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a b s t r a c t

An electromagnetic problem can be discretized on a pair of interlocked primal–dual grids according to
discrete geometric approaches like the Finite Integration Technique (FIT) or the Cell Method (CM). The
critical aspect is however the construction of the discrete counterparts of the constitutive relations assur-
ing stability and consistency of the overall discrete system of algebraic equations. Initially only orthog-
onal Cartesian grids where considered; more recently primal grids of tetrahedra and oblique prisms
with triangular base can be handled. With this paper a novel set of edge and face vector functions for gen-
eral polyhedral primal grids is presented, complying with precise specifications which allow to construct
stable and consistent discrete constitutive equations in the framework of an energetic approach.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The Finite Integration Technique (FIT) and the Cell Method
(CM), described in the works by Clemens and Weiland [1] and
Tonti [2], respectively, are concordant in defining a discrete geo-
metric approach for approximating the solution of field problems
with a particular interest for electromagnetism. Such an approach
has also been recognized at the basis of finite element discretiza-
tion by Bossavit [3–5].

In such discrete geometric approach, firstly a pair of oriented
grids is introduced. An oriented grid is a collection of oriented
nodes, edges, faces and volumes [6]. The oriented grids are dual
one of the other, since the oriented nodes, edges, faces and vol-
umes of the primal grid one-to-one correspond to the oriented vol-
umes, faces, edges and nodes of the dual grid, respectively.

Secondly, integral variables can be univocally associated with
the geometric elements of the pair of dual grids [6,7]. For instance,
circulations of electric field are associated with the primal edges,
electric currents are associated with the faces of the dual grid.

Thirdly, balance equations are discretized into sets of exact
equations relating circulations and fluxes associated with the
geometric elements of the pair of dual grids [6–8]. For instance
Faraday’s law relates time derivative of magnetic induction
flux through a primal face with the circulations of the electric
field along the primal edges forming the boundary of that primal
face.
ll rights reserved.

: +39 0432 558251.
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Lastly, discrete counterparts of the constitutive relations are
introduced as approximate algebraic equations which relate either
the circulations along the primal edges with the fluxes through the
dual faces or the fluxes through the primal faces to the circulations
along the dual edges. For instance the magnetic constitutive rela-
tion is a matrix mapping the fluxes of magnetic induction through
primal faces to the circulations of magnetic field along dual edges
[6,9].

As a known result [8,11] in order to ensure the consistency and
the stability of the overall final system of algebraic equations, the
discrete constitutive relations have to satisfy both stability and
consistency requirements. The stability requirement prescribes
that the constitutive matrix is symmetric and positive definite. The
consistency requirement prescribes that the constitutive matrix
exactly maps either circulations along primal edges into fluxes
through dual faces or fluxes through primal faces into circulations
along dual edges, at least for element-wise uniform fields.

Stable and consistent discrete constitutive equations were ini-
tially obtained in a straightforward way for pairs of orthogonal
Cartesian grids [10,7]. More recently, it was shown in [12] that,
for pairs of grids in which the primal grid is composed of tetrahe-
dra and the dual grid is obtained according to the barycentric sub-
division of the primal, the mass matrices constructed in the Finite
Element Method (FEM) by means of Whitney’s edge and face ele-
ments satisfy both the stability and consistency properties of FIT.
Thus, for tetrahedra only, mass matrices coming from FEM can
be borrowed as constitutive matrices for FIT. We proposed in
[13] novel constitutive matrices satisfying both the consistency
and stability properties of FIT, not only for tetrahedra but also for
(oblique) prisms with triangular base; this result was achieved
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with the introduction of a novel set of edge and face vector func-
tions combined with an energetic approach.

However, for pairs of dual grids in which the primal volumes
are general polyhedra, useful in many applications, no constitutive
matrices, satisfying the consistency and stability properties were
reported in literature. The present authors with paper [14] did a
first attempt to fill in this gap.

In this work, a novel set of edge and face vector functions for
general polyhedral primal grids is introduced. Such vector functions
satisfy three fundamental properties, [15]:

� They reconstruct vector fields either from the circulations along
primal edges or from the fluxes through faces.

� They exactly represent element-wise uniform fields.
� They comply with a geometric consistency property.

