〈I,σi〉=∑

n
i=1λiii, which follows from the fact that dot product of the

m.m.f. on boundaries is zero.

Now, taking into account the arguments in the last Section, we would like to modify
the definition (3.8) of F in Ka in such a way that Ampère’s law is satisfied for all cycles
c∈Z1(Ka). Since F is a 1-cocycle in Ka, we are going to construct a family of 1-cocycles
{ci}n

i=1 in Ka over Z which, after being multiplied by the independent currents {ij}
n
i=1,

are added to T. In particular, the family of 1-cocycles {ci}n
i=1 should verify 〈ci,∂σj〉= δij

for every i, j∈{1,··· ,n}. We are going to show that, for this purpose, the representatives
of a basis of the 1-st cohomology group H1(Ka) dual to the H1(Ka) basis [∂σ1],··· ,[∂σn ]
are needed. To prove the existence of the dual basis, let us recall the Universal Coefficient
Theorem for cohomology.

Theorem 4.4 ([40], Theorem 3.2). If a complex Ka has (integer) homology groups Hn(Ka), then
the cohomology groups Hn(Ka,G) are determined by splitting exact sequences

0→Ext(Hn−1(Ka),G)→Hn(Ka,G)
h
−→Hom(Hn(Ka),G)→0.

In this paper, there is no need to go into the definition of the Ext functor. The key
property is that Ext(Q,G) = 0 if Q is a free group. For further details and proof of this
property consult [40].

For a class [d]∈ Hn(Ka,G), since d is a cocycle, one has 0= 〈δd,z〉= 〈d,∂z〉 for every
z ∈ Zn+1(Ka). From the above equality, it follows that d|Bn(Ka) = 0. Let us define the
restriction d0 = d|Zn(Ka). Since d0|Bn(Ka) = 0, then d0 ∈ Hom(Hn(Ka),G). This shows the
correctness of the definition of the map h([d]) = d0 ∈ Hom(Hn(Ka),G) used in the exact
sequence in Theorem 4.4. Finally, we need to show that, for d,d′∈[d], one has h(d)=h(d′).
Since d,d′ ∈ [d], there exists e∈C0(K) such that d= d′+δe. Let us take a cycle f ∈C1(K),
then we have ∂ f =0. Consequently 〈d, f 〉=〈d′+δe, f 〉=〈d′ , f 〉+〈δe, f 〉=〈d′ , f 〉. Therefore,
the value of the map h does not depend on the representatives of the cocycle and h is well
defined.

In our case the group G is the group of integers and the Universal Coefficient Theorem
for cohomology is used for n= 1. In this case, the exact sequence from Theorem 4.4 has
the form

0→Ext(H0(Ka),Z)→H1(Ka,Z)
h
−→Hom(H1(Ka),Z)→0.
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For the complex Ka we have that H0(Ka)=Zp for some p∈Z, p> 0. This provides
that H0(Ka) is a free group. From the cited property of the Ext functor, it follows that
Ext(H0(Ka),Z) = 0. From the exactness of the sequence, one has that h : H1(Ka,Z)→
Hom(H1(Ka),Z) is an isomorphism.

Due to Theorem A.2 (see Appendix) the homology group H1(Ka) is torsion free.
This provides, from Theorem 3.61 in [49], that it is isomorphic to the direct sum of
dim(H1(Ka))=n copies of Z. From the set of cycles ∂σ1,··· ,∂σn forming a H1(Ka) basis,
a set of functions ζi, i∈{1,··· ,n} such that ζi([∂σj ])=δij form a basis of Hom(H1(Ka),Z).

From the description of the isomorphism h : H1(Ka,Z)→Hom(H1(Ka),Z), it is straight-
forward that h−1(ζi) is a cochain ci being an element of the H1(Ka,Z) basis we are looking
for.

In the presented reasoning we have started from the set of independent currents and
end up to the cohomology basis. The Reader should be aware that exactly the same
reasoning can be made the other way around. Namely, if one starts from the H1(Ka)
basis, then is able to find the corresponding H2(K,Ka) basis, which directly corresponds
to some basis H2(Kc,∂Kc) yielding a set of independent currents.

The following Theorem follows easily form what has been already said.

Theorem 4.5. Let {ci}
β1(Ka)
i=1 be the cocycles representing the H1(Ka) basis. Let {∂σi}

β1(Ka)
i=1

be the cycles representing the dual H1(Ka) basis. Once we redefine the m.m.f. as F = δΩ+

T+∑
β1(Ka)
i=1 iic

i, then the current linked by the cycles in the homology class of ∂σi is equal to ii.
Ampère’s law (4.1) holds for every 1-cycle c∈Z1(Ka). Hence, the potentials are now consistently
defined.

