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Abstract. We propose a pair of approaches to account for voltage driven coils when solving 3D eddy-current
problems with a discrete geometric approach. The formulation we use is based on the circulation a of the
magnetic vector potential on primal edges and on a scalar potential χ on conductor primal nodes. The
proposed approaches consider distributed or localized voltage sources respectively and they can be applied
to general coil geometries. The results are compared with those obtained with Finite Elements.

PACS. 02.70.-c Computational techniques – 41.20.Gz Magnetostatics; magnetic shielding, magnetic
induction, boundary-value problems

1 Introduction

The modeling of voltage driven coils as sources in
eddy-current problems is a well known problem and effi-
cient solutions have been proposed in [1,2,7] in the frame-
work of Finite Elements formulations. We will start here
from an algebraic formulation for eddy-currents [10] de-
duced from the so called discrete geometric approach [15].
This formulation, named a−χ, is based on the circulation
of magnetic vector potential a on primal edges and on a
scalar potential χ on primal nodes of a mesh made of a
pair of interlocked cell complexes. The aim of this paper
is to introduce the algebraic equations of voltage driven
coils within the a−χ formulation, which “naturally” treats
only current driven coils.

In order to specify the sources in terms of imposed
e.m.f.s along a set of primal edges, we will propose two
strategies. In the first strategy e.m.f.s are determined on
all the primal edges of the source region (Distributed Volt-
age Sources), while, in the second one, only a subset of
edges of the source region have the e.m.f.s assigned (Lo-
calized Voltage Source). We will also propose an iterative
algorithm to make consistent the right-hand side term of
the final linear system, in the case of Distributed Voltage
Sources; in this way the construction of the right-hand
side of the final system is simplified. The performances
of the two strategies will be compared with respect to a
numerical example.

a e-mail: r.specogna@nettuno.it

2 a − χ formulation for voltage driven coils

The domain of interest D of the eddy-current problem,
can be partitioned into a source region Ds, consisting of
a voltage driven coil, a passive conductive region Dc, and
an air region Da which is the complement of Dc and Ds

in D. We introduce in D a pair of interlocked cell com-
plexes [3,6,14]. The primal complex is simplicial with in-
ner oriented cells such as nodes n, edges e, faces f , vol-
umes v (v are tetrahedra).

The dual complex is obtained from the primal accord-
ing to the barycentric subdivision, with outer oriented
cells such as dual volumes ñ, dual faces ẽ, dual edges f̃ ,
dual nodes ṽ. For example a dual node ṽ is the barycenter
of the tetrahedron v, a dual edge f̃ is line drawn from the
barycenter of f joining the two dual nodes ṽ′, ṽ′′ in the
tetrahedra v′, v′′ on both sides of f ; with this notation
the one-to-one correspondence between a cell and its dual
becomes evident.

The interconnections between cells of the primal com-
plex, are defined by the usual connectivity matrices G
between pairs (e, n), C between pairs (f, e), D between
pairs (v, f). Similarly, the corresponding matrices for the
dual complex are −GT (the minus sign is due to the as-
sumption that a dual volume ñ is oriented by the outward
normal, while a node n is oriented as a sink) between
pairs (ñ, ẽ), CT between pairs (ẽ, f̃) and DT between pairs
(f̃ , ṽ). With respect to these cell complexes1, we recall the
physical laws governing an eddy-current problem, written
at discrete level, without any approximation, in terms of

1 In a cell complex, properties CG = 0 and DC = 0 hold.
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the Degrees of Freedom arrays

Db = 0 (a)
Ce = −dtb (b)

CT h = j (c)

GT j = 0 (d) (1)

where (a) is Gauss’s law relating the array b of magnetic
induction fluxes associated with primal faces (the k-th en-
try of b is in Wb), (b) is Faraday’s law relating the array e
of e.m.f.s along primal edges (the k-th entry of e is in V),
(c) is Ampère’s law relating the array h of m.m.f.s asso-
ciated with dual edges (the k-th entry of h is in A) and
j is the array of currents crossing dual faces (the k-th en-
try of j is in A), (d) is the continuity law. We wrote (1a)
and (1d) explicitly even though the are implied by (1b)
and (1c) respectively, because we use them to deduce the
final system of equations.