The properties above ensure that the novel vector functions can
be used in the framework of an energetic approach introduced by
the authors in [15] for deriving stable and consistent discrete con-
stitutive equations. In this way, a stable and consistent FIT discret-
ization is obtained for a general polyhedral primal grid.

Numerical experiments will demonstrate that the novel dis-
crete constitutive matrices lead to accurate approximations of
the solution of an eddy current problem proposed as application
example.

2. Preliminaries

Hereafter, we will denote with u� v the double tensor obtained
by means of the tensor product � of the two vectors u, v. The prod-
uct T u between a double tensor T and a vector u is a vector; the
inner product v � T u is a scalar. Between the tensor u� v and a
vector w the following relation

u� v w ¼ ðv �wÞu

holds. The identity tensor is denoted with I and Iu ¼ u holds.
We will focus on an oriented primal grid consisting of a single

convex polyhedron v, Fig. 1; for a generic grid made of polyhedra,
constitutive matrices can be obtained by adding the contribution
from each convex polyhedron of the grid [11].
gfi
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Fig. 1. Polyhedron v, primal face fi , primal edge ej , primal node pn; dual face ~f j , dual
edge ~ei and dual node ~p. Moreover the barycenter gej

of edge ej and the barycenter
gfi

of face fi are shown.
The geometric elements of the primal grid are nodes, edges,
faces and the volume v. We denote a primal node with pn, where
n ¼ 1; . . . ;N, N being the number of nodes of v, a primal edge with
ej, where j ¼ 1; . . . ; L, L being the number of edges of v and a primal
face with fi, where i ¼ 1; . . . ; F, F being the number of faces of v. The
geometric entities of the primal grid like ej, fi are endowed with in-
ner orientation; for example in Fig. 1 the arrows indicate a possible
choice of inner orientation of edge ej and face fi, respectively. Sim-
ilarly the geometric entities of the dual grid like edge ~ei and face ~f j

are endowed with outer orientation [6,8], in such a way that the
pairs ðej;

~f jÞ; ðfi; ~eiÞ are oriented in a congruent way.
Vector ej is the edge vector1 associated with the edge ej. Vector f i

is the face vector associated with the face fi defined as f i ¼
R

fi
nds,

where n is the unit vector normal to and oriented as fi. Similarly, vec-
tor ~ei is the edge vector associated with ~ei and ~f j is the face vector
associated with ~f j. We note that f i � ~ei > 0 and ~f j � ej > 0 hold.

A fundamental condition for the construction of symmetric po-
sitive definite discrete constitutive equations of FIT, proved in pa-
per [14], is

XL

j¼1

~f j � ej ¼ jvj I; ð1Þ

XF

i¼1

~ei � f i ¼ jvj I; ð2Þ

where jv j is the volume of v. A simple way to fulfill with this con-
dition, shown in [14], is to construct the geometric elements of
the dual grid–dual face ~f j, dual edge ~ei – by the barycentric subdivi-
sion of the boundary of v, the location of the dual node ~p within v
being in principle arbitrary. This will be a fundamental assumption
in this work. However, in order to avoid degeneracy of the geomet-
ric elements of the dual grid, the dual node ~p will be conveniently
identified with the center of v.

Then the dual edge ~ei, in a one-to-one correspondence with the
primal face fi, is a segment between ~p and the barycenter gfi

of fi.
The dual face ~f j, in a one-to-one correspondence with the primal
edge ej, is the union of two triangles each of which has as vertexes
~p, the barycenter gej

of ej and the barycenter gfi
of a face fi adjacent

to ej, Fig. 1.
3. Subdivision of the polyhedron

In order to define the vector basis functions, we will interpret
the polyhedron v as the union of 2L tetrahedra sh, with
h ¼ 1; . . . ;2L. The partition of a polyhedron into tetrahedra is only
an ancillary step in order to build the edge and face vector base
functions with prescribed properties for the polyhedron. The de-
grees of freedom remain associated with the edges or faces of
the polyhedron, not of the tetrahedra in which it is partitioned.
In other words, the pair of grids, where the field problem is formu-
lated in terms of FIT, are the polyhedral (primal) and its dual; we
will never build a tetrahedral mesh.

