

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. NUMER. ANAL. c© 2010 Society for Industrial and Applied Mathematics
Vol. 48, No. 4, pp. 1601–1624

CRITICAL ANALYSIS OF THE SPANNING TREE TECHNIQUES∗

PAWE�L D�LOTKO† AND RUBEN SPECOGNA‡

Abstract. Two algorithms based upon a tree-cotree decomposition, called in this paper spanning
tree technique (STT) and generalized spanning tree technique (GSTT), have been shown to be useful
in computational electromagnetics. The aim of this paper is to give a rigorous description of the
GSTT in terms of homology and cohomology theories, together with an analysis of its termination. In
particular, the authors aim to show, by concrete counterexamples, that various problems related with
both STT and GSTT algorithms exist. The counterexamples clearly demonstrate that the failure
of STT and GSTT is not an exceptional event, but something that routinely occurs in practical
applications.

Key words. algebraic topology, scalar potential in multiply connected regions, tree-cotree
decomposition, belted tree, computational topology, homology theory, cohomology theory, homology
and cohomology generators, homology-cohomology duality

AMS subject classifications. 65N30, 78M10, 78M25, 55N99, 55M05, 55N33

DOI. 10.1137/090766334

1. Introduction. The tree-cotree decomposition arises from graph theory and
consists in partitioning the edges of a graph into a spanning tree and its complement,
referred to as the cotree. The idea of taking advantage of the tree-cotree decomposi-
tion is at the root of electric network theory [1], [2]. It has been used, for example,
to generate a maximal set of independent Kirchhoff’s equations for the network anal-
ysis (see, for example, [3]). The connection of electric network analysis to algebraic
topology was soon recognized [4], [5], [6], [7], [8], [9], [10]. The tree-cotree decomposi-
tion became popular in computational electromagnetics after [11]. It had been widely
used as a gauging technique to set well-posed magnetostatic and magneto-quasi-static
boundary value problems (BVP). Nowadays, such gauging techniques have lost their
importance, since the ungauged formulations were shown to be more effective, im-
proving the condition number of the matrix for the linear system of equations; see,
for example, [12].

More recently, two algorithmic techniques based upon the tree-cotree decompo-
sition have been shown to be quite useful in computational electromagnetics. The
first one, introduced in [13] (see also [14], [15], [16] and referred to as spanning tree
technique (STT) in this paper, is commonly employed in order to compute the so-
called generalized source magnetic fields, needed to enforce the source currents when
solving magnetostatic and magneto-quasi-static BVP formulated by using a magnetic
scalar potential. In this application, the STT is used to compute a 1-cochain when
its coboundary 2-cochain is given as input.

∗Received by the editors July 27, 2009; accepted for publication (in revised form) July 16, 2010;
published electronically September 7, 2010.

http://www.siam.org/journals/sinum/48-4/76633.html
†Institute of Computer Science, Jagiellonian University, Lojasiewicza 6, 30348 Kraków, Poland

(pawel.dlotko@uj.edu.pl). This author’s work was partially supported by Polish MNSzW, grant
MNiSzW nr N201 037 31/3151.

‡Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica (DIEGM), Università di Udine,
Via delle Scienze 208, 33100 Udine, Italy (ruben.specogna@uniud.it).

1601

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1602 PAWE�L D�LOTKO AND RUBEN SPECOGNA

When solving a magneto-quasi-static BVP by using a scalar potential-based for-
mulation, a basis for the first cohomology group over integers is needed1 [17], [18],
[19]. Hence, over the past twenty years, a considerable effort has been invested by the
computational electromagnetics community to develop fast and general algorithms to
produce cohomology group generators. The second algorithm analyzed in this paper,
referred to as generalized spanning tree technique (GSTT), is an attempt to obtain
the representatives of the first cohomology group generators when the representatives
of the first homology group generators are provided as input. This widely used tech-
nique, introduced in [15], is based upon the concept of the so-called belted tree, which
has been presented in [25] (see also [26], [27], [28], [29]). Nonetheless, in most papers
where the GSTT is used, there is no mention on how to automatically and efficiently
obtain generators for the first homology group. In [19], homology generators suit-
able for GSTT are efficiently obtained by effective homology computations based on
original reduction techniques [30], [31].

Yet, both STT and GSTT algorithms are considered to be general, and their
termination (without returning an error message) is taken for granted in the literature.
In this paper, the STT and GSTT algorithms are described in detail in Figures 3.1
and 4.3, respectively, and their termination is analyzed. The main contribution of this
paper is to show that both STT and GSTT algorithms exhibit termination problems,
which are presented with concrete counterexamples in section 5. The counterexamples
clearly show that the failure of both STT and GSTT is not an exceptional event, but
something that routinely occurs in practical applications.

The paper is structured as follows. In section 2, to make the paper self-consistent,
the relevant concepts of algebraic topology, in particular homology and cohmology the-
ories, are recalled. In sections 2.5 and 2.6, a review about previous results, namely, the
absence of torsion and relation between cohomology with integer and real coefficients
for simplicial complexes embedded in R

3, are recalled. In section 2.7 some properties
of the first cohomology group generators that are extensively used further on in the
paper are presented. Section 3 contains a description of the STT. In section 4, the
GSTT is introduced in the light of algebraic topology. As far as we are aware, this
is the first paper containing a detailed description of the GSTT algorithm together
with an analysis of its termination. All of the problems that may occur running the
algorithm are easily detected as described in Figure 4.3. Therefore, the algorithm
presented in this paper always terminates, and it returns either an error message or a
first cohomology group basis of the considered complex. Section 5 contains a selection
of counterexamples in which the STT or GSTT fail. Moreover, some conditions are
stated for the correct termination of the algorithms, which are left as conjectures.
Therefore, the paper intends to give an answer to the open question arisen in [25,
p. 238], whether techniques using the belted tree, as the GSTT, are a valid alter-
native to the direct construction of the first cohomology group basis by means of a
cohomology computation. A MATLAB� code which implements the STT and GSTT
algorithms is provided to the reader, together with the inputs relative to all coun-
terexamples that are presented in section 5 and to some examples in which the STT
or GSTT correctly terminate.

2. Homology and cohomology theory, an introduction. In the considered
application, the domain of interest is always a connected subset of R3, which is de-

1The very idea dates back to Maxwell; see “Cyclosis in Surfaces and Regions” [20]. In compu-
tational electromagnetic, the idea was formalized and made popular by Kotiuga [21], [22], [23], [50],
and Gross and Kotiuga [24], even though his definition, due to the use of finite elements with nodal
basis functions, is different with respect to the one proposed in [17], [18], [19].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CRITICAL ANALYSIS OF THE SPANNING TREE TECHNIQUES 1603

scribed by a tetrahedral finite element mesh M. The mesh is obtained by using a
mesh generator for example, NETGEN, in [32]. Once the mesh is provided, it is easy
to derive from it a structure called abstract simplicial complex.

2.1. Abstract simplicial complex. A collection K of finite and nonempty sets
is called an abstract simplicial complex if, for every set S ∈ K, every nonempty subset
of S belongs to K. Every set S ∈ K is called abstract simplex. In this paper, the
elements of the abstract simplices are the nodes of the mesh M. A set of nodes form
an abstract simplex iff the convex hull of the nodes belonging to the set is an element
of a tetrahedron in M. In most of the paper, only abstract simplicial complexes and
abstract simplices are considered; for this reason the word abstract is omitted when
confusion does not arise. Moreover, since our concern is about computer algorithms,
only finite complexes are considered. The dimension of a simplex S, referred to as
dim(S), is equal to the cardinality of S minus one. A p-dimensional simplex is called
p-simplex. For a given p-simplex S, each nonempty subset of S is called a subsimplex
of S. A (p − 1)-dimensional subsimplex of S is referred to as a face of S. The geo-
metric realization of a simplex is the convex hull spanned by the elements (nodes) of
the considered simplex. The geometric realization of the abstract simplicial complex
is the sum of the geometric realizations of all simplices in it, which in our case is the
initial mesh M. In this way, the geometric simplex and geometric simplicial complex
corresponding to the considered abstract simplicial complex K are defined.

2.2. Oriented simplices and chains. Let us consider all possible orderings of
the elements of a given k-simplex S. We say that two orderings of S are equivalent if
they differ by an even permutation. Each equivalence class of this relation is referred
to as an orientation of S; see [9], [33], [34]. In this paper, a k-simplex {x0, . . . , xk}
endowed with orientation is denoted by [x0, . . . , xk], where [•] stands for an ordered
list of nodes. From now on we fix the orientation of all the simplices once and for
all. The set of all oriented p-simplices is denoted by Kp. Only oriented simplices
are considered further on in the paper; consequently, by the word simplex we always
mean an oriented simplex.