In addition to these laws, discrete counterparts of con-
stitutive laws have to be considered

h = ν b, j = σ (e + es), (2)

where ν (dim(ν) = Nf , Nf being the number of faces
in D) and σ (its dimension depends on the number
of edges in the conducting region considered) are some
square mesh- and medium-dependent matrices that re-
quire metric notions and material properties in order to
be computed [13]. We indicate with σc Ohm’s matrix in
Dc with dim (σc) = Nec and with σs Ohm’s matrix in Ds

with dim(σs) = Nes, where Nec and Nes are the numbers
of edges in Dc and Ds respectively.

The magnetic matrix ν can be computed as described
in [11], while Ohm’s matrix σ can be computed as pro-
posed in [10,12]; it may be non-symmetric and may differ
from the one used in finite elements [1]. Alternative ap-
proaches are suggested in [4,5]. Finally, we have indicated
with es the array of imposed e.m.f.s along primal edges
of Ds.

We recall briefly the a−χ formulation [10]. We search
for u as a sum of arrays a + Gχ, where a is the array
of circulations a of the magnetic vector potential along
primal edges e of D and χ is the array of scalar potential
χ associated with primal nodes n of Dc and Ds. In this
way (1a) is satisfied identically and we may rewrite (1)
with (2) using u, obtaining the following equations in the
frequency domain (dt → iω),

(CT νCa)e = 0 ∀ e ∈ Da

(CT νCa)e + iω(σsas)e + iω(σsGsχs)e = (js)e ∀ e ∈ Ds

(CT νCa)e + iω(σcac)e + iω(σcGcχc)e = 0 ∀ e ∈ Dc

iω(GT
s σsas)n + iω(GT

s σsGsχs)n = (GT
s js)n ∀n ∈ Ds

iω(GT
c σcac)n + iω(GT

c σcGcχc)n = 0 ∀n ∈ Dc,
(3)

where arrays ar or χr, with r = {s, c}, are the sub-arrays
of a or χ respectively, associated with primal edges or
nodes in Dr; similarly Gr is the sub-matrix of G associ-
ated with pairs (e, n) of Dr. With (x)k we mean the k-th
row of array x, where k = {e, n} is the label of edge e or

Fig. 1. On the left the coil with the air cut are shown, together
with the pair of surfaces Sa, Sb between the thick cut C and
the conductor. On the right nodes like n and edges like e laying
on S have duplicated labels.

of node n. In the right-hand side of (3), we introduced the
array js of equivalent source currents defined as

js = σses, (4)

indexed over the edges of Ds. The system (3) is singu-
lar and to solve it we rely on CG method without gauge
condition [8].

In the following we will describe the strategies of Dis-
tributed Voltage Source and of Localized Voltage Source
respectively to construct the right-hand side of the sys-
tem (3). In both the proposed approaches, array js will be
not consistent with (1d). However, we will show how to
guarantee consistency of the right-hand side at least for
one of the two approaches (the Distributed Voltage Source
case). When consistency holds, the last two sets of equa-
tions in (3) are implied by the first three sets, yielding no
new information and thus they can be omitted; also χ can
be omitted and we obtain the so called a-formulation [9].
To solve (3) we adopt a CG iterative solver (with SSOR
preconditioner) and to achieve a good convergence rate in
the case of a-formulation, special preconditioners must be
exploited, see [16,17]; for this reason we will use here the
a − χ formulation also when consistency holds.

3 Distributed voltage sources

In the case of particular symmetries of Ds, the imposed
electric field Es(P ) at a point P ∈ Ds can be computed
in advance. In this case we derive immediately the e.m.f.
es

e =
∫

e
Es · dl along edge e and thus construction of the

right-hand side of (3) is straightforward.
In the case of a generic coil geometry, we consider a

thick cut in Ds by introducing an insulating volume C.
Then to compute Es, we solve a steady-state conduction
current problem in the sub-domain D′

s = Ds − C with
assigned boundary conditions on the two surfaces Sa, Sb

between C and D′
s, Figure 1. Thinking to a limit process,

we can make the thick cut C thinner and thinner until Sa

and Sb coincide with the two faces of a single cut surface S
(Fig. 1, on the right). Thence, labels of nodes and edges



R. Specogna and F. Trevisan: Voltage sources in a − χ discrete geometric approach to eddy-currents 99

Fig. 2. Schematic 2D view of a dual cell ñ. A node n on S is
identified by two distinct labels na, nb indicating topologically
two different nodes but with the same coordinates, similarly
for edges like e on S.

laying on the cut surface S are duplicated (in Fig. 1, on
the right, nodes like n and edges like e). To account for
this, we have to write a new incidence matrix G′

s between
edges and nodes within domain D′

s only.
Now, we deduce the algebraic equations governing a

discrete steady-state conduction current problem in D′
s.