Each tetrahedron sh, has as vertexes the dual node ~p, the two
nodes bounding a primal edge ej and the barycenter gfi

of one pri-
mal face fi of the two adjacent to ej, Fig. 2A; The correspondence
between the label h ¼ 1; . . . ;2L of sh and the label j ¼ 1; . . . ; L of
ej is described with a function l such that j ¼ lðhÞ. In this way each
primal edge ej corresponds to each of the two tetrahedra sharing
that edge; Similarly the correspondence between the label
h ¼ 1; . . . ;2L of sh and the label i ¼ 1; . . . ; F of fi is described with
a function F such that i ¼ f ðhÞ. In this way, each primal face fi cor-
responds to each of the tetrahedra intersecting that face.
1 Its amplitude and orientation coincide with the length and orientation of ej ,
respectively.
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Fig. 2. The tetrahedron sh is shown in the part (A) of the figure. In the part (B) sh and Sh are evidenced.
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In the tetrahedron sh, we introduce a pair of triangles sh and Sh

evidenced in Fig. 2B. The vertices of the triangle sh are the nodes ~p,
gfi

, gej
. The vertices of the triangle Sh are the pair of nodes bounding

ej and the node gfi
.

Now we focus on the triangle sh. We may associate to sh the fol-
lowing area vector

sh ¼
t
2

~ei �wh;

where wh ¼ gfi
� gej

, so that wh is associated with the segment wh

drawn between the nodes gfi
, gej

. The integer t ¼ �1, is chosen in
such a way that sh � ei > 0.

Obviously

sh � ej ¼ 3 jshj ð3Þ

holds, moreover[
lðhÞ¼j

sh ¼ ~f j ð4Þ

in which the sum involves the pair of tetrahedra sh adjacent to the
edge ej, so that lðhÞ ¼ j. In terms of face vectorsX
lðhÞ¼j

sh ¼ ~f j ð5Þ

holds. By substituting in (1) the expression of ~f j from (5) we also
obtain

XL

j¼1

X
lðhÞ¼j

sh � ej ¼
X2L

h¼1

sh � elðhÞ ¼ jv j I: ð6Þ

Next, we concentrate on the triangles Sh. We denote with

Sh ¼
t
2

wh � ej

the area vector associated with Sh, where the integer t ¼ �1 is cho-
sen in such a way that Sh � ~ej > 0 holds.

We observe that

Sh � ~ei ¼ 3 jshj ð7Þ

holds. Moreover, any face fi of a polyhedron v can be expressed as
the union of the triangles Sh contained in fi. Precisely,

fi ¼
[

f ðhÞ¼i

Sh ð8Þ
in which the sum involves a number of tetrahedra sh adjacent to fi,
so that f ðhÞ ¼ i.

In terms of area vectors we write

f i ¼
X

f ðhÞ¼i

Sh: ð9Þ

By substituting (9) for f i in (2), we also obtain that

XF

i¼1

X
f ðhÞ¼i

~ei � Sh ¼
X2L

h¼1

~ef ðhÞ � Sh ¼ jv j I ð10Þ

holds.

4. Reconstruction of a field from circulations

In this section we propose piece-wise uniform basis functions to
reconstruct in v a field x from its circulations Xj along the primal
edges ej

Xj ¼
Z

ej

x � dl; j ¼ 1; . . . ; L:

For example, if x is the electric field E then Xj coincides with the
e.m.f. Uj along ej.

Firstly let us consider the case of a uniform field x in v. Then,
since Xj ¼ x � ej, multiplying (1) by x on the right we obtain

x ¼ 1
jv j
XL

j¼1

Xj
~f j: ð11Þ

Besides, multiplying on the right by x both members of the identity

I ¼ sh � elðhÞ

3jshj
þ I� sh � elðhÞ

3jshj
;

we get

x ¼ sh

3jshj
XlðhÞ þ I� sh � elðhÞ

3jshj

� �
x: ð12Þ

By substituting (11) for x in the right hand side of (12),
we obtain

x ¼
XL

j¼1

sh

3jshj
djlðhÞ þ I� sh � elðhÞ

3jshj

� � ~f j

jv j

 !
Xj; ð13Þ

where djlðhÞ denotes the Kronecker symbol.
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Eq. (13) suggests the definition of the piece-wise uniform vector
ve