A k-chain with coefficients in a given group G is a formal combination of k-
simplices with coefficients in G. The set of all k-chains in the simplicial complex K is
denoted by Ck(K, G). The set of all k-simplices in Kp provides a basis of Ck(K, G);
i.e., every element of Ck(K, G) can be obtained in a unique way as a combination
with coefficients in G of elements belonging to the basis. The elements of Ck(K, G)
form a group with addition called the k-chain group. Let us consider a k-chain
c =

∑
S∈Kk

cSS, where cS ∈ G. The support |c| of the k-chain c is defined as

|c| = {S ∈ Kk|cS �= 0} . In this paper we are interested only in the groups Z and R.
Moreover, unless otherwise stated, the group of integers Z is assumed as the group
G. In this case we write simply Ck(K) instead of Ck(K,Z).

A k-cochain with values in the group G is a linear map c∗ : Ck(K) → G. By the
value of the cochain we refer to its image considered as an image of the map. All
k-cochains of the complex K form a group with an addition called k-cochain group
and denoted by Ck(K, G). Again, unless otherwise stated, the group G is the group
of integers Z, and in this case we write simply Ck(K) instead of Ck(K,Z).

For each k-simplex S ∈ Kk, let us define the linear map S∗ : Ck(K) → G such that
S∗(S) = 1 and S∗(K) = 0 for K �= S. The set {S∗}S∈Kk

forms a basis of Ck(K, G),
which is used further on in the paper.

For c∗ ∈ Ck(K, G) and e ∈ Ck(K, G) such that c∗ =
∑

S∈Kk
cSS∗ and e =∑

S∈Kk
eSS we denote 〈c∗, e〉 =

∑
S∈Kk

cSeS ∈ G.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1604 PAWE�L D�LOTKO AND RUBEN SPECOGNA

For c∗ ∈ Ck(K, G) and e ∈ Ck(K, G), the evaluation of a cochain c∗ on a chain e
is, by definition, the number 〈c∗, e〉.

Due to the bijective correspondence between the basis of Ck(K, G) and the basis
of Ck(K, G), a one-to-one correspondence between a chain and a cochain exists. This
chain-cochain natural duality leads to

(2.1) Ck(K, G) ∼= Ck(K, G).

2.3. (Co)boundary operator and (co)homology. For k ≥ 1, the boundary
operator ∂k : Ck(K, G) → Ck−1(K, G) is defined in the following way:

1. For a k-simplex S = [x0, x1, . . . , xk] ∈ Ck(K, G) yields

∂kS :=
∑k

i=0 (−1)i[x0, x1, . . . , x̂i, . . . , xk] ∈ Ck−1(K, G), where [x0, x1, . . . , x̂i,
. . . , xk] denotes the simplex [x0, x1, . . . , xi−1, xi+1, . . . , xk].

2. For a linear combination of simplices, the linear extension of this operator is
applied: ∂k(

∑
S∈Kk

cSS) =
∑

S∈Kk
cS∂kS.

It can be verified that ∂k−1 ◦ ∂k = 0; see, for example, [35].
In cohomology theory, the so-called coboundary operator δk−1 : Ck−1(K, G) →

Ck(K, G) is defined in the way that for every c∗ ∈ Ck−1(K, G) and c ∈ Ck(K, G)
the following equation 〈δc∗, c〉 := 〈c∗, ∂c〉 holds by definition. From the presented
definition it is straightforward to see that δk ◦ δk−1 = 0.

Since the boundary operator is a linear map between Ck(K, G) and Ck−1(K, G),
it can be represented, using the fixed bases of Ck−1(K, G) and Ck(K, G), as a matrix
called M∂k

. Suppose that the bases of Ck(K, G) and Ck−1(K, G) are taken as dual to
the fixed bases of Ck(K, G) and Ck−1(K, G) as described in section 2.2. The cobound-
ary operator δk−1 can be represented, using the considered bases, by the transposed
matrix MT

∂k
. This matrix is also denoted as Mδk . The presented matrices repre-

senting the boundary and coboundary operators are essential in the computational
aspects of the (co)homology theory.

The boundary operator gives rise to a classification of chains. From ∂k−1 ◦∂k = 0,
it is straightforward to verify that image im(∂k) is a subgroup of kernel ker(∂k−1).
The image im(∂k) is called a k-boundary group of K and is denoted by Bk(K, G).
The kernel ker(∂k) is called a k-cycle group of K and is denoted by Zk(K, G). El-
ements of Zk(K, G) are called k-cycles of K, and elements of Bk(K, G) are called
k-boundaries of K. An analogous classification can be given for the the follow-
ing cochains: Zk(K, G) = ker(δk) is the group of k-cocycles of K and Bk(K, G) =
im(δk−1) is the group of k-coboundaries of K. The homology group is the quotient
group Hk(K, G) = Zk(K, G)/Bk(K, G) for k ∈ N. The dimension of the k-homology
group is often called as k-Betti number βk(K, G) = dim(Hk(K, G)).

The set of equivalence classes of cycles [h1], . . . , [hn] ∈ Hk(K, G) is referred to as
homology basis if every other class in Hk(K, G) can be obtained in a unique way as
a linear combination of classes [h1], . . . , [hn] with coefficients in G. In the following,
by homology generator we refer both to a class [hi] being an element of the homology
basis and to any cycle hi representing this class.

The cohomology group is the quotient group Hk(K, G) = Zk(K, G)/Bk(K, G) for
k ∈ N. Similarly as for homology, one can define a cohomology basis as a set of equiv-
alence classes of cocycles [h1], . . . , [hn] ∈ Hk(K, G) such that every other equivalence
class of cocycles can be obtained in a unique way as a linear combination of classes
[h1], . . . , [hn] with the coefficients in G. In the following, by cohomology generator we
refer both to the equivalence class of a cocycle and to a cocycle representing its equiv-
alence class. The existence of the (co)homology basis for a finite simplicial complex
follows from Theorem 2.1 presented in the section 2.4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CRITICAL ANALYSIS OF THE SPANNING TREE TECHNIQUES 1605

1

1

1

1

1

1

1

-1

Fig. 2.1. Support of a generator of the first homology group of an annulus.

-1

1

1

Fig. 2.2. Support of a generator of the first cohomology group of an annulus.

When the coefficient group is Z, we simply write Hk(K) and Hk(K) instead of
Hk(K,Z) andHk(K,Z). Analogous simplified notation holds for (co)chains, (co)cycles,
and (co)boundaries.

It is possible to define the (co)homology groups for a set A ⊂ R
n by using the

singular homology theory; see, for example, [35]. The set A can be meshed with the
mesh M, and an abstract simplicial complex K can be produced based on the mesh
as described in section 2.1. It is a standard result, in fact, that the singular homology
group of A and the homology group of K are isomorphic.

Let us now present an example of simplices with nonzero coefficients in cycles and
cocycles which represent a homology and cohomology basis of an annulus. The gray
triangles in Figures 2.1 and 2.2 represent the triangulated region. The 1-chain, which
has as support the thick edges and as coefficients the ones in the figure, represents a
basis for H1(K). The 1-cochain, which has as support the thick edges in Figure 2.2
and as coefficients the ones in the same figure, represents a basis for H1(K).

Let A1, . . . , Am+1 be abelian groups, and let αi : Ai → Ai+1 be homomorphisms
between them. The sequence

A1
α1−→ A2

α2−→ . . .
αm−1−−−−→ Am

αm−−→ Am+1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1606 PAWE�L D�LOTKO AND RUBEN SPECOGNA

is called exact if im(αi) = ker(αi+1) for every i ∈ {1, . . . ,m − 1}. For m = 4 and
A1 = A4 = 0 the exact sequence

0 → A2
α2−→ A3

α3−→ A4 → 0

is referred to as short exact sequence. It is straightforward to see that if group A2 in
the short exact sequence is trivial, then α3 : A3 → A4 is an isomorphism.

2.4. Structure of the homology group in case of a simplicial complex
embedded in R

3. It can be demonstrated that the homology group of a finite sim-
plicial complex is a finitely generated abelian group; see, for example, [36]. For the
definition of a finitely generated group, a cyclic group 〈g〉 generated by the generator
g, and the definition of the direct sum, consult [36]. For finitely generated abelian
groups the following classification theorem holds.

Theorem 2.1 (see [36, Theorem 3.61]). Let G be a finitely generated abelian
group. Then G can be decomposed as a direct sum of cyclic groups. More explicitly,
there exist generators, g1, g2, . . . , gq of G and an integer 0 ≤ r ≤ q such that

• G =
⊕q

i=1〈gi〉;
• if r > 0, then g1, g2, . . . , gr are of infinite order;
• if k = q − r > 0, then gr+1, gr+2, . . . , gr+k have finite order b1, b2, . . . , bk,
where b1, b2, . . . , bk ∈ Z.

The generators gr+1, gr+2, . . . , gr+k from the Theorem 2.1 span the torsion sub-
group of G, and the numbers b1, b2, . . . , bk are referred to as torsion coefficients. If
the homology group does not contain them, then the homology group is said to be
torsion free.

