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Subgridding to Solving Magnetostatics Within Discrete
Geometric Approach
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We propose a recipe to construct a symmetric positive definite and consistent reluctance constitutive matrix to be used within discrete
geometric approaches when the primal grid is generated by an enhanced subgridding of a generic hexahedral grid. We focus on a mag-
netostatic problem as working example.
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I. INTRODUCTION

A DISCRETE geometric approach (DGA) of electromag-
netic field problems is at the base of the fundamental

works of T. Weiland with the finite integration technique (FIT)
[1]–[3], E. Tonti with the Cell method (CM) [4]–[6] and A.
Bossavit [8]–[11], [13]–[15], where a direct way of discretizing
Maxwell equations is presented, alternative to the classical
Galerkin methods in finite elements.

For the sake of clarity, we will briefly retrace the fundamental
steps of the DGA, focusing on a magnetostatic problem formu-
lated in terms of the magnetic vector potential, considered here as
working example. First, a primal and a dual oriented grids are in-
troduced in the computational domain. An oriented grid is a col-
lection of oriented nodes, edges, faces and volumes. The primal
and dual grids are interlocked so that the oriented geometric el-
ements of primal grid are in a one-to-one correspondence with
the oriented geometric elements of the dual grid [2], [7], [14].

Second, by integrating the electromagnetic field variables
over the geometric elements of the pair of grids, a finite set of
integral variables is introduced. In the case of our magnetostatic
problem we will introduce the circulations of the vector poten-
tial along the primal edges, the fluxes of the magnetic induction
through the primal faces, the circulations of the magnetic field
along the dual edges and the fluxes of the current density field
through the dual faces.

Third, we write a balance equations relating the integral vari-
ables, obtaining a set of exact algebraic equations. For instance,
in our case, the flux of the magnetic induction through a primal
face is expressed in terms of the circulations of the vector po-
tential along the primal edges bounding that face; the flux of the
current density through a dual face is expressed in terms of the
circulations of the magnetic field along the dual edges bounding
that face.

Finally, discrete counterparts of constitutive relations are
written as approximated relations between integral variables.
For instance, in our magnetostatic problem, the fluxes of mag-
netic induction through the primal faces are transformed into
the circulations of the magnetic fields along the dual edges. A
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square matrix represents this mapping and it will be denoted as
reluctance matrix.

A final system of algebraic equations is deduced by combining
the balance equations and the discrete counterparts of the consti-
tutive relations. In this approach, the construction of the discrete
counterparts of the constitutive relations becomes a crucial issue.
It is a known result [14], [19], that to ensure the consistency and
the stability of the final system of equations, it is sufficient that
the constitutive relations satisfy both a consistency and a stability
properties. In our case, consistency requires that the reluctance
matrix exactly transforms the fluxes through primal faces into the
circulations along dual edges when the the magnetic induction
and the magnetic field are locally uniform; stability requires that
the reluctance matrix is symmetric, positive definite.

For a pair of grids, where the primal grid is made of tetra-
hedra and the dual grid is obtained by means of the barycentric
subdivision [16] of the primal grid, constitutive relations sat-
isfying both the consistency and stability properties have been
already shown [12], [13], [19]–[21]. However for more general
primal grids, such as those generated by subgridding of hexa-
hedral grids, as far as the authors know, no method has been
reported in literature for constructing discrete constitutive rela-
tions which satisfy both the consistency and stability properties
simultaneously.

In this paper, we consider the even more complicated class of
primal grids obtained as follows:

1) A coarse hexahedral grid covering the computational do-
main is introduced.

2) Subgridding of such a grid by means of finer hexahedral
grids is performed in the subdomains of the computational
domain in which finer grids are necessary.

3) Such a grid is then modified by cutting each primal
volume crossing interface surfaces; the interface surface
the two halves have in common, is then tesselated into two
triangles.