j ðpÞ attached to the edge ej, with j ¼ 1; . . . ; L, function of the point
p 2 v as

ve
j ðpÞ ¼

sh
3jsh j

djlðhÞ þ I� sh�elðhÞ
3jsh j

� � ~fj

jv j if p 2 sh;

for h ¼ 1; . . . ;2L. The field x is then reconstructed as

x ¼
XL

j¼1

ve
j ðpÞ Xj: ð14Þ

Such vector functions ve
j ðpÞ, with j ¼ 1; . . . ; L, satisfy the following

three properties, fundamental to construct stable and consistent
constitutive matrices, [15].

Property 1. The function ve
kðpÞ, with j ¼ 1; . . . ; L forms a basis, that isZ

ej

ve
kðpÞ � dl ¼ djk ð15Þ

holds, for j; k ¼ 1; . . . ; L.

Proof. Let sh be any of the two tetrahedra adjacent to the edge ej,
that is j ¼ lðhÞ. Then we obtainZ

ej

ve
kðpÞ � dl ¼ ej �

sh

3jshj
djk þ I� sh � ej

3jshj

� � ~fk

jv j

 !

¼ ej � sh

3jshj
djk þ 1� ej � sh

3jshj

� �
ej � ~fk

jvj ¼ djk þ ð1� 1Þ ej � ~fk

jv j ¼ 0:

In the last equality (3) has been applied.

From this proof we note that even though ve
kðpÞ is discontinuous

along the edge ej with j; k ¼ 1; . . . ; L, its component tangent to ej is
continuous.

Property 2. Eq. (14) exactly reconstructs a field x, uniform in v, from
its circulations Xj along the primal edges ej.

Proof. The thesis immediately follows from (13). h

Property 3. The consistency conditionZ
v

ve
j ðpÞ dv ¼ ~f j ð16Þ

holds with j ¼ 1; . . . ; L.

Proof. We rewrite the left hand side of (16) asZ
v

ve
j ðpÞdv ¼

X2L

h¼1

Z
sh

ve
j ðpÞdv

¼
X2L

h¼1

jshj
sh

3jshj
djlðhÞ þ I� sh � elðhÞ

3jshj

� � ~f j

jvj

 !

¼ 1
3

X2L

h¼1

shdjlðhÞ þ
X2L

h¼1

jshj
 !

~f j

jv j �
1
3

X2L

h¼1

sh � elðhÞ

 !
~f j

jv j

¼ 1
3

~f j þ ~f j �
1
3

~f j ¼ ~f j;

where, in the last equality, we used the identity (6). h
5. Reconstruction of a field from fluxes

In this section we propose piece-wise uniform basis functions to
reconstruct in v a field x from its fluxes Xi across the primal faces fi

Xi ¼
Z

fi

x � da; i ¼ 1; . . . F:

For example, if x is the magnetic induction field B then Xi is the
induction flux Ui associated with the face fi.
Firstly, let us consider the case of a uniform field x in v. Then,
since Xi ¼ x � f i, multiplying (2) by x on the right we obtain

x ¼ 1
jv j
XF

i¼1

Xi ~ei: ð17Þ

Besides, multiplying on the right by x both members of the identity

I ¼
~ef ðhÞ � Sh

3jshj
þ I�

~ef ðhÞ � Sh

3jshj
;

we get

x ¼
~ef ðhÞ

3jshj
ðSh � xÞ þ I�

~ef ðhÞ � Sh

3jshj

� �
x; ð18Þ

The quantity Sh � x represents the flux of x on the triangular face Sh;
this flux is a part of the overall flux Xf ðhÞ ¼ f f ðhÞ � x associated with
the face ff ðhÞ containing Sh so that we write

Sh � x ¼ nh Xf ðhÞ ð19Þ

with

nh ¼
jShj
jf f ðhÞj

:

We note that nh are such thatX
f ðhÞ¼i

nh ¼ 1 ð20Þ

in which the sum involves all the faces Sh contained in fi. By substi-
tuting (19) in (18) and by substituting (17) for x in the right hand
side of (18), we obtain

x ¼
XF

i¼1

~ef ðhÞnh

3jshj
dif ðhÞ þ I�

~ef ðhÞ � Sh

3jshj

� �
~ei

jv j

� �
Xi; ð21Þ

Eq. (21) suggests the definition of the piece-wise uniform vector
vf

i ðpÞ attached to the face fi, with i ¼ 1; . . . ; F, function of the point
p 2 v as

vf
i ðpÞ ¼

~ef ðhÞnh

3jsh j
dif ðhÞ þ I� ~ef ðhÞ�Sh

3jsh j

� �
~ei
jvj if p 2 sh;

for h ¼ 1; . . . ;2L. The field x is then reconstructed as

x ¼
XF

i¼1

vf
i ðpÞXi: ð22Þ

Such vector functions vf
i ðpÞ with i ¼ 1; . . . ; F satisfy the following

three properties, [15].

Property 1. The functions vf
kðpÞ, with i ¼ 1; . . . ; F form a basis, that isZ

fi

vf
kðpÞ � da ¼ dik

holds, for i; k ¼ 1; . . . ; F.

Proof. Let sh be any of the tetrahedra adjacent to the face fi, such
that f ðhÞ ¼ i. Then (9) holds and we obtainZ

fi

vf
kðpÞ � da ¼

X
f ðhÞ¼i

Z
Sh

vf
kðpÞ � da

¼
X

f ðhÞ¼i

Sh �
~ef ðhÞnh

3jshj
dkf ðhÞ þ I�

~ef ðhÞ � Sh

3jshj

� �
~ek

jv j

� �

¼
X

f ðhÞ¼i

Sh � ~ef ðhÞ

3jshj
nhdkf ðhÞ þ

X
f ðhÞ¼i

1� Sh � ~ef ðhÞ

3jshj

� �
Sh � ~ek

3jvj

0
@

1
A

¼
X

f ðhÞ¼i

nh

0
@

1
Adik þ

X
f ðhÞ¼i

ð1� 1Þ Sh � ~ek

3jv j ¼ dik:
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In the last equality (7) has been applied together with the relation
(20) and the thesis follows. h

Property 2. Eq. (22) exactly reconstructs a field x uniform in v from
its fluxes Xi through the primal faces fi.

Proof. The thesis immediately follows from (21). h

Property 3. The consistency conditionZ
v

vf
i ðpÞdv ¼ ~ei ð23Þ

holds, for i ¼ 1; . . . ; F.

Proof. We rewrite the left hand side of (23) asZ
v

vf
i ðpÞdv ¼

X2L

h¼1

Z
sh

vf
i ðpÞdv

¼
X2L

h¼1

jshj
~ef ðhÞnh

3jshj
dif ðhÞ þ I�

~ef ðhÞ � Sh

3jshj

� �
~ei

jvj

� �

¼ 1
3

X
f ðhÞ¼i

nh

0
@

1
A~ei þ

X2L

h¼1

jshj
 !

~ei

jv j �
1
3

X2L

h¼1

~ef ðhÞ � Sh

 !
~ei

jv j

¼ 1
3

~ei þ ~ei �
1
3

~ei;

where in the last equality, (10) and (20) have been applied. h
6. Construction of the constitutive matrices

Again we focus on a single polyhedron v, where a pair of vector
fields x, y exist related by a constitutive relation

y ¼ mx; ð24Þ

where m is a double tensor representing the material property as-
sumed homogeneous in v. We denote with Xj ¼

R
ej

x � dl the circula-
tion of the field x along a primal edge ej of v and with Yk ¼

R
~f k

y � ds
the flux of y across a dual face ~f k of v.

An approximate discrete counterpart of (24) in v is such that

Yk ffi
XL

k¼1

MkjXj; k ¼ 1; . . . ; L ð25Þ

holds approximately, where Mkj are the entries of a constitutive ma-
trix M of dimension L mapping circulations to fluxes in an approx-
imated way within v; this is the well known constitutive error
affecting the overall discrete formulated electromagnetic problem
[8].

Our aim is to construct a constitutive matrix M which complies
with the following requirements: (i) it is symmetric, (ii) it is posi-
tive definite and (iii) it is such that (25) holds exactly at least for a
pair of uniform fields x, y in v. It is well known that the require-
ments (i) and (ii) are fundamental to guarantee the stability of
the discretized equations in FIT and the last requirement (iii) guar-
antees the consistency of the discretized equations in FIT.