Further in this paper we assume that the cocycles {ci}
β1(Ka)
i=1 representing the H1(Ka)

basis are defined in the whole complex K. Therefore, we assume that 〈ci,e〉=0 for every
i∈{1,··· ,β1(Ka)} and for every e∈Kc\Ka.

Thus we are now able to give the definition of cuts:

Definition 4.3. The cuts {cj}
β1(Ka)
j=1 are defined as representatives of the first cohomology

group generators over integers of the insulating region Ka.

To illustrate the presented idea let us consider the two fixed generators c1 and c2

for H1(Ka) relative to the previous example, see Fig. 4(a). In the same figure, a concrete
example of a representative of a H1(Ka) cohomology generator—dual to the H1(Ka) gen-
erator c1—is shown. The edges in the picture are the ones that constitute the support of
c1. The integers associated to these edges are given in such a way that 〈c1,c1〉= 1 and
〈c1,c2〉=0.

4.3.1 Interpretation of cuts on the dual complex

For a definition of dual complex B please refer to the Appendix. Some results presented
in this Section are part of an old-fashioned proof of Poincaré-Lefschetz duality for man-
ifolds with boundary. For this paper, the following restricted version of the duality is
used:
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Figure 4: (a) The two generators c1 and c2 and the support of the c1 1-cochain is shown for the double torus

example. (b) The dual faces fB, dual to edges in the support of c1, from a 2-chain Σ1 on the barycentric
complex.

Theorem 4.6 (Poincaré-Lefschetz duality). H1(Ka)∼=H2(Ba,∂Ba).

The modern proof of this famous Theorem bases on the idea of cup product, as for
instance in [40]. However, the original proof proposed by Poincaré himself§, is based on
the concept of dual cell structure, which has been described in this paper in Section 8. For
the classical proof of Poincaré-Lefschetz duality, one may consult [50] or [51]. In this proof
the dualization operator D is defined on the complex Ka in the way that, for a 1-cell c∈Ka,
the corresponding dual 2-cell Dc∈Ba is assigned. The presented map turns out to induce
the isomorphism in the Poincaré-Lefschetz duality (for further details consult [50]).

Consequently, form the Poincaré-Lefschetz duality, once the 1-cocycles that represent
a basis {c1,··· ,cn} of H1(Ka) are provided, it is clear that the set of dual 2-cycles d1,··· ,dn

defined in the following way:

di = ∑
S∈Ba

αs
i S, where αs

i = 〈ci,D−1S〉

are the relative cycles that represent a basis of H2(Ba,∂Ba). These cycles are denoted as

{Σi}
β1(Ka)
i=1 . The visualization of the presented duality for the proposed example can be

seen in Fig. 4. On the left, the cohomology generator ci is represented, while, on the right,
the representative Σi of the generator of H2(Ba,∂Ba) is depicted.

5 T-Ω magneto-quasi-static formulation

After the potential definition, in this Section we analyze how to solve the magneto-quasi-
static BVP.

§Which turned out not to be complete, but was corrected later on by the Poincaré’s successors.
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5.1 Constitutive matrices

The discrete counterparts of the constitutive laws links k-cochains in K with (3−k)-
cochains in B:

Φ̃=µF, (5.1a)

Ũ
∣

∣

Bc
=̺ I|Kc

. (5.1b)

The constitutive matrices provide a relation between cochains on the primal and cochains
on the dual complex (see Section 8). The square matrix µ is called permeance matrix and
is the approximate discrete counterpart of the constitutive relation B=µH at continuous
level, µ being the permeability assumed element-wise constant and H and B are the mag-
netic field and the magnetic flux density vector fields, respectively. The square matrix ̺

is called resistivity matrix and is the approximate discrete counterpart of the constitutive
relation E= ̺J at continuous level, ̺ being the resistivity assumed element-wise a con-
stant and E and J are the electric field and the current density vector fields, respectively.
̺ is defined to be zero for geometric elements in Ka\Kc.

Describe in detail how to construct the constitutive matrices ̺ and µ goes beyond the
purpose of this paper. Methods valid for a general polyhedral mesh are described for
example in [22, 23] and references therein.

5.2 Algebraic equations

In this Section, the constitutive matrices described in Section 5.1 are combined with the
local algebraic laws presented in Section 3 to obtain an algebraic system of equations.

Up to now, we know that Ampère’s law holds in Ka and current continuity law holds
in K. Hence, we have to enforce the other laws by means of a linear system of equations.

To do this, let us start from the magnetic Gauss’s law (3.3) 〈δ̃Φ̃,vB〉=0 and let us use
the constitutive relation (5.1a) Φ̃=µF. Consequently, we get 〈δ̃µF,vB〉=0. The definition

of potentials F=δΩ+T+∑
β1(Ka)
j=1 ijc

j from Theorem 4.5 is substituted in the last equation.