The primal grid obtained in this way can be very efficiently gen-
erated and, unlike primal grids obtained just by subgridding, can
accurately describe the geometrical details or different media in
the computational domain. A dual grid is then generated by the
barycentric subdivision of the primal grid. For such a pair of
grids, we provide a method for constructing the reluctance ma-
trix of the DGA applied to a magnetostatic problem, in such a
way that both the consistency and stability properties hold.
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II. DGA FOR MAGNETOSTATICS

In the domain of interest for the magnetostatic problem,
we denote with the subregion where sources are present
and we introduce a pair of interlocked grids one denoted as the
primal and the other as the dual. The primal grid is assumed
to be obtained by subgridding an hexahedral grid by means of
finer hexahedral grids. A primal volume crossing an interface
surface—separating geometrical objects or different media—is
cut into a pair of volumes; the face they have in common is ap-
proximated with two triangles (refer to Fig. 4 for the case of
our magnetostatic example). A dual grid is then generated by
the barycentric subdivision of the primal grid. The application
of the DGA to solving a magnetostatic problem, formulated in
terms of vector potential, yields the following system of alge-
braic equations [18]:

(1)

where is the array of circulations of the
magnetic vector potential A along a primal edge with

; is the array of impressed currents

through a dual face in , where a known current density J
exists and it has null entries in . The matrix contains
the incidence numbers between the pairs ( , ), being the
primal faces with and being the primal edges,
with .

The reluctance matrix is a discrete counterpart of the con-
tinuous level constitutive relation between magnetic
induction B and magnetic H fields; is the symmetric positive
definite double tensor of uniform reluctivity in . The reluctance
matrix approximately maps the array of induction fluxes

on primal face of the grid, with ,
to the array of m.m.f.s on edges of the
dual grid. As standard practice, the reluctance matrix is con-
structed by combining local reluctance matrices constructed
over the restriction of the primal and dual grids to a single primal
volume , with . In order to ensure the consistency
and the stability of the numerical method, it is sufficient that the
reluctance matrix for all , is i) consistent, in
such a way that it exactly transforms the fluxes of a uniform in-
duction field through the primal faces of into the circulations
of a uniform magnetic field along the dual edges in , for a uni-
form reluctivity in ; ii) the matrix is symmetric, positive
definite (stability property).

III. RELUCTANCE CONSTITUTIVE MATRIX

We will focus on the construction of the reluctance matrix
restricted to each volume of the primal grid and denoted

as ; Thus, for the sake of simplicity, we will assume that the
primal grid is composed of a single volume denoted with in
the following, see Fig. 1. We denote with , , , and a
primal node, edge, face and volume respectively; we also denote
with , , the local number of nodes, edges and faces of
respectively. Next, we denote with and the barycenters
of and respectively, with , . In
we arbitrarily introduce a dual node which in particular can be
chosen as the barycenter of . The segment drawn between ,

defines the dual edge . Nodes , , , are vertices
of the dual, in general non-planar, face ; and are the pair

Fig. 1. A single polyhedron in the grid obtained by subgridding an hexahedral
grid is shown, together with the primal (� , � , � , and �) and dual geometric
elements (��, �� , �� ).

Fig. 2. Detail of the pair of tetrahedra � , � in a one-to-one correspondence
with a primal edge � ; moreover the pair of primal faces � , � having � as
common edge are shown.

of the primal faces having as common edge. The primal and
dual geometric entities , and , are endowed with an
inner or outer orientations respectively [5]. We denote with
the edge vector1 associated with and with the face vector2

associated with ; then the following identity

(2)

holds [22], where the symbol denotes the tensor product be-
tween two vectors, I is the identity double tensor and is the
volume of . We assume the fields B, H and the reluctivity uni-
form in . Now, we partition into pairs of tetrahedra ,
with , see Fig. 2. The tetrahedron intersects the
primal face , while intersects ; and have the edge

in common. The vertices of tetrahedron are , and
the pair of nodes bounding ; similarly for by exchanging

1It is the vector directed as the edge, oriented as the inner orientation of the
edge; its amplitude is the length of the edge.