A set X ⊂ R
3 is compact in the standard topology if it is closed and bounded.

In our case, all the simplicial complexes are finite, which implies that their geometric
realizations are compact sets. A topological space X is said to be contractible if it has
the same homotopy type as a point (see [35]). A space X is locally contractible if for
every x ∈ X and every open set U such that x ∈ U , there exists a contractible open
set V such that x ∈ V ⊂ U (see [37]). It is well known that the geometric realizations
of simplicial complexes are locally contractible [37].

The following theorems hold.
Theorem 2.2 (see [35, Corollary 3.45]). If X ⊂ R

n is compact and locally con-
tractible, then Hi(X,Z) is 0 for i ≥ n and torsion free for i = n− 1 and i = n− 2.

Theorem 2.3 (see [35, Proposition 2.7]). If K is a nonempty and connected
simplicial complex, then H0(K) = Z.

Let us use the Theorem 2.2 for X ⊂ R
3, where X is the geometric realization

of the considered simplicial complex K. It implies that H2(K,Z) and H1(K,Z) are
torsion free. Since the geometric realizations X of the considered simplicial complexes
K are connected, due to Theorem 2.3, H0(K,Z) = Z, so it is also torsion free.

2.5. Real and integer (co)homology groups. In this section, the group of
(co)chains with real—instead of integer—coefficients are considered. By using such
(co)chains it is possible to define the (co)homology groups of a simplicial complex K
over reals, denoted as Hk(K,R). The cochain values, usually called degrees of freedom
(DOFs) in computational physics (see, for example, [38], [25]), have a direct physical
interpretation: By using the so-called de Rham mapping [39], they are defined as the
integrals of the electromagnetic differential forms over the elements of the complex.2

2For example, the magneto-motive force DOF relative to the 1-simplex e is the integral of the
differential 1-form magnetic field over the 1-simplex e.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CRITICAL ANALYSIS OF THE SPANNING TREE TECHNIQUES 1607

However, unlike in the case of integers, that can be represented in a computer
with arbitrary precision, it is not possible to make rigorous homology computations
by using real numbers. Fortunately, it is well known in (co)homology theory that
the (co)homologies computed over integers are the most universal ones. In fact, it
will be demonstrated in the following that, in case of simplicial complexes whose
geometric realization can be embedded in R

3, the information brought by integer
and real (co)homology is identical. In particular, it will be demonstrated that the
integer homology group generators, which can be computed rigorously, are in bijective
correspondence to real homology group generators. To demonstrate this fact, let us
remind the universal coefficient theorem for homology (For the definition of tensor
product and Tor functor consult [35]; their basic properties are cited further on.)

Theorem 2.4 (see [35, Theorem 3A.4]). If K is a simplicial complex, then there
are natural short exact sequences

0 → Hk(K,Z) ⊗G
p−→ Hk(K, G) → Tor(Hk−1(K), G) → 0

for all k and G.
Due to the Theorems 2.2 and 2.3, the homology groupsH0(K), H1(K), and H2(K)

are torsion free in the case of complexes whose geometric realization can be embedded
in R

3.
Proposition 2.5 (see [35, Proposition 3A.5]). Let A,B be abelian groups. If A

or B is a free group, then Tor(A,B) = 0.
From Proposition 2.5 and Theorems 2.2 and 2.3, it follows that Tor(Hk−1(K), G) =

0 for k ∈ {1, 2}. Theorem 2.4 is used for k ∈ {1, 2}. In our case, the coeffi-
cient group G used in Theorem 2.4 is the group of real numbers R. From the
exactness of the sequence and Proposition 2.5, the following isomorphism holds:
p : Hk(K,Z) ⊗ R → Hk(K,R). Due to the isomorphisms p, each generator of
Hk(K,Z) ⊗ R corresponds to a unique generator of Hk(K,R).

Since in the considered case the homology groupsHk(K,Z) are torsion free, due to
the Theorem 2.1 they are isomorphic to the direct sum

⊕q
i=1 Z. From the properties

of the tensor product of groups presented in [35, p. 218], taking the tensor product
Hk(K,Z) ⊗ R is equivalent to multiplying the elements of Hk(K,Z) basis by real
numbers (and treating them as elements of Hk(K,R)).

As a result, there exists a bijective correspondence between the generators of
Hk(K,Z) and Hk(K,R) for k ∈ {1, 2}. From the homology-cohomology duality
Hk(K, G) ∼= Hk(K, G) [34], the same correspondence holds for cohomology group
generators.

2.6. Some basic properties of cocyles. In this section, a few basic properties
of cochains are recalled. They are extensively used further on in the paper.

Lemma 2.6. For a given simplicial complex K, the evaluation of a 1-cocycle
c∗ ∈ Z1(K) on a trivial 1-cycle c ∈ B1(K) is zero.

Proof. Since c∗ ∈ Z1(K), δc∗ = 0. Since c ∈ B1(K), there exists an e ∈ C2(K)
such that ∂e = c. It follows that 〈c∗, c〉 = 〈c∗, ∂e〉 = 〈δc∗, e〉 = 〈0, e〉 = 0.

Lemma 2.7. A 1-cochain c∗ is a 1-cocycle iff, for every 2-simplex S ∈ K2,
〈c∗, ∂S〉 = 0.

Proof. From Lemma 2.6 it follows that the evaluation of a 1-cocyle c∗ on a
cycle ∂S is zero for every 2-simplex S. To show the opposite, let us assume, by
contrary, that the evaluation 〈c∗, ∂S〉 = 0 for every 2-simplex S ∈ K2 and δc∗ �= 0.
This implies that there exists a 2-simplex K which is nonzero in δc∗. It follows that
0 �= 〈δc∗,K〉 = 〈c∗, ∂K〉 = 0. This gives a contradiction.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1608 PAWE�L D�LOTKO AND RUBEN SPECOGNA

Lemma 2.8. For two 1-cycles c1 and c2, which differ by a boundary, and a
1-cocycle c∗, 〈c∗, c1〉 = 〈c∗, c2〉 holds.

Proof. Since c1 and c2 differ by a boundary, it follows that there exists a 2-
cycle s ∈ C2(K) such that c1 = c2 + ∂s. From Lemma 2.6 it follows that 〈c∗, c1〉 =
〈c∗, c2 + ∂s〉 = 〈c∗, c2〉+ 〈c∗, ∂s〉 = 〈c∗, c2〉.

Lemma 2.9. Let us fix the cocycle c∗ ∈ Z1(K) and the cycles hi ∈ Z1(K), i ∈
1, . . . , β1(K), that represent the H1(K) basis. Then for any cycle c ∈ Z1(K) such that
[c] =

∑
αi[hi] one has < c∗, c >=

∑
αi〈c∗, hi〉.

Proof. Since [c] =
∑

αi[hi], there exists b ∈ C2(K) such that c =
∑

αihi + ∂b.
From Lemma 2.6 we have 〈c∗, c〉 = 〈c∗,

∑
i αihi + ∂b〉 =

∑
i〈c∗, αihi〉 + 〈c∗, ∂b〉 =∑

i αi〈c∗, hi〉.
3. The STT. As already stated in the introduction, the STT is a classical tech-

nique used in computational electromagnetics to compute the generalized source mag-
netic field ; see, for example, [13], [14], [15], [16]. The generalized source magnetic field
is a 1-cochain with real values that are needed to enforce the source term in magne-
tostatic and magneto-quasi-static3 BVP. Concerning this application, the simplicial
complex K is always connected and homologically trivial.

Definition 3.1. The generalized source magnetic field is a 1-cochain hs ∈
C1(K,R) that has to verify 〈hs, ∂2T 〉 = 〈is, T 〉 for each 2-simplex T in K2. is ∈
Z2(K,R) is a given electric current 2-cocycle. The values of is are real numbers
which represent the electric current flowing through each 2-simplex T in K2.

The reader should be aware that the cochain hs is not unique, as it will be shown
in this section.

Let us fix a spanning tree T of K1. The corresponding cotree C is obtained as
K1\T . Let δ1T and δ1C denote the restriction of the coboundary operator δ1 to tree and
cotree simplices, respectively. Let us denote by Mδ1C

and Mδ1T
the matrices relative

to the restricted operators (i.e., the sizes of all matrices are the same as the size of
M∂1 and the only nonzero rows correspond to elements in C and T , respectively).