In this way, the final equation is obtained:

δ̃µδΩ+ δ̃µT+
β1(Ka)

∑
j=1

δ̃µcj ij =0. (5.2)

Now, Faraday’s law has still to be enforced in the conducting region (due to the
boundary condition 〈T,e〉= 0 on edges e ∈ ∂Kc, the e.m.f. is not needed in the insulat-
ing region by using this formulation, see for example [2, p. 1030] for a more detailed
explanation). To do this, let us start from the local Faraday’s law (3.4) 〈δ̃Ũ+iωΦ̃, fB〉=0,
∀ fB ∈Bc. Now, let us substitute the constitutive relations (5.1) in the above equation. In
this way, we obtain 〈δ̺̃I+iωµF, fB〉=0, ∀ fB∈Bc. Let us now use the local Ampère’s law
(3.2) in Kc by substituting δF= I

〈δ̺̃δF+iωµF, fB〉=0, ∀ fB∈Bc.
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For the sake of brevity, let us define a matrix R= δ̺̃δ+iωµ. Hence, we can write

〈RF, fB〉=

〈

R

(

δΩ+T+
β1(Ka)

∑
j=1

ijc
j

)

, fB

〉

=0, ∀ fB∈Bc.

Since RδΩ= iωµδΩ, we obtain:

〈

iωµδΩ+RT+
β1(Ka)

∑
j=1

Rcjij, fB

〉

=0, ∀ fB∈Bc. (5.3)

The unknowns are the coefficients of the cochain Ω associated with each node and the
coefficients of T associated with edges belonging to Kc\Ka (in fact, 〈T,e〉= 0, ∀e∈Ka).
We have written Eqs. (5.2) and (5.3) corresponding to these unknowns. But we have also
the independent currents ij as additional unknowns. Which are the needed additional
equations and where do they come from?

5.3 Non-local Faraday’s equations and the final linear system of equations

The dot product of the e.m.f. 〈Ũ,b〉 with every bounding 1-cycle b ∈ C1(Bc) is easily
determined by using a non-local Faraday’s law

〈Ũ,b〉= 〈−iωΦ̃,s〉, b∈B1(Bc) and b=∂s,

which is a linear combination of local Faraday’s laws already enforced by (5.3). Similarly
to what developed about the independent currents in Section 4.2, the linked flux Φ̃c =
〈Φ̃,s〉, linked by the cycle b, does not depend on the 2-chain s. This is because the local
Gauss’s magnetic law (3.3) hold thanks to (5.2). Hence, such non-local equations written
on boundaries do not bring any new constraint.

On the opposite, 〈Ũ,h〉 over a 1-cycle h∈C1(Bc) nonzero in H1(Bc) cannot be deter-
mined by using only cochains in Bc. This is because 〈Ũ,h〉 depends on cochains in Bc and
Ba through the non-local Faraday’s law. Namely 〈Ũ,h〉 has to match the magnetic flux
variation 〈−iωΦ̃,s〉 through a 2-chain s such that c=∂s. The key point is that the support
of s extends also in the sub-complex Ba.

We need to show that the 2-chains used to take dot product with the magnetic flux,
whose boundary are the H1(Bc) generators, are generators for H2(B,Bc). Similarly to
what done with the currents, we need just the H2(Ba,∂Ba) generators and the reasoning
presented in this Section is analogous to the one presented in Section 4.3. Let us take a
fixed set of 1-cocycles {c1,··· ,cn}, ci ∈C1(Ka) for i ∈ {1,··· ,n}, representing the basis of
H1(Ka). The set of cycles {d1,··· ,dn}, di ∈ C2(Ba,∂Ba) for i ∈ {1,··· ,n}, defined in Sec-
tion 4.3.1, represents a basis of H2(Ba,∂Ba). Let us write the long exact sequence of the
pair (B,Bc):

···
∂
−→Hn(Bc)

i∗−→Hn(B)
j∗
−→Hn(B,Bc)

∂
−→Hn−1(Bc)

i∗−→ ··· .
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Since B is acyclic, Hn(B) is trivial. Therefore, from the exactness of the sequence,
∂ : Hn(B,Bc) → Hn−1(Bc) is an isomorphism. Let us now use the Theorem A.3 (see
Appendix) for X = B, A = Bc and B = Ba and n = 2. This gives us the isomorphism
H2(Ba,Ba∩Bc) = H2(Ba,∂Ba) →֒ H1(B,Bc). Consequently, we have the sequence of iso-

morphisms H2(Ba,∂Ba) →֒H2(B,Bc)
∂
−→H1(Bc). Therefore, the set of cycles {∂d1,··· ,∂dn},