In a similar way, we consider a pair of vector fields x, y related
by a constitutive relation

y ¼ nx; ð26Þ

where n is a double tensor representing material property assumed
homogeneous in v.

We denote with Xi ¼
R

fi
x � ds the flux of x on the primal face fi of

v and with Yk ¼
R

~ek
y � dl the circulation of y along the dual edge ~ek

of v. An approximate discrete counterpart of (26) in v is such that
Yk ffi
XF

i¼1

NkiXi; k ¼ 1; . . . ; F ð27Þ

holds approximately, where Nki are the entries of a constitutive ma-
trix N of dimension F mapping fluxes to circulations in an approxi-
mated way within v. Again, our aim is to construct a constitutive
matrix N which complies with the following requirements: (i) it is
symmetric, (ii) it is positive definite (stability conditions) and (iii)
it is such that (27) holds exactly at least for a pair of uniform fields
x, y in v (consistency condition).

In order to construct the constitutive matrices M, N, we will re-
sort to the so called energetic approach presented in [13,15] for the
special case of tetrahedra or (oblique) prisms with triangular base.
This approach is in fact more general since it relies solely on the
Properties 1–3 of functions ve

j ðpÞ with j ¼ 1; . . . ; L and of functions
vf

i ðpÞ with i ¼ 1; . . . ; F. Thus it will be here applied to the case of
general polyhedra by using the edge and face vector functions here
introduced for polyhedra. In this way, constitutive matrices M, N
are obtained satisfying the requirements (i)–(iii).

6.1. The energetic approach

We focus on a single polyhedron v with uniform material prop-
erty m and we use the functions ve

j ðpÞ with j ¼ 1; . . . ; L for recon-
structing a piece-wise uniform field x from its circulations Xj

along the edges ej with j ¼ 1; . . . ; L. The following energetic quan-
tity is introduced

W ¼ 1
2

Z
v

x �mxdv ¼ 1
2

XL

k;j¼1

XkMkjXj ð28Þ

in which

Mkj ¼
Z

v
ve

kðpÞ �mve
j ðpÞdv :

Hereafter, we prove that, as a consequence of the Properties 1–3
satisfied by the functions ve

j ðpÞ with j ¼ 1; . . . ; L, Mkj are the entries
of an M matrix which satisfies Properties (i)–(iii).

In fact from (28) it results in

Mkj ¼ Mjk

or equivalently the matrix M is symmetric and property i) holds.
For an arbitrary array x ¼ ½X1; . . . ;XL	T , it is

xT Mx ¼
XL

k;j¼1

XkXj

Z
v

ve
kðpÞ �mve

j ðpÞdv

¼
Z

v

XL

k¼1

Xkve
kðpÞ

 !
�m

XL

j¼1

Xjve
j ðpÞ

 !
dv P 0; ð29Þ

since m is a positive definite tensor. Next, from (29), xT Mx ¼ 0
implies

XL

k¼1

Xkve
kðpÞ ¼ 0

so thatZ
ej

XL

k¼1

Xkve
kðpÞ � dl ¼

XL

k¼1

Xk

Z
ej

ve
kðpÞ � dl ¼

XL

k¼1

Xkdjk ¼ Xj ¼ 0;

j ¼ 1; . . . ; L:

The last equation descends from property 1 of vector functions
ve

j ðpÞ with j ¼ 1; . . . ; L. Thus M is positive definite and property (ii)
holds.