In the fixed cochain basis, the cochains hs and is can be represented by DOF
arrays, which are also denoted by hs and is. The STT is a technique to find hs when
is is given, without explicitly solving

(3.1) Mδ1h
s = is

with a linear system of equations solver. The matrix Mδ1 is obviously not of maximal
rank; thus (3.1) has an infinite number of possible solutions. In fact, if two different
1-cochains hs

1 and hs
2 that differ by a 0-coboundary of a 0-cochain ω ∈ C0(K,R) are

considered, the following holds:

(3.2) Mδ1h
s
1 = Mδ1(h

s
2 +Mδ0ω) = is

since Mδ1Mδ0 = 0. As a consequence, from (3.1),

(3.3) Mδ1h
s = Mδ1C

(hs|C) +Mδ1T
(hs|T) = is,

where hs|T and hs|C denote the restrictions of the cochain hs to the tree and cotree
1-simplices, respectively. The value of hs|T relative to 1-simplices in the tree T can

3When solving magneto-quasi-static problems in frequency domain, the generalized source mag-
netic field is a complex-valued 1-cochain. All the results presented in this paper hold without any
modification also in the case of complex-valued 1-cochains.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CRITICAL ANALYSIS OF THE SPANNING TREE TECHNIQUES 1609

1. Let T ⊂ K1 be a given spanning tree of K1 (i.e., all the vertices K0 are visited by
T) and is ∈ Z2(K,R). Let hs be the 1-cochain that is about to be constructed.

2. L := K2;
3. for every E ∈ K1 set 〈hs, E〉 := UNDEFINED;
4. for every E ∈ T set 〈hs, E〉 := 0;
5. while(L �= ∅)

(a) Lsize := card(L);
(b) for every T ∈ L

i. if for every E ∈ |∂T |, 〈hs, E〉 �= UNDEFINED, then
A. HsT := 〈hs, ∂T 〉;
B. if HsT = 〈is, T 〉 then remove T from L;
C. else return FAILURE;

ii. if there exist unique E ∈ |∂T | such that 〈hs, E〉 = UNDEFINED, then
A. set 〈hs, E〉 in a way that equation 〈hs, ∂T 〉 = 〈is, T 〉 holds;
B. remove T from L;

(c) if (Lsize = card(L)) then return INFINITE LOOP;
6. return hs;

Fig. 3.1. The STT algorithm.

be fixed arbitrarily. In fact, as demonstrated, for example, in [40, p. 106], fixing the
values over the spanning tree 1-simplices correspond to eliminating the ker(δ1) (i.e.,
the system 3.3 has a unique solution when the values of hs on T elements are fixed).
Let us fix the values of hs relative to 1-simplices of the tree to zero. The rank of the
matrix in (3.3) becomes maximal, and a unique solution of

(3.4) Mδ1h
s = Mδ1C

(hs|C) = is

exists. The STT algorithm is now introduced as a technique to solve (3.4) by means of
back-substitutions only, without using a linear solver; see the algorithm in Figure 3.1.

The presented STT algorithm starts from setting the value relative to spanning
tree edges of the complex to zero. Then all 2-simplices in the complex are loaded
into a list L. The while loop of the STT algorithm works until there are no more
2-simplices in L. In each iteration, a 2-simplex T that has the value set for 2 or 3
boundary edges is searched. If T has the value already set for all 3 boundary edges,
then the evaluation of ti on ∂T is checked to be equal to the desired evaluation on
∂T . If it is not, then FAILURE is returned by the STT algorithm. If T already has
the value set for 2 boundary edges, then the third one is set in order to obtain the
desired evaluation. In both cases the 2-simplex T is removed from the list L. In the
case when L is nonempty and there is no 2-simplex T that has the value set for either
2 or 3 boundary edges, the algorithm returns INFINITE LOOP.

The question whether this algorithm terminates without returning FAILURE or
INFINITE LOOP for a given spanning tree is left unaddressed in the literature. How-
ever, it is not surprising that not all the linear systems arising in this application can
be solved in this way. Several examples of such systems, induced by the corresponding
simplicial complexes, are shown in section 5.

In the case when the algorithm returns INFINITE LOOP, since it is known that
the topology of the domain is trivial, one can theoretically use the strategy explained
in [41] and [42] to solve the problem. The raw idea is as follows:

1. Take an arbitrary cotree edge C such that 〈hs, C〉 = UNDEFINED. Together
with a part of the tree T , it closes a 1-cycle c;

2. By solving a linear system of equations, find a 2-chain d =
∑

F∈K2
dFF such

that ∂d = c;
3. 〈hs, C〉 :=

∑
F∈K2

dF 〈is, F 〉.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1610 PAWE�L D�LOTKO AND RUBEN SPECOGNA

In this way, whenever the STT algorithm is about to return INFINITE LOOP, the above
procedure can be applied and the STT iterations can continue. However, it should be
noted that the presented procedure needs the solution of an underdetermined linear
system of equations over integers. Since iterative solvers cannot be used, this yields at
least to a cubical complexity with respect to the number of simplices in the complex,
while the pure STT algorithm exhibits a linear complexity. Therefore, this solution
has exactly the same complexity as solving the original system (3.4) with a linear
system solver which provides that, in this case, STT is useless.

4. The GSTT. The STT can be modified in order to solve a different problem
arising when homologically nontrivial complexes are considered. The resulting algo-
rithm, called GSTT, is an attempt to compute the cohomology generators when the
representatives of the homology generators are given as input. In the whole section,

the set of cycles {hi}β1(K)
i=1 representing a basis of H1(K) is fixed.

4.1. Formulation of the problem. In computational electromagnetics, to
solve a magneto-quasi-static BVP using scalar potential-based formulations [19], a

family of 1-cochains {ti}β1(K)
i=1 having the following properties is needed:

1. For every i ∈ {1, . . . , β1(K)} and c ∈ B1(K), 〈ti, c〉 = 0.

2. There exists a set of cycles {hi}β1(K)
i=1 that represents a basis of H1(K) such

that 〈ti, hj〉 = δij .
Due to the first property, each cochain ti is a cocycle. In the following sections, an

algorithm to construct such 1-cocycles {ti}β1(K)
i=1 for given hj , j ∈ {1, . . . , β1(K)} will

be presented. Moreover, it will be demonstrated that {ti}β1(K)
i=1 are the representatives

of a first cohomology group basis.

4.2. Independent constraints on fundamental cycles. In this section, as an
illustration, a näıve approach to find the set of cochains defined in section 4.1 is pre-
sented. Similarly to the section 3, let us fix a spanning tree T and the corresponding
cotree C of K1.

Since T is a spanning tree of K1, for every E ∈ C there exist a unique graph-
theoretic cycle in T ∪ E denoted by cE . Based on cE , by assigning +1 and −1
coefficients to the elements of cE , a cycle (in the sense of homology theory) can be
obtained. Moreover, it is straightforward that such a cycle may have the orientation
inherited from the orientation of the chosen edge E ∈ C, in the sense described in the
following definition.

Definition 4.1. The 1-cycle LE ∈ C1(K) having the coefficient equal 1 on the
choosen edge E ∈ C and the coefficient 1 or −1 in the elements of T ∩ cE and 0
elsewhere will be referred to as fundamental cycle.

Theorem 4.2 (see [9, Theorem 1.20]). The set of all fundamental cycles {LE}E∈C
forms a basis for Z1(K).

Considering the fixed basis for the chains, the fundamental cycle matrix is now
defined. The fundamental cycle matrix B collects the incidence information between
each 1-simplex and the fundamental cycles. Let e denote the number of 1-simplices
and n the number of 0-simplices in the complex K. The fundamental cycle matrix
has a number of rows e − n + 1, one for each fundamental cycle, and a number of
columns e, one for each 1-simplex. For further details about the fundamental cycle
matrix consult [43], [44], [45], [46].

For each homology generator hi separately, a cochain bi is constructed. Let us
fix i ∈ {1, . . . , β1(K)}, and let us define the cochain bi by fixing to 0 its values for all
the 1-simplices belonging to the tree T . For each cotree 1-simplex E that closes the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CRITICAL ANALYSIS OF THE SPANNING TREE TECHNIQUES 1611

1. By solving a linear system of equations over integers, find the representation
of LE in the fixed H1(K) homology basis. Namely, find the integers αk, k ∈
{1, . . . , β1(K)}, such that LE =

∑
k αkhk + ∂b for some b ∈ C2(K).

2. return αi, where αi is the coefficient of hi in the representation of the cycle LE in
the homology basis.

Fig. 4.1. Algorithm to construct the right-hand side array bi.

fundamental cycle LE, the value is obtained by means of the algorithm in Figure 4.1.
The cochains bi and ti can be represented in the fixed cochains basis as vectors, which
are also referred to as bi and ti. It is easy to see that the linear system

(4.1) Bti = bi

is a maximal set of independent equations.4 The Eth component of the vector bi, for
E ∈ C, corresponds to the desired evaluation of ti over the corresponding fundamental
cycle LE. For this section only, let us permutate the fixed basis of 1-chains and a dual
basis of 1-cochains in such a way that the 1-simplices that belong to the tree T come
before the 1-simplices that belong to the cotree C. The matrix B in the new base,
denoted also as B, can be consequently partitioned as

(4.2) B = [BT Id] ,

where BT is the block of the matrix B relative to 1-simplices belonging to the tree
T and Id is the identity matrix, since the orientation of the fundamental cycle LE is
inherited from the one of the 1-simplex E. Also the vector ti, in the new basis, is

partitioned as ti =
[
tiT , t

i
C
]T

. Equation (4.1) can be written as

(4.3) [BT Id]

[
tiT
tiC

]
= bi.