∂di ∈C1(Bc) for i∈{1,··· ,n}, represent a basis of H1(Bc).
Now, the non-local Faraday’s equations are expressed as

〈Ũ,∂dj〉= 〈−iωΦ̃,dj〉, j∈{1,··· ,β1(Ka)}. (5.4)

A novel way to express the jth non local Faraday law in term of the unknowns is to
pre-multiplying by cjT :¶

cjT
(

δŨ+iωΦ̃
)

=0,

and using the same passages as when obtaining (5.2) we get

(

iωcjT
µδ
)

Ω+
(

cjTR
)

T+
β1(Ka)

∑
j=1

(

cjTRcj
)

ij =0. (5.5)

By multiplying (5.2) by iω and considering also Eqs. (5.3) and (5.5), the following final

symmetric algebraic system having T|Kc\Ka
, Ω and the {ij}

β1(Ka)
j=1 as unknowns reads as

iωδ̃µδΩ+iωδ̃µT+
β1(Ka)

∑
j=1

iωδ̃µcj ij =0, (5.6a)

〈

iωµδΩ+RT+
β1(Ka)

∑
j=1

Rcjij, fB

〉

=0, ∀ fB∈Bc\Ba, (5.6b)

(

iωcjT
µδ
)

Ω+
(

cjTR
)

T+
β1(Ka)

∑
j=1

(

cjTRcj
)

ij =0, j∈{1,··· ,β1(Ka)}, (5.6c)

〈T,e〉=0, ∀e∈Ka. (5.6d)

The source of the problem can be enforced by considering one of the currents ij as known,
substituting it into (5.6), and moving its contribution on the right-hand side of the system.
Alternatively, one can force an e.m.f. by putting its value on the right-hand side of the
system at the position of the correspondent non-local Faraday’s equation, see [26].

¶This correspond to algebraically sum local Faraday’s equations enforced on dual faces belonging to the
support of the considered cut. Since the contributions in the interior cancel out, what remains is the non
local Faraday’s law enforced on the boundary of the considered cut, for more details see [27]. The cochains
on primal complex are denoted by column vectors ci. For the sake of parsimony in the notation, the chains
di on the dual complex dual to ci are denoted by ciT.
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6 A survey on the definitions of cuts

In this Section, three families of definition of cuts presented in the literature in the last
twenty-five years are reviewed. Due to the use of the Finite Elements with nodal basis
functions, most definitions concentrate on the so-called thin cuts, which are 2-chains on
the primal complex. With the modern Finite Elements employing edge elements basis
functions, cuts defined as in this paper—called thick cuts—are needed in place of the
thin cuts. Even though it is difficult to generate a thick cut from a thin cut in general,
see [27], the definitions of thin cuts presented in the following may be easily adapted
as attempts to define thick cuts also. With nodal basis functions, there is the need to
impose a potential jump across the thin cuts. This is usually performed by “cutting”
the cell complex in correspondence of the thin cuts doubling the nodes belonging to each
cut. This method requires non self-intersecting thin cuts and provides some complication
when cuts intersect, see for example [52]. On the contrary, the use of edge elements, as
done in this paper, yields to a straightforward implementation even when cuts intersect
or, as frequently happens, have self-intersections.

6.1 Embedded sub-manifolds

Kotiuga, starting from 1986, published many papers about the definition of cuts, proof of
their existence and the development of an algorithm to compute them, see [29,33,53,54].
He defined thin cuts as embedded sub-manifolds being generators of the second relative
homology group basis H2(Ka,∂Ka). He proposed also an algorithm to automatically gen-
erate cuts: first a H1(Ba) basis is computed by employing a reduction technique based on
a tree-cotree decomposition followed by a reordering and a classical Smith Normal Form
computation [43]. Then, a non-physical Poisson problem is solved for each cut. Finally,
cuts are extracted as iso-surfaces of the non-physical problems solutions.

This definition, although a real breakthrough, is too conservative when employing
the modern edge element basis functions. In fact, in this case there is no need for cuts to
be embedded surfaces, so the solution of the non-physical problems—which is computa-
tionally quite costly—can be avoided.

6.2 Homotopy-based definition

After Kotiuga’s definition, many researchers were persuaded about the existence of an
easier and more intuitive way to tackle this problem. In our opinion, two reasons di-
verted researchers on heuristic solutions: the first is due to the fact that algebraic topol-
ogy, namely cohomology theory, was—and probably still is—not well known to sci-
entists working in computational electromagnetics. The second—perhaps even more
important—was the lack of efficient algorithms for the computation in a reasonable time
of cohomology generators.
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In [30], Bott and Tu stated “By some divine justice the homotopy groups or a finite
polyhedron or a manifold seem as difficult to compute as they are easy to define.” In
fact, a homotopy-based definition of cuts has been introduced becoming soon the most
popular one. The idea is to introduce a set of 2-cells whose removal transform the insu-
lating region into a connected and simply-connected one [39,55–58]‖. Nonetheless, when
dealing with homotopy, one falls easily into intractable problems, with a consequent lack
of rigorous proofs and details of the algorithms in all the cited papers.