2It is the vector normal to the face, oriented in a congruent way with respect
to the inner orientation of the face; its amplitude is the area of the face.
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with . Let and be the position vectors of
and respectively drawn from a common origin. Let ,
be the edge vectors associated with , respectively. We as-
sociate with the following triple of vectors

forming a local base; similarly, the local
base associated with is .
Correspondingly in , we construct the base ( , , )
reciprocal to ( , , ), defined as ,

, , where ,
with in such a way that . Similarly
in we write ( , , ), where ,

, , where ,
with in such a way that . The following
geometrical identities:

(3)

hold between a base and its reciprocal in , respectively,
where , are the volumes of , . Then using the first
of (3), and , with ,

being the Kronecker symbol, it follows that

(4)

holds in , where are the entries
of a square symmetric and positive definite matrix of di-
mension 3 mapping exactly the fluxes to the circulations

with in . A similar result holds in ,
where are the entries of a sym-
metric positive definite matrix mapping exactly the fluxes

to the circulations with .
By taking the inner product between the uniform B field and

(2), we obtain

(5)

and by inner multiplying it by , , with , we
can construct the matrix

(6)

where is the -th row of the identity matrix of order
, and is the index of the primal face corre-

sponding to ; express the fraction of the flux on face
and the flux on the face which is a portion of since

is the double of the area of the triangle having as vertices
and the pair of nodes bounding the edge , Fig. 2. Matrix
maps the fluxes , with on primal

faces to the fluxes , with in and we write

(7)

In a similar way the matrix can be constructed by substi-
tuting , , with , , in (6), (7) and introducing

; the index denotes the label corresponding to
the primal face .

Now, we will prove that the following matrix:

(8)

is a reluctance constitutive matrix complying with the require-
ments i) (consistency) and ii) (stability).

Proof of i): We compute the quantity and we will
show that it coincides with , for uniform fields B, H in . To
this aim, we combine (7) and (4) obtaining

(9)

which is to say

(10)

where denotes the -th row, with , of the
vector and we have ,

; by the definition of ,
, holds. Finally, by substituting in (10) the tensor

identities , proven in paper [22], we obtain

(11)

and the thesis follows.
Proof of ii): Since and are symmetric, for

then from (8) follows immediately. More-
over, , hold for
and for any array , of dimension 3; by expressing such
arrays as , , we have that yields

(12)

The left hand side of (12) being null if and only if
and and thus, from the definition of and , only
if .

IV. NUMERICAL RESULTS

We used the DGA with the proposed reluctance matrix in (1)
to solving a reference magnetostatic problem of a sphere of ra-
dius of linear magnetic medium with relative per-
meability immersed in air. Only 1/8 of the problem
is meshed with a grid made of 1372 polyhedra and of 5751
edges. An external uniform induction field ,
being the field component along the vertical axis, is prescribed
on theupperboundaryof themesheddomain ,Fig.3; symmetry
conditions are considered on the remaining boundary faces of .
The primal grid is obtained by the subgridding of an initial coarse
hexahedral grid as shown in Fig. 3 and by cutting each hexahedra
intersecting the spherical surface by means of triangles as shown
in Fig. 4; in this last figure the traces on the sphere surface of a
number of triangular faces bounding the polyhedral volumes are
evidenced in detail. This kind of polyhedral elements provide a
very good tessellation of the sphere surface. In Fig. 5 the com-
puted amplitude of is shown along a number of sample points
on a vertical line and it has been compared both with the analyt-
ical solution and with a different numerical solution obtained on a
tetrahedral grid of6130 tetrahedra and8230 edges, in this case
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Fig. 3. Geometry of one octant of a magnetic sphere immersed in air. The trace
on the boundary of the domain box of the grid obtained by the subgridding of an
initial hexahedral grid is shown. The arrows represent the computed magnetic
induction field.

Fig. 4. Detail of the polyhedral grid and of its trace on the interface surface of
the sphere.

Fig. 5. The computed � components on a number of sample points along a
� directed line are shown and compared with the analytical and an independent
numerical solutions.

the reluctance matrix used is that described in [19], [20] for tetra-
hedra. We note a similar level of accuracy is obtained using such
two different grids. However, the number of edges and thus of un-

knowns in the discrete problems resulted much smaller using the
subgridding approach.

V. CONCLUSION

A method has been proposed for constructing consistent and
symmetric positive definite reluctance matrices to be used in
DGA for magnetostatic problems, when the primal grid is con-
structed by subgridding of an hexahedral grid. The numerical
results has shown that high levels of accuracy can be achieved
even in presence of curved geometries and that savings in the
number of unknowns with respect to simplicial grids can be
obtained.
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