Again, it is possible to fix the value over the 1-simplices that belong to T to obtain a
unique solution to (4.1) and (4.3). Let us fix these values tiT = 0. Then the solution
has the following simple form:

(4.4)
(tiC)E = (bi)E ∀E ∈ C,
(tiT)E = 0 ∀E ∈ T .

One can easily prove the following theorem.
Theorem 4.3. The cochains obtained as the solutions of (4.4) are exactly the

cochains defined in section 4.1.
It should be noted that the computations in the algorithm in Figure 4.1 may be

done in theory, provided that the representatives of a basis of the homology group
is given. However, this technique is extremely time consuming, since it is necessary
to find the representation in the homology basis for each fundamental cycle, which
involves the solution of a linear system over integers. Thus, this solution is not suitable
in practice. This is the reason why this technique has been referred to as näıve at
the beginning of this section. The belted tree, described in the next section, has been
developed as an attempt to avoid such a computationally expensive procedure.

4A heuristic demonstration exploits the fact that each equation on fundamental cycles involves
the value on a cotree 1-simplices, which is not used in any other equation. Thus the equations have
to be independent. They are also maximal, since the fundamental cycles form a basis for Z1(K).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1612 PAWE�L D�LOTKO AND RUBEN SPECOGNA

4.3. Belted tree. In the following sections, a different technique with respect to
the algorithm presented in the section 4.2 is used to construct the family of 1-cocycles

{ti}β1(K)
i=1 defined in section 4.1. At the beginning, the evaluation of the 1-cocycle

ti on every 1-cycle hj representing the first homology group generator in the given
homology basis is fixed to δij . Then the while loop in the GSTT algorithm is used
to compute the values corresponding to the remaining 1-simplices in K1 by enforcing
ti to be a cocycle. Due to the Lemma 2.7, to do so it is enough to set 〈ti, ∂T 〉 = 0 for
every 2-simplex T ∈ K2. It is clear that the cocycles obtained in this way are exactly
the cocycles defined in the section 4.1.

To set 〈ti, hj〉 = δij , the concept of the belted tree is used.
Definition 4.4. A belted tree B is a spanning tree T together with a set of

1-simplices {Ei}β1(K)
i=1 , Ei ∈ K1, such that the set of graph-theoretic cycles {ci}β1(K)

i=1 ,

where ci is the only cycle in T ∪Ei, are exactly the supports of the chains {hi}β1(K)
i=1 .

Each cycle ci is referred to as a belt, and the 1-simplex Ei is referred to as a belt
fastener.

The algorithmic way to obtain a belted tree will be described in the section 4.4.
In the GSTT algorithm, during construction of the cocycle ti, the belted tree is

used to set 〈ti, hj〉 = δij . This is obtained by setting 〈ti, E〉 = 0 for E ∈ B \ Ei and
〈ti, Ei〉 = 1.

4.4. Automatic construction of a belted tree. In this section, the automatic
construction of a belted tree for a simplicial complex K is addressed. At the beginning,
the representatives of the first homology group generators are computed. Then, based
on them, the belted tree is constructed.

In order to obtain the first homology basis, one of the libraries [43], [44], [45], [46]
may be used. Before the algebraic Smith normal form computations, various original
reduction techniques are applied to make the complex as small as possible [30], [31].
[24], Let us assume that, as the output of the homology computation algorithm, a

set of chains {hi}β1(K)
i=1 is obtained such that the hi =

∑
E∈K1

αE
i E represent the

generators of the first homology group.
The algorithm to construct a belted tree is now presented. For a set B ⊂ K1, let

us define the concept of B-connected component. Two vertices V1, V2 ∈ K0 belongs
to the same B-connected component if they can be joined with the 1-simplices in the
set B. The algorithm presented in Figure 4.2 is used to obtain a belted tree.

The 1-simplices in the set B are the belted tree 1-simplices. The 1-simplices in
the set C are cotree5 1-simplices.

Lemma 4.5. The only graph-theoretic cycles present in the belted tree B are those

which belong to the supports of {hi}β1(K)
i=1 .

Proof. Suppose, by contrary, that there exists a set of 1-simplices F ⊂ B that

forms a graph theoretic cycle. Moreover, suppose that F �⊂
⋃β1(K)

j=1 |hj |. It follows
that there exists a 1-simplex E ∈ F that has been added to the set F in the while

loop in the algorithm presented in Figure 4.2. Let E′ ∈ F denote the last 1-simplex
added to the set F in the above while loop. Let V1 and V2 denote the 0-simplices in
the boundary of E′. All the 1-simplices in F , except for E′, are already in the set B
when E′ is considered by the algorithm. Consequently, when E′ is considered by the
algorithm, V1 and V2 belong to the same B-connected component, since they can be
joined by the 1-simplices in (F\E′) ⊂ B. In this case, from the algorithm, it follows
that E′ ∈ C, which gives a contradiction.

5It should be noted that, in this section, the cotree is the complement of the belted tree.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CRITICAL ANALYSIS OF THE SPANNING TREE TECHNIQUES 1613

• Let B := {E ∈ K1 ∃i∈{1,...,β1(K)} hi =
∑

S∈K1
αS
i S and αE

i �= 0};

• C := ∅;
• for every E ∈ K1\(B ∪ C)

– Let V1, V2 ∈ |∂E|;
– if V1 and V2 belong to the same B-connected componenta ,
– then C := C ∪ E;
– else B := B∪ E;

• return B, C;

aThis can be effectively done by using find-union data structure; see [47].

Fig. 4.2. Construction of a belted tree.

From the first point of the algorithm in Figure 4.2 it follows that all the 1-simplices

with nonzero coefficient in the representatives of the homology generators {hi}β1(K)
i=1

are in B. From Lemma 4.5 it follows that those are the only graph-theoretic cycles
in B, and from the algorithm in Figure 4.2 it is clear that no edge can be added to
B without closing a cycle. This implies that B is a belted tree.

4.5. The GSTT algorithm. In section 4.1, the value of the cochain ti is as-
sumed to be set in the way that its evaluation on every homologically trivial cycle is
zero. In this section, a technique to enforce this condition is presented.

A linear system of equations is solved for each i ∈ {1, . . . , β1(K)}. Let B be a
belted tree created as in section 4.4. Then, for the fixed basis of the chain and cochain
group, the following system is considered:

(4.5) Mδ1t
i = 0, ti|B\Ei

= 0, ti|Ei = 1.

For this system, the following lemma holds.
Lemma 4.6. The system (4.5) has at most one solution.

Proof. Let {hj}β1(K)
j=1 be the representatives of the fixed homology basis. If the

system is not consistent, then the lemma holds. Suppose that the system is consistent.
It remains to show that, in this case, a unique solution exists. Suppose, by contrary,
that two different solutions ti and t′

i
of (4.5) exist. It follows that there exists a cotree

1-simplex E such that 〈ti, E〉 �= 〈t′i, E〉. However, the 1-simplex E together with the

1-simplices B\(
⋃β1(K)

j=1 Ej) forms a unique fundamental cycle (as in section 3) CE .

Since the {hj}β1(K)
j=1 form a homology basis, there exists a uniquely determinate set

of integers {a1, . . . , aβ1(K)} such that the cycle
∑β1(K)

j=1 ajhj is in the same homology

class as the cycle CE . From the Lemma 2.8 it follows that 〈ti, CE〉 = 〈ti,
∑

ajhj〉 =∑
aj〈ti, hj〉 and 〈t′i, CE〉 = 〈t′i,

∑
ajhj〉 =

∑
aj〈t′i, hj〉. But the values 〈t′i, hj〉 =

〈ti, hj〉, for each j ∈ {1, . . . β1(K)}, have been fixed in the system. It follows that

〈ti, CE〉 = 〈t′i, CE〉. From the assumptions in (4.5), the values associated to 1-
simplices in B \Ei are set to zero. It is straightforward to see that 〈ti, CE〉 = 〈ti, E〉
and 〈t′i, CE〉 = 〈t′i, E〉, which implies 〈ti, E〉 = 〈t′i, E〉. This gives a contradic-
tion.

Due to Lemma 4.6, the system has at most one solution, although the matrix is not
square. In principle one can solve (4.5) by using an integer arithmetic system solver.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1614 PAWE�L D�LOTKO AND RUBEN SPECOGNA

for i = 1 to β1(K)
1. let B be a belted tree and Ei be the belt fastener in hi, chosen as described in

section 4.4.
2. L := K2;
3. for every E ∈ K1 set 〈ti, E〉 := UNDEFINED;
4. set 〈ti, Ei〉 := 1 and 〈ti, E〉 := 0 for E ∈ B \ Ei;
5. while(L �= ∅)

(a) Lsize := card(L);
(b) for every T ∈ L

i. if for every E ∈ |∂T |, 〈ti, E〉 �=UNDEFINED, then
A. if 〈ti, ∂T 〉 = 0 then remove T from L;
B. else return FAILURE;

ii. if there exist unique E ∈ |∂T | such that 〈ti, E〉 = UNDEFINED then

A. set 〈ti, E〉 to get 〈ti, ∂T 〉 = 0;
B. remove T from L;

(c) if Lsize = card(L) then return INFINITE LOOP;

return {ti}β1(K)
i=1 ;

Fig. 4.3. The GSTT algorithm.