According to Properties 2 and 3 of vector functions ve
kðpÞ with

k ¼ 1; . . . ; L, given a uniform field x and thus a uniform field
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y ¼ mx, whose fluxes through the dual faces ~f j are Yj with
j ¼ 1; . . . ; L, it is

XL

j¼1

MkjXj ¼
XL

j¼1

Z
v

ve
kðpÞ �mve

j ðpÞ dv
� �

Xj

¼
Z

v
ve

kðpÞ �m
XL

j¼1

Xjve
j ðpÞ

 !
dv ¼

Z
v

ve
kðpÞ �mx dv

¼
Z

v
ve

kðpÞdv
� �

� y ¼ ~fk � y ¼ Yk

and property (iii) holds.
Similarly, we focus on a single polyhedron v with uniform

material property n and we introduce functions vf
i ðpÞ for recon-

structing a piece-wise uniform field x from its fluxes Xi through
the faces fi with i ¼ 1; . . . ; F. The following energetic quantity is
introduced

W ¼ 1
2

Z
v

x � nxdv ¼ 1
2

XL

k;i¼1

XkNkiXi ð30Þ

in which

Nki ¼
Z

v
vf

kðpÞ � nvf
j ðpÞdv:

Hereafter, we prove that, as a consequence of the Properties 1–3
satisfied by functions vf

i ðpÞ with i ¼ 1; . . . ; F, Nki are the entries of
an N matrix which satisfies Properties (i)–(iii).

In fact from (30) it results in

Nki ¼ Nik

or equivalently the matrix N is symmetric and property i) holds.
For an arbitrary array x ¼ ½X1; . . . ;XF 	T , it is

xT Nx ¼
XL

k;i¼1

XkXi

Z
v

vf
kðpÞ � nvf

i ðpÞdv

¼
Z

v

XF

k¼1

Xkv
f
kðpÞ

 !
� n

XL

i¼1

Xivf
i ðpÞ

 !
dv P 0; ð31Þ

since n is a positive definite tensor. Next, from (31), xT Nx ¼ 0
implies

XL

k¼1

Xkvf
kðpÞ ¼ 0

so thatZ
fi

XL

k¼1

Xkvf
kðpÞ � da ¼

XL

k¼1

Xk

Z
fi

vf
kðpÞ � da ¼

XL

k¼1

Xkdik ¼ Xi ¼ 0;

i ¼ 1; . . . ; L:

The last equation descends from property 1 of functions vf
i ðpÞ with

i ¼ 1; . . . ; F. Thus, N is positive definite and property (ii) holds.
According to Properties 2 and 3 of vector functions vf

i ðpÞ, with
i ¼ 1; . . . ; F, given a uniform x and thus a uniform field y ¼ mx,
whose circulations along the dual edges ~ei are Yi with i ¼ 1; . . . ; F,
it is

XF

i¼1

NkiXi ¼
XF

i¼1

Z
v

vf
kðpÞ � nvf

i ðpÞ dv
� �

Xi

¼
Z

v
ve

kðpÞ � n
XF

i¼1

Xivf
i ðpÞ

 !
dv ¼

Z
v

ve
kðpÞ � nxdv

¼
Z

v
ve

kðpÞdv
� �

� y ¼ ~ek � y ¼ Yk

and property (iii) holds.
7. An application to eddy current problems

We consider an eddy current problem as application. The do-
main of interest D contains a source region Ds where prescribed
currents are present and a conducting region Dc . The insulating re-
gion Da is the complement of Dc and Ds with respect to D. In D we
construct a primal grid made of primal nodes p, primal edges e, pri-
mal faces F and polyhedra v as primal volumes and the correspond-
ing dual grid. The reluctivity m and conductivity r of the media are
assumed element-wise uniform.

We briefly recall a discrete formulation of an eddy currents
problem by FIT [16–18], in terms of an array A of circulations of
the magnetic vector potential A along the primal edges of the grid
in D and in terms of an array v of scalar potentials v associated with
primal nodes of the grid in Dc as

ðCT
mC AÞj ¼ ðI

sÞj 8ej 2 D� Dc

ðCT
mC AÞj þ ixðrAcÞj þ ixðrGvÞj ¼ 0 8ej 2 Dc

ixðGT
r AcÞj þ ixðGT

rG vÞj ¼ 0 8nj 2 Dc;

ð32Þ

where the array Is contains the source currents Is crossing the dual
faces in Ds; Ac is the sub-array of A, associated with primal edges in
Dc . Matrix C is the face-edge incidence matrix of the primal grid
over D. Matrix G is the edge-node incidence matrix of the primal
grid over Dc .

