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Design Optimization of Waveguide Bends in Photonic Crystals
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In this paper, a fast and robust optimization scheme is presented and applied to the optimal design of planar photonic crystals. It
is based on a parallel hybrid (stochastic-deterministic) algorithm coupled to a semi-analytic solution of “full Maxwell” equations by
multiple scattering technique. The numerical results of the optimal design of different waveguide bends are presented.

Index Terms—Hybrid algorithms, multiple scattering technique (MST), photonic crystals.

I. INTRODUCTION

C ONVENTIONAL planar waveguides confine light by
total internal reflection. One of the weaknesses of such

waveguides, however, is that creating bends is difficult. Indeed,
as soon as the radius of the bend becomes comparable with
the wavelength, much of the light is lost [1]. This is a serious
drawback if one looks for realization of optical “integrated
circuits,” as the space required for large-radius bends is often
unavailable.

Mainly due to this reason, photonic crystals [2]–[7] have
received increasing interest in recent years. Indeed, photonic
crystal may guide light by means of a different physical mech-
anism with respect to the total internal reflection. To illustrate
it in a simple way, let us consider a 2-D photonic crystal, i.e.,
a structure whose dielectric constant is independent of one
of the directions of space, while showing a periodic pattern
with respect to the two remaining ones. A proper choice of the
dielectric materials, and of the shape of the periodic pattern
may permit to obtain a band-gap: an electromagnetic wave
having frequency within the gap is not allowed to travel through
the crystal, whatever its propagation direction is.

Suppose now that a linear defect is created in such a crystal,
and that a light beam with frequency within the gap is injected
into it. Light is confined in the vicinity of the defect simply be-
cause, due to the band-gap, it may not spread through the crystal.
[8]–[10]. This occurs even if the linear defect does not follow
a straight path, but it rather bends, even at sharp angles. This
way, realization of a really compact integrated optical circuit
becomes possible [11]–[13].

So far, several proposals have been formulated, both theoret-
ically and experimentally, to show that guiding through sharp
bends or junctions may be obtained indeed. However, as it oc-
curs in any high-frequency circuit, either at microwaves or in op-
tics, abrupt deviations of the light path from the straight one may
cause mode-mixing problems at intersections. If not properly
engineered, this might cause large reflections and poor trans-
missions through the bends.

A way to circumvent this problem is that of modifying the
crystal structure in the vicinity of the bends. Indeed, the physics
of processes which takes place in the vicinity of abrupt devi-
ations from the straight light path may be simply described as
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follows. The field in a straight waveguide may always be ex-
pressed as a sum of orthogonal modes. When the waveguide
shape is varied, new set of modes are created. The mode which
was propagating in the straight waveguide projects onto this new
set of modes and couples to several of them. Usually, only one of
the modes is allowed to propagate, while the remaining ones are
under cut-off. This, in turn, means that the wave impedance of
the new modes is real for one of them, and imaginary for the rest.
The ensemble of the straight waveguide and the bend (and any-
thing else which is beyond the bend) may then be represented as
an equivalent transmission line closed on a load which exhibits
both a real part (which is responsible for the propagation of the
light trough the bend) and an imaginary one, due to the local ex-
citation of higher order modes. The problem of increasing the
transmission through the bend is then equivalent to the problem
of matching a load: the imaginary part of the load needs to be
cancelled, or at least, reduced. At microwaves, specifically in
the framework of propagation within metallic waveguides, this
is customarily done by introducing ad-hoc designed posts in the
vicinity of the waveguide shape deviation. In the framework of
photonic crystal waveguides, a similar technique may be used:
The geometry of the crystal surrounding the bend needs to be
properly modified.

Unfortunately, an analytical way to predict the arrangement
of the atoms (irrespectively air holes in dielectrics, or dielectric
pillars is air) which gives the best transmission can not be found.
The optimization process must be done via extensive numerical
simulations. To this end, a numerical code having the following
properties needs to be used.

• The code must be able to account for full-vector fields in
the presence of large index discontinuities.

• In addition, it must include an optimization routine able to
rapidly converge to a stable solution.

As for the field computation, several different techniques
have been proposed and tested in the framework of photonic
crystals. Many of those, like the finite-difference time-domain
(FDTD) technique [14], the cell’s method [15], the Green’s
tensor approach [16], the Fourier-modal method [17] or the
eigenmode-expansion method [18], [19] share a common
concept, that sets similar pros and cons. As a matter of fact,
in those techniques the starting point is discretization of the
computational domain, or of a part of it. This makes the codes
very broad-scope: in fact, since any object may be discretized,
the numerical techniques may operate with any kind and shape
of dielectrics in the photonic crystal. The price to pay for this
wide generality is the high computational effort, both in terms
of memory allocation and computational time. Indeed, the code
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Fig. 1. Square array of infinitely long dielectric pillars (refractive index � �

���, radius to pitch ratio ��� � ���) embedded in air, with a sharp 90 bend
obtained by removing a line of pillars from the square lattice. The optimization
variables are the positions and radii of the black circles.

accuracy improves with the number of samples that are used to
discretize the objects in the photonic crystal.