However, if a real-sized simplicial complex is used, this may take an unacceptable
amount of time or memory. The GSTT algorithm is introduced as an attempt to
solve (4.5), for every i ∈ {1, . . . , β1(K)}, by using back-substitutions only.

The GSTT algorithm is presented in Figure 4.3.
The idea of the GSTT algorithm (for β1(K) = 1) is shown in Figure 4.4, on the

same simplicial complex used in section 2.3. In the first picture, the edges belonging
to the belted tree are shown. The thicker edge with coefficient 1 is the belt fastener
edge. All the values on the other edges belonging to the belted tree are set to zero.
Then the iteration process starts. On each iteration, the darker 2-simplices are the
ones with 2 edges in their boundary already set. Thus the value on the third edge
can be determined by setting a zero evaluation on the boundary of the considered
2-simplex. The dotted edges represent the edges whose value is determined in the
considered iteration.

4.6. Conditions for GSTT error-free termination. This section summa-
rizes some conditions required for the GSTT to terminate without errors and some
conditions that arise from features that appear to cause difficulties for the GSTT
algorithm. The conditions are strongly related to the counterexamples presented in
section 5. No formal proof that GSTT returns errors when one or more of the de-
scribed conditions do take place are known so far.

Let us first present the conditions related with the way belt fasteners are chosen:
1. Let hi =

∑
E∈K1

αE
i E be the given representatives of the homology basis, and

let αEi

i be the coefficient of belt fastener Ei in hi. Due to the assumptions

about ti, one has 1 = 〈ti, hi〉 = 〈ti,
∑

E∈K1
αE
i E〉 = 〈ti, αEi

i Ei〉 = αEi

i 〈ti, Ei〉.
It follows that in order to set 〈ti, hi〉 = 1 in a belted tree one needs to have
|αEi

i | = 1.
2. For each representant of the homology basis hi =

∑
E∈K1

αE
i E, a belt fastener

1-simplex Ei has to be chosen in the way that a chain Ĉi =
∑

E∈K1
βE
i E such

that

βE
i :=

{
αE
i if E �= Ei,

0 if E = Ei,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CRITICAL ANALYSIS OF THE SPANNING TREE TECHNIQUES 1615

1

0

0

0
0

0 0

0

0

0

00

belted tree

1

0

0

0
0

0 0

0

0

0

00

first iteration

1

0

0

01

0

1

0

0

0
0

0 0

0

0

0

00

second iteration

1

0

0

01

0

0

0

0

1

1

0

0

0
0

0 0

0

0

0

00

third iteration

1

0

0

01

0

0

0

0

1

0

0

1

0

0

0
0

0 0

0

0

0

00

output

1

0

0

01

0

0

0

0

1

0

0

Fig. 4.4. Illustration of the GSTT algorithm iterations.

does not contain subchains6 that are homologically nontrivial cycles.
It is shown in sections 5.2.1 and 5.3.1 that these are critical requirements for
the belt fastener. However, in general, it is not easy in practice to algorith-
mically verify this assumption in an effective way.

Now let us present the conditions related with belts:
1. As stated in section 5.2.2, the belt cannot be a knot. A similar situation takes

place when the considered domain is a complement of a knot; see section 5.4.1.
The authors believe that GSTT will never terminate without errors in those
cases.

6Let c =
∑

E∈K1
βEE, d =

∑
E∈K1

γEE, with c, d ∈ C1(K). d is a subchain of c if the following

implication holds: βE = 0 ⇒ γE = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1616 PAWE�L D�LOTKO AND RUBEN SPECOGNA

2. Unfortunately, valid (but not minimal in some sense) generators that do not
have intersections nor self-intersections and which do not form any knot may
cause a problem for correct GSTT termination as well, as reported in sec-
tion 5.3.2.

Also “knotted paths” in the belted tree, as in sections 5.1.1 and 5.1.2, may pre-
vent STT/GSTT error-free termination. In fact, since STT and GSTT use the same
propagation strategy, the STT counterexamples reported in sections 5.1.1, 5.1.2 and
5.1.3 hold for GSTT as well.

All these counterexamples indicate that it may be very hard to try to present
necessary and sufficient conditions for the STT/GSTT error-free termination.

4.7. Formal description of the GSTT output. It is assumed that the al-
gorithm presented in Figure 4.3 did not return FAILURE or INFINITE LOOP. For each
chain hi representing the H1(K) generator, let ti denote the cochain obtained as

the output of the algorithm. It is demonstrated in the following that the {ti}β1(K)
i=1

returned by the GSTT algorithm represents an H1(K) basis. First, the universal
coefficients theorem for cohomology is recalled.

Theorem 4.7 (see [35, Theorem 3.2]). If a simplicial complex K has (integer)
homology groups Hn(K), then the cohomology groups Hn(K, G) are determined by the
exact sequences

0 → Ext(Hn−1(K), G) → Hn(K, G)
h−→ Hom(Hn(K), G) → 0.

In this paper, there is no need to go into the definition of the Ext functor. The
key property is that Ext(Q,G) = 0 if Q is a free group. For further details and proof
of this property consult [35, p. 195]. Hom(Hn(K), G) is denoted by the group of
homomorphisms Hn(K) → G with addition.

From the definition of a coboundary operator for a class [d] ∈ Hn(K, G), since
d is a cocycle, one has 0 = 〈δd, z〉 = 〈d, ∂z〉 for each z ∈ C2(K). From the above
equality it follows that d|Bn(K) = 0. Let us define the restriction d0 = d|Zn(K). Since
d0|Bn(K) = 0, then d0 ∈ Hom(Hn(K), G). This shows the correctness of definition of
the map h([d]) = d0 ∈ Hom(Hn(K), G) used in the exact sequence in Theorem 4.7.
In our case the group G is the group of integers, and the universal coefficient theorem
for cohomology is used in the case n = 1. In this case the exact sequence from
Theorem 4.7 has the form

0 → Ext(H0(K),Z) → H1(K,Z)
h−→ Hom(H1(K),Z) → 0.

Now, the main theorem of this section is presented.

Theorem 4.8. The output of the GSTT algorithm, {ti}β1(K)
i=1 , consists of the

cocycles representing a basis of the first cohomology group H1(K).
Proof. Since in our case the simplicial complex K is nonempty and connected,

from Theorem 2.3 it follows that H0(K) = Z. This provides that H0(K) is a free
group. From the cited property of the Ext functor, it follows that Ext(H0(K),Z) = 0.
From exactness of the sequence, one has that h : H1(K,Z) → Hom(H1(K),Z) is an

isomorphism. Let {hi}β1(K)
i=1 be the cycles representing the H1(K) basis that has been

used as the input to the GSTT algorithm. Let us define φi ∈ Hom(H1(K),Z) such
that φi([hj]) = δij . Since K is a three-dimensional simplicial complex, then, due to
Theorems 2.2 and 2.3, all the homology groups of K are free groups. Consequently

{φi}β1(K)
i=1 form a basis of Hom(H1(K),Z). Since h is an isomorphism, {h−1(φi)}β1(K)

i=1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CRITICAL ANALYSIS OF THE SPANNING TREE TECHNIQUES 1617

form a basis of H1(K,Z). Let us denote (t′
i
) = h−1(φi). Due to the definition of

the isomorphism h, the cocycles t′i verify 〈t′i, hj〉 = δij , as the cocycle ti obtained

from the GSTT algorithm presented in Figure 4.3. It remains to show that t′
i
and ti

are in the same cohomology class for every i ∈ {1, . . . , β1(K)}. Suppose, by contrary,

that t′
i − ti is a nonzero element in H1(K,Z). Then the image h(t′

i − ti) is a
nonzero element in Hom(H1(K),Z). Therefore, there exists a nonzero element [e] ∈
H1(K), [e] = [

∑β1(K)
j=1 αjhj], such that αj �= 0 for some j ∈ {1, . . . , β1(K)}, which

implies 〈t′i − ti, e〉 �= 0. However, 0 �= 〈t′i − ti, e〉 = 〈t′i − ti,
∑β1(K)

j=1 αjhj〉 =∑β1(K)
j=1 αj(〈t′i, hj〉 − 〈ti, hj〉) = 0. This gives a contradiction. Hence, the cocycles

{ti}β1(K)
i=1 obtained by the GSTT algorithm represent a basis of H1(K).