It has been already shown, for example in [59–61] that there exist cuts that do not fulfil
the homotopy-based definition. Namely, in case of a knot’s complement, the cut realiza-
tion as embedded sub-manifold—which is a Seifert surface—has to leave the complement
multiply-connected [61]. Even though this counter-example was quite clear, dealing with
knotted conductors is extremely uncommon in practice, even though some applications
of knotted conductors come up naturally in the context of force-free magnetic fields, see
for example [62, 63]. Therefore, as a matter of fact, scientists keep using this wrong defi-
nition for cuts under the (in most cases implicit) assumption of dealing with non-knotted
conductors.

So, it has been concluded that problems in the homotopy-based definition arise only
when dealing with knot’s complement which, as written explicitly by Bossavit [14, p.
238], are really marginal in practice.

Nonetheless, computational electromagnetics community seems not to be aware that
problems do happen frequently even with the most simple example possible, namely a
conducting solid torus in which the current flow. In fact, in this paper we present for
the first time a concrete counter-example that the homotopy-based definition of cuts is
not only too restrictive but wrong. What is even more serious is that it makes very hard
even to detect if a potential cut is correct or not, which clearly shows that this heuristic
definition of cuts should be abandoned.

The counter-example is as follows. Consider a solid torus, which represents Kc, and
its complement Ka with respect to a ball, which contains the solid torus. By growing an
acyclic sub-complex and taking the complement, the set of 2-cells in Fig. 5 is obtained as
(thin) cut. Two views are shown in the picture by cutting the set of 2-cells with a vertical
plane (Fig. 5(a)) and a horizontal plane (Fig. 5(b)). The triangulated torus represents the
Kc complex (the torus is not cut with the planes in the picture for the sake of clarity. The
ball which contains Kc is not shown either for the same reason.). The set of 2-cells is
formed by a Bing’s house [64] plus a cylinder. Informally, the torus Kc is placed in the
‘upper chamber’ of the Bing’s house and the hole of the torus is connected to the tunnel
used to enter the upper chamber by the cylinder.

It is easy to see that once one removes the set of 2-cells from the complex Ka, what
remains becomes connected and simply-connected. Hence, this set of 2-cells fulfil the
homotopy-based definition of cut, but of course this is not a cut since the 1-cycle c crosses

‖This is an attempt for a homotopy-based definition of thin cuts. Ren in [31] modifies this definition for the
thick cuts. A thick cut is defined as a set of 3-cells whose removal transform the insulating region into a
simply-connected one.
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Figure 5: The Bing’s house counter-example.

one time the cut without linking any current. Moreover, it is very hard in practice to
detect this situation, which makes this definition—and related algorithms—not suit-
able even with the simplest example. Of course, an analogous counter-example about
homotopy-based definition of cuts exists also for the definition of cuts as cohomology
generators (i.e. thick cuts) by replacing the thin cut by a thick cut.

6.3 Axiomatic definition

An axiomatic definition of cuts is frequently used in mathematical papers, see for ex-
ample [65–76]. Cuts are defined as 2-manifolds with boundary {Σj}

n
j=1 which fulfil the

following set of axioms:

• The boundary of Σj is located at the boundary of the meshed region in which the
cuts are searched for;

• Σj∩Σi=∅ for i 6= j;

• Ω\
⋃n

i=1Σi is pseudo-Lipschitz and simply-connected.

Once such a set of cuts is provided, the results presented in those papers can be used.
However, the presented definition of cuts is too restrictive for practical applications. One
can easily see that even in case of two chained conductors it is not possible to find a set
of cuts for which Σj∩Σi=∅ holds. The same holds for many practical configurations, for
example, electric transformers.

Moreover, this axiomatic definition does not point to an algorithm to find cuts auto-
matically, which is fundamental for practical problems since it is practically impossible
to define cuts ‘by hand’ for serious problems.
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7 Cohomology computation

A detailed survey on the state-of-the-art algorithms to compute cohomology group gen-
erators used in electromagnetic modeling can be found in [46]. The solution proposed
in this paper is to change the available codes for computing homology group genera-
tors (see [44, 45]) to compute the cohomology group generators. The necessary changes,
described in detail in [46], are very easy to implement.