However, since we aim at coupling the numerical field com-
putation to an optimization routine, which, in turn, means that
the field will need to be re-computed several times before the
optimal solution is found, we developed an ad hoc, fast and
robust, procedure. It is based on hybrid algorithms coupled to
a semi-analytic solution of “full Maxwell” equations by mul-
tiple-scattering technique (MST) [20], that does not allow to
handle generic geometries as the codes above, but converges
rapidly to the solution. The proposed approach is applied to
the study of light transmission through 60 –90 –120 bends in
planar photonic crystals. Indeed, any real structure would be re-
alized with finite-thickness rods etched in slab geometry, and
2-D calculations would certainly be not accurate enough for
such structures. However, we note that as a three-dimensional
version of the MST technique is available [21], the optimiza-
tion routine may be easily extended to real-world 3-D cases too.

II. PROBLEM DESCRIPTION

As a test geometry, first we considered the case of a square
array of infinitely long dielectric pillars (refractive index

and radius to pitch ratio ) embedded in air, with a
sharp 90 bend obtained by removing a line of pillars from the
square lattice (Fig. 1).

In the optimization problem, the objective function is given
by the flux of the Poynting vector through line . As design
variables, the radii and/or the positions of some pillars (e.g.,
black circles, in Fig. 1) around the bend have been chosen.

Thereafter, we focused on a triangular array of infinitely long
dielectric pillars (refractive index and radius to pitch
ratio ) embedded in air. In this framework, two dif-
ferent cases have been studied: a sharp 60 bend (Fig. 2) and a
sharp 120 bend (Fig. 3), both obtained by removing a line of
pillars from the triangular lattice.

The objective function is given by the flux of the Poynting
vector through line of Figs. 2–3, respectively. As design vari-
ables, the radii and/or the positions of some pillars (black cir-
cles) around the 60 (Fig. 2) and 120 (Fig. 3) bends have been
chosen.

The square lattice exhibits a band gap only for the TM polar-
ization (i.e., with the electric field parallel to the pillars) in the

Fig. 2. Triangular array of infinitely long dielectric pillars (refractive index
� � ���, radius to pitch ratio ��� � ���) embedded in air, with a sharp 60
bend obtained by removing a line of pillars from the triangular lattice. The op-
timization variables are the positions and radii of the black circles.

Fig. 3. On the left side: Triangular array of infinitely long dielectric pillars
(refractive index � � ���, radius to pitch ratio ��� � ���) embedded in air,
with a sharp 120 bend obtained by removing a line of pillars from the triangular
lattice. The optimization variables are the positions and radii of the black circles.

Fig. 4. On the left side: TM band structure for the square array of infinitely
long dielectric pillars. On the right side: TM band structure for the triangular
array of infinitely long dielectric pillars.

frequency range (Fig. 4-left); the trian-
gular lattice exhibits a band gap for the TM polarization in the
frequency range (Fig. 4-right).

In the numerical simulations, a normalized frequency
for the TM polarization has been used.

A. Optimization Procedure

The optimization procedure is based on a hybrid approach
which combines a parallel genetic algorithm (GA), for global
minimum search [23] and a deterministic algorithm (DA), for
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local refinement [24], coupled to a semi analytic solution of “full
Maxwell” equations by multiple scattering technique (MST).

The MST exploits the following idea: photonic crystals are
usually realized by etching circular holes in an high-index
dieletric, or by arranging pillars with circular cross-section in
a low-index substrate. One may recognize that both the holes
and the pillars are geometrically “simple” objects, so that one
may look for rigorous solutions of the Maxwell’s equations in
analytical form. The basic idea is the following. If we want to
describe the field inside or around a cylindrical object, the best
choice we have is to write the field as a sum of the “natural”
modes of cylindrical objects, the cylindrical harmonics. With
this choice, we do not need to make any discretization, and
we may reasonably expect that a few terms will be enough to
properly approximate the field. This, in turn, means that the
time needed for the field computation may be reasonably small.

The final optimal design is achieved by means of an iterative
scheme. Each point in the search space represents a different
design, to be submitted from the search algorithm
to the MST analysis tool. Then the MST return the relevant pa-
rameters (fitness measure) to the search algorithm until a stop
condition is reached.

The GA is intrinsically parallel, and thus it has been effi-
ciently compiled for execution on a parallel hardware using the
OpenMP library.