5. Termination issues. Despite that the STT and the GSTT are considered
to be general, in this section we show that quite a big number of limitations of these
techniques exist. Let us present these limitations with concrete counterexamples. To
this aim, the STT and GSTT algorithm have been implemented by the authors using
Matlab

� [48]. The meshes and homology generators employed in all the presented
counterexamples are provided with the implementation.

5.1. STT termination errors.

5.1.1. Counterexample A: A coarse ball. The simplest counterexample is
formed by a three-dimensional homologically trivial complex. It contains eight 3-
simplices, 22 2-simplices, 21 1-simplices, and eight 0-simplices. An exploded view
of the 3-simplices is visible on the left of Figure 5.1. A spanning tree is formed by
considering the thick 1-simplices on the right of Figure 5.1. If the STT is run, no
1-simplex can be set, and the STT algorithm returns INFINITE LOOP. In fact, each
2-simplex has one and only one tree 1-simplex in its boundary.

Remark 1. This counterexample demonstrates that there exist trees for which
the STT terminates with an error.

5.1.2. Counterexample B: A cube. A three-dimensional complex which rep-
resents a cube and is homeomorphic to the three-dimensional ball is introduced. A
tree is constructed first on the boundary of the complex. Then the tree is constructed
in the interior, using as graph only the 1-simplices that have no node on the boundary
of the cube. Moreover, the tree in the interior contains a “knotted path;” see Fig-
ure 5.2. Finally, a tree on the whole cube is obtained by adding one 1-simplex that
joins the tree on the cube’s boundary and the tree in the interior. Such a procedure

edges not imposed by STT
starting tree

Fig. 5.1. The complex considered in counterexample A.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1618 PAWE�L D�LOTKO AND RUBEN SPECOGNA

Fig. 5.2. A three-dimensional complex which represents a cube is considered in counterexample
B. A subset of the chosen tree is shown in addition.

Lower
chamber

Upper
chamber

(a) (b)

Fig. 5.3. The sketch of the complex considered in counterexample C.

to build a tree is frequently used in computational electromagnetics (see, for example,
[15]), to reduce the support of the 1-cochain hs. In this counter-example the STT
returns INFINITE LOOP, it being not possible to set all the 1-simplices in the cube.

5.1.3. Counterexample C: The Bing’s house. A Bing’s house [49] is now
considered. The complex, homeomorphic to the three-dimensional ball, can be ob-
tained by replacing every surface in the polyhedron represented in Figure 5.3(a) by
a “thick wall” made of 3-simplices. At the end of this procedure, one obtains the
polyhedron in Figure 5.4. The two views are obtained by cutting the polyhedron with
a vertical plane (Figure 5.4(a)) and a horizontal plane (Figure 5.4(b)). The obtained
polyhedron can be considered informally as a “house” with two “chambers.” In fact,
the polyhedron is made in such a way that one can enter the two chambers by follow-
ing the paths shown in Figure 5.3(b). It can be demonstrated that the Bing’s house
is homeomorphic to the tree-dimensional ball.

Also with this complex the STT returns INFINITE LOOP.
Remark 2. This counterexample demonstrates that, for a given mesh of the

Bing’s house and for a randomly chosen spanning tree, the STT terminates with an
error. We conjecture that this is the case for every spanning tree of the Bing’s house.

5.2. GSTT termination errors arising with one generator.

5.2.1. Counterexample D: Self-intersecting generator. The complement
of a torus with respect to a cylinder is covered with the complex K. On the left of
Figure 5.5, the boundary of the complex K is shown. On the right, the internal bound-
ary of K is depicted. The 1-simplices with nonzero coefficient in the H1(K) generator

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CRITICAL ANALYSIS OF THE SPANNING TREE TECHNIQUES 1619

(a) (b)

Fig. 5.4. Two views of the Bing’s house polyhedron obtained by cutting it with a vertical plane
(a) or a horizontal plane (b).

Fig. 5.5. The complex used in the counterexample D.

1-cycle are represented in the figure as thick edges. The thickest of all edges is the belt
fastener. This homology generator may be obtained from a homology computation.
In this counterexample, the belt fastener 1-simplex is chosen to enforce a nonzero
circulation on a trivial cycle. Therefore, due to the Lemma 2.6, an inconsistent value
is forced, and the GSTT returns FAILURE.

Remark 3. This class of problems in principle can be solved by selecting the
appropriate belt fastener. Nonetheless, it should be noted that the procedure to
select the appropriate belt fastener necessarily requires us to check whether a cycle is
homologically trivial or not, which is computationally costly.

5.2.2. Counterexample E: Knotted generator. A simple torus complement,
as in counterexample D, is considered; see Figure 5.6. A knotted generator, which
may be obtained by an automatic homology computation, is used in this counterex-
ample. For a random tree containing the knotted generator, the GSTT returns
INFINITE LOOP. We conjecture that this is the case for every tree when the generator
forms a knot.

Remark 4. This counterexample demonstrates that, for a given knotted generator
and randomly chosen belted tree, the GSTT terminates with an error. Moreover, we
note that this situation is difficult to detect.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1620 PAWE�L D�LOTKO AND RUBEN SPECOGNA

Fig. 5.6. The complex used in the counterexample E.

Fig. 5.7. The complex used in the counterexamples F and G.

5.3. GSTT termination errors arising with more than one generator.
The complement of a double torus with respect to a cube is covered with the simplicial
complex K; see Figure 5.7. On the left of Figure 5.7, the boundary of the complex K
is shown. On the right, the internal boundary of K is depicted. This complex is used
in the next two counterexamples.

5.3.1. Counterexample F: Intersecting generators. A double torus com-
plement complex is considered; see Figure 5.7. In the considered counterexample, the
two homology generators are produced by an automatic homology computation. Such
generators intersect each other (see Figures 5.8(a) and 5.8(b)), which is quite common
in practice. If the first belt fastener is selected as in this counterexample, a nonzero
evaluation is set on a trivial cycle; see Figure 5.8(c). This inconsistency induces the
GSTT to return a FAILURE.

Remark 5. The same remark as the one in counterexample D holds.

5.3.2. Counterexample G: Complicated generators. A double torus com-
plement complex is considered; see Figure 5.7. Let us denote the generators as in
Figure 5.9(a) as g1 and g2. Let us also denote by e1 = g1+ng2 and e2 = g1+(n−1)g2.
Then, of course, e1− e2 = g2. Since ng2 = n(e1 − e2), e1 = g1+ng2 = g1+n(e1 − e2)
holds. This implies e1−n(e1− e2) = g1. So one can get both g1 and g2 as a combina-
tion of e1 and e2. g1 and g2 is a valid homology basis; hence also e1 and e2 is a valid

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CRITICAL ANALYSIS OF THE SPANNING TREE TECHNIQUES 1621

(a)

(b)

(c)

Fig. 5.8. The complex used in the counterexample F.

(b)

(c)

f2

(a)

g2 g1

g1 g2+=

f1 g1 g2+= 2

Fig. 5.9. The complex used in the counterexample G.

basis. In this example, let us focus on the case of n = 2. Let us define g1 + 2g2 = f1
and g1 + g2 = f2. It follows that f1 − f2 = g2 and f2 − (f1 − f2) = 2f2 − f1 = g1.
So f1 and f2 are a valid basis for the first homology group, which means that such a
generators can be obtained by an automatic homology computation. If the generators
f1 and f2 are used as input for the GSTT, the algorithm returns INFINITE LOOP.

Remark 6. This counterexample demonstrates that, considering f1 and f2 as
input generators and for a randomly chosen belted tree, the GSTT terminates with
an error. We conjecture that this is the case for every spanning tree. Moreover, we
note that this situation is difficult to detect, since the generators do not intersect each
other and are not self-intersecting and nonknotted.

5.4. GSTT termination errors arising with knot’s complements.

5.4.1. Counterexample H: Complement of a knot. A trefoil knot com-
plement with respect to a cube is considered and covered by the complex K; see
Figure 5.10. A nonself-intersecting and nonknotted homology generator is used. The
GSTT algorithm returns INFINITE LOOP. We conjecture that this counterexample
holds always when a knot’s complement is considered.

Remark 7. This counterexample demonstrates that, for a given mesh of a knot’s
complement and for a random belted tree, the GSTT terminates with an error.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1622 PAWE�L D�LOTKO AND RUBEN SPECOGNA

Fig. 5.10. The complex used in the counterexample H.

6. Conclusions. The STT and the GSTT have been analyzed in the light of
algebraic topology. The number of counterexamples shows that many problems may
arise both with the STT and the GSTT, preventing their termination without errors.
Moreover, it seems not trivial to find a general solution to all of these problems.
Therefore, the answer proposed by the authors to the open question raised by Bossavit
in [25, p. 238] is that the direct computation of the first cohomology group generators
appears to be a better option than GSTT.

Acknowledgments. We would like to thank the anonymous referees for some
valuable comments which helped to improve the presentation of the paper.