We substitute in (1d) Ohm’s constitutive law (2) written
as j′s = σ′

se
′s, where σ′

s is Ohm’s constitutive matrix
in D′

s. Thanks to (1b) written for steady-state fields, we
have e′s = −G′

s v′s, where v′s is the array of electric scalar
potentials associated with primal nodes in D′

s. We obtain
the following algebraic equations in D′

s

G′T
s σ′

sG
′
sv

′s = 0, (5)

where it can be proved that stiffness matrix G′T
s σ′

sG
′
s is

symmetric even though σ′
s may not be. We solve (5) with

boundary conditions imposed by assigning potential U l on
the set of nodes lying on Sa (like na) and 0 on the other set
on Sb (like nb), U l being the voltage at coil leads. Thence,
imposed voltages are e′s = −G′

sv
′s for each edge of D′

s,
and the array of currents, crossing dual faces of D′

s, is
j′s = σ′

se
′s.

3.1 Computation of js from j′s

Next, we need to compute js as in (4) with respect to Ds,
from the knowledge of j′s with respect to D′

s. We indicate
with Sa and Sb the two faces of S, see Figure 2. The aim is
to glue together pairs of broken dual volumes like ña and
ñb on the left and on the right of S respectively, obtaining
a dual volume ñ, where primal node n ∈ S. The boundary
of a broken dual volume like ña is a collection of dual faces
in D′

s (like ẽ1 in Fig. 2) plus a face fa on Sa; similarly for
ñb.

We indicate with jna , jnb
the currents associated with

faces fa, fb respectively. From continuity law (1d), cur-
rent jna can be expressed as the algebraic sum of currents
crossing dual faces bounding ña. Therefore current jna de-
pends also on currents ja crossing dual faces like ẽa, where

the corresponding primal edge ea ∈ S. Due to the struc-
ture of Ohm’s matrix, such currents like ja are non null
even though the voltage associated with edge ea is null. A
similar reasoning applies to jnb

and jb currents.
Since the simplicial mesh on the left and on the right

of S is usually non symmetric with respect to S and due
to the structure of Ohm’s matrix, then jna �= jnb

holds.
This mismatch is local.

Now, to compute total currents, we may write
Sa =

⋃
k fak

, Sb =
⋃

k fbk
, where fak

, fbk
are the k-th

fa, fb surfaces. Then J(Sa) =
∑

k jnak
, J(Sb) =

∑
k jnbk

are the total currents crossing surfaces Sa and Sb. They
can be expressed as the algebraic sum of currents on a
collection of dual faces (like ẽ1 in Fig. 2) on the left and
on the right of S, where dual faces like ẽa give no contri-
bution. Therefore, due to continuity law in D′

c, for total
currents J(Sa) = J(Sb) holds.

Next, to glue dual volumes like ñ – nodes like n are
on the cutting plane S – we need to glue the pairs of
dual faces like ẽa, ẽb (note that edges ea, eb are on Sa,
Sb respectively). We obtain ẽa

⋃
ẽb = ẽ, and for the cor-

responding currents ja + jb = j holds. In this way we
construct a new array of currents js.

However, the local mismatch jna �= jnb
implies that

continuity law (1d) is not satisfied locally, and this causes
(GT js)n �= 0, ∀ n ∈ S.

3.2 A way to force consistency of js

If jn = (GT
s js)n �= 0, we should compute jn explicitly

to form the right hand side of the 4-th set of equations
in (3). To avoid this, it is more efficient to set jn = 0 and
to modify js in (4) in order to comply with (1d), for each
ñ ∈ Ds.

To this aim, we find a tree and the corresponding co-
tree subgraphs in the graph formed by primal edges e and
nodes n in Ds. We use currents js, associated with the co-
tree edges, in order to recompute the currents associated
with the edges of the tree to comply with (1d). To this
purpose we considered the algorithm:

– For every node, find the star of edges around it.
– If all the edges of the cluster but one are marked with

known current, then the current on the remaining free
edge can be calculated from (1d).