The design variables are coded in strings using a Gray stan-
dard format and the operators, except minor details, are the clas-
sical ones proposed by Holland [22] and revised by Goldberg
[23]. In particular, a roulette-wheel selection is adopted, based
on string fitness values: the higher the fitness value of strings (in-
dividuals), the higher the probability of their copies in next gen-
eration; then, if are strings assigned at least one copy,
are strings assigned at least two copies and so on, the new gen-
eration is created arranging first the strings, then
strings and so on until the new population is completed. This ar-
rangement is expected to favour the recombination between low
performance elements by crossover and preserve strings with
best fitness values. As for mutation, a uniform probability dis-
tribution over each string is imposed.

Neither coupling restrictions nor “niche techniques” were ap-
plied, but an exponential fitness scaling mechanism is imple-
mented. If is the objective function, with the design vari-
able array, then the fitness function should be

(1)

being a damping coefficient which can vary through genera-
tions, controlling the selective effect of the exponential function.

An efficient DA, based on a well-established package for con-
strained optimization developed by Powell [24], is used for local
minimum refinement.

B. Numerical Results

Several numerical analyses have been carried out varying
either the position or the dimension of the selected pillars, or
both. The upper and lower bounds for the design variables
have been chosen so to avoid overlap of the pillars; the values
used in the simulations are reported in Tables I and II, for test
case 1 (rectangular array) and test cases 2–3 (triangular arrays),
respectively.

TABLE I
DESIGN VARIABLES—UPPER AND LOWER BOUNDS FOR TEST CASE 1

TABLE II
DESIGN VARIABLES—UPPER AND LOWER BOUNDS FOR TEST CASES 2-3

Fig. 5. Optimal design of a 90 bend by moving only cylinders positions: nor-
malized modulus of the electric field.

The overall time of the optimization procedure is problem de-
pendant and relies mainly on the number of pillars, cylindrical
harmonics, design variables, elements (individuals) of each pop-
ulation, iterations. In the MST code, the field scattered by each
pillar has been expanded into seven cylindrical harmonics. The
structures we considered contained 116, 104, and 141 cylinders
for the 60 , 90 , and 120 bends cases, respectively, so that the
overall number of unknowns to be determined by the MST was
812, 728, and 987, respectively. The memory required to store
this amount of unknowns was in the order of 50 MB for four
threads simultaneously. The code, developed in Fortran 90, took
approximately 10 seconds to perform the calculation of the scat-
tered field on a double Dual-Core Intel® Xeon™ 3.2-MHz work-
station with 8GB RAM.

Figs. 5–7 show the optimized results we have obtained in the
three cases listed above. The figures represent a top view of
the modulus of the electric filed along the waveguides. Along
with the field, the arrangement of dielectric pillars is shown.
Some of them are off-centered with respect to the regular lattice:
this is the result of the optimization routine, which has moved
them in order to increase the transmission. The population of
pillars that has been considered for the optimization in each of
the three cases is shown in Figs. 1–3, where they appear as black
filled circles. It may be observed that they seed in the vicinity
of the bend, and most remarkably, only in the first row of pillars
which directly borders the waveguide core. This is due to the
fact that the electric field is tightly confined in the waveguide
core. Indeed, owing the band-gap properties of the lattice, the
amplitude of the field dramatically drops if it tries to propagate
through the lattice itself. This, in turn, means that only very
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Fig. 6. Optimal design of a 60 bend by moving only cylinders positions: nor-
malized modulus of the electric field.

Fig. 7. Optimal design of a 120 bend by moving only cylinders positions:
normalized modulus of the electric field.

TABLE III
TRANSMISSION IMPROVEMENT

small tails of the field may experience changes of the pillars
beyond the first row. In other words, if one of such pillars is
modified, its impact on the overall field propagation is almost
negligible.

Table III shows the percentage increase of the power flux as
integrated along the lines marked with letter “L” in Figs. 1–3,
that we obtained with the optimized structures in each of the
three cases we considered. As it may be seen, the change of pil-
lars’ position or dimensions (or both) leads almost always to the
same improvement factor. A slight difference is observed only
in the case of the 120 bend: in this case, modification of the
pillars’ radii allows for a minor further improvement to be ob-
tained with respect to the case of modification of pillars’ posi-
tions. Anyway, in each optimal design the output power exceeds
the 90% of the incident power.

III. CONCLUSION

A fast optimization routine has been developed for the study
of wave propagation in planar 2-D photonic crystals. The routine
couples a rigorous full-vector numerical solution of Maxwell’s
equations, which is able to handle problems comprising an ar-
bitrary number of pillars or holes embedded in a homogeneous
dielectric substrate, to an hybrid algorithm which bases on a ge-
netic approach for global minimum search of a given objective
function and a deterministic procedure for local refinement. The
routine has been applied to the problem of maximizing the trans-
mission through sharp bends in photonic crystal.
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