In order to obtain a computationally efficient code, a so-called shaving procedure for
cohomology has to be applied. A reduction in (co)homology is a procedure of removing
from the complex some cells in such a way that the (co)homology groups of the com-
plex remains unchanged. Then, the classical Smith Normal Form [43] computation with
hyper-cubical computational complexity can be performed on the reduced complex. A
shaving is a reduction of the complex such that the representatives of generators in the
reduced complex are also representatives of generators in the initial complex. As it is
explained in [46], the algorithm presented in [77] is a shaving for cohomology computa-
tions.

Due to a number of efficient reduction techniques used (namely, [77] followed by
[78]), in all the tested cases the Smith Normal Form computation has been not used at all.
The state-of-the-art is the implementation of the acyclic sub-complex shaving with look-
up tables [46], whose computational complexity is linear and is able to reduce almost
always the complex down to its cohomology generators.

An example of cut generated for the complement of a trefoil knot-shaped conductor
is presented in Fig. 6.

Figure 6: A trefoil knot conductor together with the dual faces dual to edges belonging to the support of the
cut.

We would like to point out that it is necessary for the potential definition to compute
the 1st cohomology group generators over integers and this cannot be substituted by any
field Zp for p prime. In fact, let us consider Z2 as an example. In Fig. 7(a), a two turn
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Figure 7: (a) A two turn conductor. (b) The support of a 2-chain dual to a representative of a H1(Ka,Z2)
generator.

conductor is shown. In Fig. 7(b), the support of a 2-chain dual to a representative of a
H1(Ka,Z2) generator is presented. When a cycle surrounding the two branches of the
conductor is considered, it does not intersect the support of the chain. It is easy to verify
that on this cycle the Ampère’s law does not hold. Similar examples can be constructed
for any coefficient field Zp.

8 Conclusions

In this paper, is has been discussed how the (co)homology theories are fundamental for
the definition of potentials in computational physics. In particular, a systematic definition
of potentials employed in the magneto-quasi-static T-Ω formulation has been presented.
It has been demonstrated that the entities called cuts in computational electromagnetics
are a basis of the first cohomology group over integers of the insulating region. The lim-
itations on the definition of cuts presented in the literature are shown by using concrete
counter-examples, which should persuade the Reader that cohomology is not one of the
possible options but something which is expressly needed to the definition of potential.

Appendix: Basic concepts in algebraic topology

In this Section, some basic concepts of algebraic topology are reviewed. Let us first intro-
duce the concept of finite regular CW-complex. An n-cell en is an open subset of a Hausdorff
space X homeomorphic to the n-dimensional unit ball Bn

1 (0)⊂Rn. An n-cell en is said to

be attached to the closed subset K⊂X if there exists a continuous map f : Bn
1 (0)→ en such

that f maps the open ball Bn
1 (0) homeomorphically onto en and f (∂Bn

1 (0))⊂K in a way
that en∩K =∅. The map f is referred to as characteristic map. The finite CW-complexes
are defined in the following way:
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Definition A.1. Let X denote a Hausdorff space. A closed subset K⊂X is called a (finite)
CW-complex of dimension N, if there exists an ascending sequence of closed subspaces
K0⊂K1⊂···⊂KN =K such that the following holds.

(i) K0 is a finite space.

(ii) For n∈{1,··· ,N}, the set Kn is obtained from Kn−1 by attaching a finite collection
Kn of n-cells.

In this case, the subset Kn is called the n-skeleton and the elements of K0 are called the
vertices of K. An N-dimensional CW-complex is called regular if for each cell en, where

n∈{1,··· ,N}, there exists a characteristic map f : Bn
1 (0)→ en which is a homeomorphism

on Bn
1 (0). In this case, we say that the m-cell em is a face of an n-cell en, if the inclusion

em ⊂ en holds, see [79]. Moreover, since our aim is to model physical objects, we restrict
to the case of regular CW-complexes embedded in R3. Finally, by a polyhedral mesh we
mean a cellular decomposition of the considered space, which is a regular CW-complex
such that each cell of the complex is a polyhedron. In the paper we use the terms mesh
and regular CW-complex interchangeably.

Let K be a collection of cells of the regular CW-complex K. Let κ :Ki−1×Ki→{−1,0,1}
for i ∈ Z be the so-called incidence index which assigns to a pair of cells their incidence
number (for further details consult [79]). Let G denote the module of integers (Z), real
(R) or complex (C) numbers. The group of formal sums ∑e∈Ki

αee, where αe ∈G for ev-
ery e ∈Ki, is the group of i-chains of the complex K and is denoted by Ci(K,G). For a
chain c=∑e∈Ki

αee the support |c| of c consist of all elements e∈Ki such that αe 6= 0. For
two chains c=∑e∈Ki

αee and d=∑e∈Ki
βee their scalar product is 〈c,d〉=∑e∈Ki

αeβe. The

group of cochains Ci(K,G) is formally defined as the group of maps from elements of
Ci(K,G) to G with coordinatewise addition. However, it is possible and convenient for
the computations to represent a cochain as a chain. Namely, to determine the value of a
map c∗ : Ci(K,G)→G on any i-chain, it suffices to know the value of c∗ on every e∈Ki.
In this way, it is possible to associate to the cochain c∗ a chain c such that for any other
chain d∈Ci(K,G) the value of cochain c∗ on chain d is equal to 〈c,d〉. For a cochain c∗ its
support |c∗| consists of all the cells whose value of c∗ is nonzero.