– The edge is marked with known current and the node
is removed from the list.

Then the algorithm proceeds cycling the list of nodes, until
the list is empty. To set up the algorithm we consider

– as known and fixed the currents in the array js associ-
ated with dual faces crossed by a co-tree edge;

– a list of all nodes in Ds.

The algorithm converges in a few iterations and the com-
putation time is negligible. This way we determine a new
set of currents consistent with (1d).
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Fig. 3. Schematic view of the source region made of D′
s and

C regions.

4 Localized voltage source

In the distributed Voltage Source Approach, we computed
voltages associated with all the edges of D′

s by means of
the solution of the steady-state conduction problem (5).
To avoid this step, we will describe here the Localized
Voltage Source approach also referred to as “generalized
source potential” in [7].

We redefine the cutting domain C as made of one layer
of tetrahedra, Figure 3, but now C is assumed to be con-
ductive with the same conductivity as Ds. Next, we indi-
cate with D′

s the complement of C in Ds and we introduce
a source voltage distribution in Ds having C as support.
We assume that the voltages along all the edges in C have
the same value Ul, while the imposed voltages on the edges
of D′

s are null.
We indicate with n the vector normal to the cross-

section S1 between D′
s and C, pointing from C to D′

s.
Therefore, the array us becomes

us = zT Ul, (6)

where Ul is the voltage at coil leads and array z is indexed
over the edges of Ds; its i-th entry is ±1 if the edge is in C,
otherwise it is zero. The entry is +1 if the inner orientation
of the edge and the normal n match.

In this way we concentrate the sources in the C region,
where the known voltage is specified on its edges without
the need of solving a steady-state conduction current prob-
lem. With this approach it is not necessary to construct a
special mesh in the region C or to mesh a plane and then
grow the transition layer on one side of it. We need only
a thick cut in the coil. However we observe that the term
(GT σus)n is not zero in the last equation of (3).

5 Numerical results

As reference 3D test problem, we considered a circular
coil (10 mm of height, 12 mm of inner diameter, 18 mm of
outer diameter) placed above an aluminium plate (4 mm
of thickness), Figure 4. The coil is fed with a sinusoidal
voltage at leads U l = 100 V with a frequency f = 5000 Hz.

Fig. 4. Geometry of the test problem.

Fig. 5. The absolute values of the real parts of current density
along l1.

The primal mesh in D consists of 82 369 tetrahedra the
29% of them is in the conducting regions.

We solved the test problem using the discrete geomet-
ric approach with the two proposed strategies for model-
ing the voltage source. For comparison, since the problem
is axisymmetric, we also considered the results provided
by a 2D Finite Elements analysis obtained using a com-
mercial code. The absolute values of real and imaginary
parts of the eddy-current density vector sampled along
two lines l1 and l2 (l1: length 20 mm, 0.4 mm below con-
ductor’s surface, l2: length 3 mm, at half height of the
coil, Fig. 4) are shown in Figures 5, 6, 7 and 8 respec-
tively. The two approaches lead to practically coincident
results, while the mismatch in the comparison along line
l2 with the reference values from finite elements is due to
a poor discretization along the thickness of the coil and
in addition we avoided any smoothing of the computed
data. The CPU time needed to solve the linear systems
iteratively on a portable PENTIUM IV 1.9 GHz, 512 MB
of RAM are about 1.5 min for both the approaches (the
distributed voltage source approach converges in 168 it-
erations while the localized voltage source approach in
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Fig. 6. The absolute values of the imaginary parts of current
density along l1.

Fig. 7. The absolute values of the real parts of current density
along l2.

176 iterations, with relative residual of 10−5); the dis-
tributed voltage source approach needs 5 s of additional
CPU time to solve the steady-state conduction current
problem.

6 Conclusion

We have presented a pair of possible approaches to treat
voltage driven coils of arbitrary shapes in eddy-current
problems within a geometric a − χ formulation. An algo-
rithm to make the right hand side of the final linear system
consistent is also proposed. The methods have been tested
against a reference 3D problem. The results obtained are
in a good agreement to each others and with the results
from a 2D Finite Element code.

Fig. 8. The absolute values of the imaginary parts of current
density along l2.
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