With ðxÞj we mean the jth row of array x.
Finally, the reluctance and conductance constitutive matrices

are denoted with m, r, respectively such that dim ðmÞ ¼ F, F being
the number of faces of the primal grid in D and dim ðrÞ ¼ Lc; Lc

being the number of edges of the primal grid in Dc .
To construct the reluctance constitutive matrix m, we simply ap-

ply formula (28) to each polyhedron v of the primal grid over D.
Similarly, to construct the conductance r constitutive matrix we
apply formula (30) to each polyhedron v of the primal grid over Dc .

Thus, from (24) we substitute the electric field E for x, the cur-
rent density field J for y and the conductivity r for m. From (25),
the discrete counterpart of constitutive relation Ik ffi

PL
i¼1rki Ui

stems, where Ik, Ui, with k; i ¼ 1; . . . ; L are the electric currents
crossing the dual faces and the e.m.f.s along the primal edges,
respectively. According to (28) we have that

rki ¼
Z

v
ve

k � rve
i dv ð33Þ

are the entries of a constitutive matrix r satisfying the Properties
(i)–(iii).

Similarly from (26), we substitute the magnetic induction field
B for x, the magnetic field H for y and the reluctivity m for n. From
(27), the discrete counterpart of constitutive relation
Fk ffi

PF
i¼1mkiUi stems, where Fk, Ui, with k; i ¼ 1; . . . ; F are the mag-

neto motive force along the dual edges and the magnetic induction
flux through the primal faces, respectively. According to (30) we
have that

mki ¼
Z

v
vf

k � mv
f
i dv ð34Þ

are the entries of a constitutive matrix m satisfying the Properties
(i)–(iii).

It is worth noticing that the computation of the entries of rkj

and mkj of the constitutive matrices, does not require an explicit
numerical integration, as in the case of mass matrices computation
in finite elements, since the integrands of (33) and (34) are uniform
within each tetrahedron sh in v, with h ¼ 1; . . . ;2L; this is a great
advantage especially from the computational view point.



Fig. 3. Geometry of the reference eddy-current problem. The primal polyhedral grid
(consisting of 47,966 edges, 44,547 faces and 14,026 polyhedra) and the computed
eddy currents in Dc are shown on the left part.
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Fig. 4. Comparison between the reference (ref.) and compute real and imaginary
parts of the eddy current vector in Dc in a number of sample points along a radial
line located 0.125 mm below the conductor surface.
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8. Numerical results and comparison

We consider a reference linear eddy-current problem of a coil
above a conducting plate as numerical benchmark problem,
Fig. 3. The domain of interest D of the eddy-current problem (a cyl-
inder of diameter of 60 mm and height 44.5 mm), contains a source
region Ds (a circular current driven coil of 18 mm of outer diame-
ter, 12 mm of inner diameter and 10 mm height, with 400 turns)
placed above a conducting region Dc consisting of an aluminium
plate 4 mm thick and with a radius of 30 mm; the lift-off between
the coil and the plate is 0.5 mm. The insulating air region Da is the
complement of Dc and Ds in D. In Ds, we force a sinusoidal current
per turn of Is ¼ sinðxtÞ with a frequency of f=5 kHz.

We formulate the eddy-current problem according to the A� v
formulation using the polyhedral primal grid, shown in Fig. 3.
The singular system (32) is solved relying on a QMR solver for
complex symmetric matrices using a SSOR preconditioner, without
gauge condition [19]. For comparison, we solved the problem,
exploiting its radial symmetry, as a 2D problem, on a fine triangu-
lar mesh by means of standard FE. The computed real and imagi-
nary parts of the eddy current density vector in a number of
sample points along a radial line located 0.125 mm below the con-
ductor surface, provided by the two methods are compared in
Fig. 4.

9. Conclusions

We proved in a constructive way that edge and face vector func-
tions can be defined for general polyhedra in a completely geomet-
ric way, complying with three fundamental specifications: they
reconstruct vector fields either from the circulations along primal
edges or from the fluxes through dual faces, they exactly represent
element-wise uniform fields and they comply with a geometric
consistency property.

As a result, in the framework of an energetic approach, stable
and consistent discrete constitutive equations for FIT can be con-
structed at a low computational cost for general primal polyhedral
grids, their construction being completely geometric. The numeri-
cal results, for the case of an eddy currents problem, are in a very
good agreement with reference result obtained with finite
elements.
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