REFERENCES

[1] G. Kirchhoff, Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der
linearen Vertheilung Galvanischer Ströme geführt wird, Poggendorf’s Ann. Phys. Chemie,
72 (1847), pp. 497–508.

[2] G. Kirchhoff, On the solution of the equations obtained from the investigation of the linear
distribution of galvanic currents, IRE Trans. Circuit Theory, 5 (1958), pp. 4–7.

[3] N. Balabanian and T.A. Bickart, Electrical Network Theory, Wiley, New York, 1969.
[4] H. Weyl, Reparticiòn de corriente en una red conductora: Introducciòn al analysis situs

combinatorio, Rev. Math. Ispano-Americana, 5 (1923), pp. 153–164.
[5] O. Veblen, Analysis Situs, Amer. Math. Soc. Coloq. Pub. 5, AMS, Providence, RI, 1931.
[6] J.P. Roth, An application of algebraic topology to numerical analysis: On the existence of a

solution to the network problem, Proc. Natl. Acad. Sci., 41 (1955), pp. 518–521.
[7] G. Kron, Numerical solution of ordinary and partial differential equations by means of equiv-

alent circuits, J. Appl. Phys., 126 (1945), pp. 172–186.
[8] F.H. Branin, Jr., The algebraic-topological basis for network analogies and the vector calculus,

in Proceedings of the Symposium on Generalized Networks, Polytechnic Press, Brooklyn,
NY, 1966, pp. 453–491.

[9] P.J. Giblin, Graphs, Surfaces and Homology, Chapman and Hall, London, UK, 1977.
[10] P. Bamberg and S. Sternberg, A Course in Mathematics for Students of Physics: Vol. 2,

Cambridge University Press, Cambridge, UK, 1991.
[11] R. Albanese and G. Rubinacci, Integral formulation for 3D eddy-current computation using

edge elements, IEE Proc. A, 135 (1988), pp. 457–462.
[12] Z. Ren, Influence of the R.H.S. on the convergence behaviour of the curl-curl equation, IEEE

Trans. Magn., 32 (1996), pp. 655–658.
[13] J.P. Webb and B. Forghani, A single scalar potential method for 3D magnetostatics using

edge elements, IEEE Trans. Magn., 25 (1989), pp. 4126–4128.
[14] Y. Le Ménach, S. Clénet, and F. Piriou, Determination and utilization of the source field

in 3D magnetostatic problems, IEEE Trans. Magn., 34 (1998), pp. 2509–2512.
[15] F. Henrotte and K. Hameyer, An algorithm to construct the discrete cohomology basis

functions required for magnetic scalar potential formulations without cuts, IEEE Trans.
Magn., 39 (2003), pp. 1167–1170.

[16] T. Henneron, S. Clenet, P. Dular, and F. Piriou, Discrete finite element characteriza-
tions of source fields for volume and boundary constraints in electromagnetic problems, J.
Comput. Appl. Math., 215 (2008), pp. 438–447.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CRITICAL ANALYSIS OF THE SPANNING TREE TECHNIQUES 1623

[17] R. Specogna, S. Suuriniemi, and F. Trevisan, Geometric T-Ω approach to solve eddy-
currents coupled to electric circuits, Internat. J. Numer. Methods Engrg., 74 (2008),
pp. 101–115.

[18] P. D�loko, R. Specogna, and F. Trevisan, A homological algorithm for the automatic gen-
eration of cuts suitable for T-Ω eddy-current geometric formulation, in Proceedings of the
5th Workshop on Advanced Computational Electromagnetics (ACE’09), Accademia dei
Lincei, Rome, Italy, 2009, pp. 780–801.

[19] P. D�loko, R. Specogna, and F. Trevisan, Automatic generation of cuts on large-scaled
meshes suitable for the T-Ω geometric eddy-current formulation, Comput. Methods Appl.
Mech. Engrg., 198 (2009), pp. 3765–3781.

[20] J.C. Maxwell, A Treatise on Electricity and Magnetism, Volume 1, Clarendon Press, Oxford,
UK, 1891.

[21] P.R. Kotiuga, On making cuts for magnetic scalar potentials in multiply connected regions,
J. Appl. Phys., 61 (1987), pp. 3916–3918.

[22] P.R. Kotiuga, Toward an algorithm to make cuts for magnetic scalar potentials in finite
element meshes, J. Appl. Phys., 63 (1988), pp. 3357–3359.

[23] P.R. Kotiuga, An algorithm to make cuts for magnetic scalar potentials in tetrahedral meshes
based on the finite element method, IEEE Trans. Magn., 25 (1989), pp. 4129–4131.

[24] P.W. Gross and P.R. Kotiuga, Electromagnetic Theory and Computation: A Topological
Approach, Math. Sci. Res. Inst. Monogr. Ser. 48, Cambridge University Press, Cambridge,
UK, 2004.

[25] A. Bossavit, Computational Electromagnetism, Academic Press, San Diego, 1998; also avail-
able online at http://butler.cc.tut.fi/˜bossavit/.

[26] L. Kettunen, K. Forsman, and A. Bossavit, Formulation of the eddy current problem in
multiply connected regions in terms of h, Internat. J. Numer. Methods Engrg., 41 (1998),
pp. 935–954.

[27] L. Kettunen, K. Forsman, and A. Bossavit, Discrete spaces for div and curl-free fields,
IEEE Trans. Magn., 34 (1998), pp. 2551–2554.

[28] L. Kettunen and A. Bossavit, Gauging in Whitney spaces, IEEE Trans. Magn., 35 (1999),
pp. 1466–1469.

[29] S. Suuriniemi, T. Tarhasaari, and L. Kettunen, Generalization of the spanning-tree tech-
nique, IEEE Trans. Magn., 38 (2002), pp. 525–528.

[30] M. Mrozek and B. Batko, Coreduction homology algorithm, Discrete Comput. Geom., 41
(2009), pp. 96–118.

[31] T. Kaczynski, M. Mrozek, and M. Ślusarek, Homology computation by reduction of chain
complexes, Comput. Math. Appl., 35 (1998), pp. 59–70.

[32] J. Schöberl, NETGEN—An advancing front 2D/3D-mesh generator based on abstract rules,
Comput. Vis. Sci., 1 (1997), pp. 41–52.

[33] W.S. Massey, Singular Homology Theory, Grad. Texts Math. 70, Springer-Verlag, Berlin,
Germany, 1980.

[34] J.R. Munkres, Elements of Algebraic Topology, Perseus Books, Cambridge, MA, 1984.
[35] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, UK, 2002; also

available online at http://www.math.cornell.edu/˜hatcher/AT/AT.pdf.
[36] T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational Homology, Springer-Verlag,

New York, 2004.
[37] V.V. Prasolov, Elements of Combinatorial and Differential Topology, Grad. Stud. Math. 74,

AMS, Providence, RI, 2006.
[38] E. Tonti, On the Formal Structure of Physical Theories, Monogr. Ital. Nat. Res. Coun-

cil (CNR), 1975; also available online at http://www.dic.univ.trieste.it/perspage/tonti/
papers.htm.

[39] J. Dodziuk, Finite difference approach to the Hodge theory of harmonic forms, Amer. J. Math.,
98 (1976), pp. 79–104.

[40] G. Strang, Linear Algebra and its Applications, 3rd ed., Brooks/Cole, Pacific Grove, CA,
2003.

[41] K. Preis, I. Bardi, 0. Biro, C. Magele, G. Vrisk, and K.R. Richter, Different finite
element formulations of 3D magnetostatic fields, IEEE Trans. Magn., 28 (1992), pp. 1056–
1059.

[42] P. Dular, F. Henrotte, F. Robert, A. Genon, and W. Legros, A generalized source
magnetic field calculation method for inductors of any shape, IEEE Trans. Magn., 33
(1997), pp. 1398–1401.

[43] Computer Assisted Proofs in Dynamics, capd.wsb-nlu.edu.pl.
[44] Chomp Library, chomp.rutgers.edu.
[45] JPlex Library, comptop.stanford.edu/programs/jplex.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1624 PAWE�L D�LOTKO AND RUBEN SPECOGNA

[46] LinBox Library, www.linalg.org.
[47] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms, 2nd

ed., MIT Press, Cambridge, MA, 2001.
[48] P. D�lotko and R. Specogna, Matlab Implementation of the STT and GSTT Algorithm,

http://www.diegm.uniud.it/elettrotecnica/web/tc/ or http://www.comphys.com/tc/.
[49] R.H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, in

Lectures on Modern Mathematics II, T.L. Saaty, ed., Wiley, New York, 1964, pp. 93–128.
[50] P.R. Kotiuga, Erratum: Toward an algorithm to make cuts for magnetic scalar potentials

in finite element meshes, [J. Appl. Phys., 63 (1988), pp. 3357–3359], J. Appl. Phys., 64
(1988), p. 4257.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