In this paper, two kind of cochains are considered. The first are the integer-valued
cochains—for example, the representatives of the first cohomology group generators over
integers. The second are the complex-valued cochains, which model physical variables
in the proposed application as discussed in Section 2.

Let us define the boundary map ∂i : Ci(K,G)→Ci−1(K,G). For an element e∈Ki we
define

∂ie= ∑
f∈Ki−1

κ( f ,e) f

and extend it linearly to the map from Ci(K,G) to Ci−1(K,G). The coboundary map
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δi : Ci(K,G)→Ci+1(K,G) is defined for e∈Ki by

δie= ∑
f∈Ki+1

κ(e, f ) f

and extended linearly to the map from Ci(K,G) to Ci+1(K,G). It is standard that ∂i−1∂i=
δiδi−1=0 for every i∈Z, see [40]. Moreover, the coboundary map is dual to boundary map
in homology. In fact, it can be equivalently defined with the equality 〈δc∗,d〉=〈c∗,∂d〉 for
every c∗∈Ci−1(K,G) and for every d∈Ci(K,G), see [40].

The boundary operator gives rise to a classification of chains. The group of i-
cycles is Zi(K,G) = {c ∈ Ci(K,G)|∂c = 0}. The group of i-boundaries is Bi(K,G) = {c ∈
Ci(K,G)| there exist d∈Ci+1(K,G)|∂d= c}. Intuitively, a cycle is a chain whose bound-
ary vanishes while a boundary is a cycle which can be obtained as the boundary of
some higher dimensional chain. The ith homology group is the quotient Hi(K,G) =
Zi(K,G)/Bi(K,G). The cycles that are not boundaries are nonzero in Hi(K,G). The cy-
cles that differ a by a boundary are in the same equivalence class. Given a chain c, by [c]
we denote its homology class, i.e. the class containing all the cycles homologous to c. By
generators of the ith homology group we mean a minimal set of classes which generates
Hi(K,G). In the following, for the sake of brevity, by generators we also mean the cycles
being representatives of the considered classes that generate Hi(K,G).

Dually, with the coboundary operator the cochains may be classified. The group of
i-cocycles is Zi(K,G) = {c ∈ Ci(K,G)|δc = 0}. The group of i-coboundaries is Bi(K,G) =
{c∈Ci(K,G)| there exist d∈Ci−1(K,G)|δd= c}. The ith cohomology group is the quotient
Hi(K,G) = Zi(K,G)/Bi(K,G). By generators of the ith cohomology group we mean a
minimal set of classes which generates Hi(K,G). Also in this case, for the sake of brevity,
by generators we also mean the cocycles being representatives of the considered classes
that generate Hi(K,G).

In the following, we will use also the standard concept of the so-called relative
(co)homology. In relative (co)homology, some parts of the complex may be consid-
ered irrelevant. Let K be the considered regular CW-complex and S ⊂K be a closed
sub-complex of K. The concept of relative homology bases on the definition of relative
chains Ci(K,S ,G)=Ci(K,G)/Ci(S ,G). The definition of relative cycles Zi(K,S ,G), rela-
tive boundaries Bi(K,S ,G) and relative homology group Hi(K,S ,G) remain unchanged
with respect to the absolute version once relative chains are used. Exactly the same ap-
proach is also employed in defining relative cohomology.

In Theorem A.2, it will be recalled that there is no torsion [40] in the homology and
cohomology groups dealing with regular CW-complexes embedded in R3. A direct con-
sequence of the Universal Coefficient Theorem for cohomology, see [40], is that in the
considered torsion-free case the generators of the cohomology group over integers and
the generators of the cohomology group over complex numbers are in a bijective cor-
respondence (for further details see [41]). Therefore, all the computations are rigor-
ously performed by using integer arithmetic and the obtained cohomology generators
are valid cohomology generators also in the case of complex coefficients. The theory of
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(co)homology computations for regular CW-complexes can be found in [79]. The impor-
tant point is that for (co)homology computations only the incidence indexes κ between
cells of K are needed. This fact provides an easy way of representing CW-complexes for
the (co)homology computations with a computer by using a pointer-based data structure.
Once the theory is provided, any of the existing libraries like [44] or [45] used to compute
homology of, for instance, cubical sets can be adopted for cohomology computation of
an arbitrary regular CW-complex.

Let us now introduce the concept of exact sequences. Let A1,··· ,Am+1 be abelian groups
and let αi : Ai→Ai+1 for i∈{1,··· ,m} be homomorphisms between them. The sequence

A1
α1−→A2

α2−→ ···
αm−1
−−→Am

αm−→Am+1

is called an exact sequence if Im(αi)=Ker(αi+1) for every i∈{1,··· ,m−1}. For m=4 and
A1=A4=0 the exact sequence

0→A2
α2−→A3

α3−→A4→0

is referred to as short exact sequence. The so-called exact sequence of the reduced homol-
ogy provides us a tool to relate the homology group of the space X, its subspace A and
the relative homology of the pair (X,A).

Theorem A.1 (see Theorem 2.16, [40]). If X is a regular CW-complex and A⊂ X is a sub-
complex of X, then there is a long exact sequence

···
∂
−→Hn(A)

i∗−→Hn(X)
j∗
−→Hn(X,A)

∂
−→Hn−1(A)

i∗−→ ··· .

The map ∂ : Hn(X,A)→Hn−1(A) maps a class [α]∈Hn(X,A) to a class [∂α]∈Hn−1(A).
It is straightforward that, when Hn(X) is trivial, from the exactness of the sequence, ∂ :
Hn(X,A)→Hn−1(A) is an isomorphism.

To state, in Section 4, the dualities between first homology and first cohomology
groups of subsets of R3 the following theorems are required:

Theorem A.2 ([40], Proposition A.4, Corollary 3.44). If X⊂Rn is a finite CW-complex, then
Hi(X,Z) is 0 for i≥n and torsion free for i=n−1 and i=n−2.

For n=3 Theorem A.2 states that the first and the second homology group of a finite
CW-complexes embeddable in R3 are torsion free.

For CW-complexes the following—stronger from standard—version of excision theo-
rem holds:

Theorem A.3 (Corollary 2.24, [40]). If the CW-complex X is the union of sub-complexes A and
B, then the inclusion (B,A∩B) →֒(X,A) induces an isomorphism Hn(B,A∩B)→Hn(X,A) for
all n.



72 P. Dłotko and R. Specogna / Commun. Comput. Phys., 14 (2013), pp. 48-76

Dual chain complex

A polyhedral mesh is used to model the domain of interest of the electromagnetic prob-
lem. Let us fix the polyhedral mesh K= {Kn}n∈N. Let us now define the dual mesh B.
The construction is a straightforward extension of the construction of the dual mesh for
a simplicial complex explained in Fig. 8, see [43].

a) b) c) d)

eB
f

f
B

e

v
BnB

v

Figure 8: (a) A cell v of a simplicial complex and its one-to-one node of the barycentric complex nB; (b) A face
f of the simplicial complex and its one-to-one edge of the barycentric complex eB; (c) An edge e of the simplicial
complex and its one-to-one face of the barycentric complex fB; (d) One-to-one correspondence between a node
n of the simplicial complex and the volume of the barycentric complex vB .

Let n0=dim K be the dimension of the complex K. For every cell c∈Ki for i∈{0,··· ,n0}
by c̃∈Bn0−i let us denote the corresponding element in dual mesh B. For every c∈Kn0 , the
corresponding element c̃∈B0 is simply the barycenter of c. The remaining cells of B are
defined recursively in the following way. For c∈Ki for i∈{0,··· ,n0−1}, let {c1,··· ,cn}=
|δc| and let B(c) denotes the barycenter of c. Then c̃=

⋃n
i=1

⋃

x∈c̃i
{[x,B(c)]}, where [x,y]

denotes the line segment joining x and y. In the paper, we denote by ∂̃ and δ̃ the boundary
and coboundary operator in the dual complex B. To let the chain complex of B be dual—
in purely algebraic sense—to the chain complex of K, the boundary operator is defined
as follows:

〈∂c,d〉K= 〈∂̃d̃, c̃〉B ∀c∈Ci(K), d∈Ci−1(K) for i∈N.

We would like to point out that the presented construction is valid only in the case of
manifolds without boundary. In case of the presence of a boundary, first the complex
dual to the boundary is constructed. Then, the two dual complexes, namely the one
described above and the complex dual to the boundary, are merged in an obvious way.
Nonetheless, the construction of the dual complex is fundamental only to develop the for-
mulation while, for the computations, the explicit construction of the dual complex can
be avoided. The historical context of the idea of barycentric dual complex is mentioned
in Section 4.3.1.
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