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Abstract

Integral methods for solving eddy current problems use Biot–Savart law to produce non-local constitutive relations that
ead to fully populated generalized mass matrices, better known as inductance matrices. These formulations are appealing
ecause—unlike standard Finite Element solutions—they avoid the generation of a mesh in the insulating regions.

The aim of this paper is to alleviate the three main problems of volume integral methods. First, the computation of the
nductance matrix elements is slow and also delicate because of the singularity in the integral equation. This paper introduces
ovel face basis functions that allow a much faster inductance matrix construction with respect to the standard one based on
he Rao–Wilton–Glisson (RWG) or Raviart–Thomas (RT) basis functions. Second, our basis functions work for polyhedral
lements formed by any number of faces (including prisms, hexahedra and pyramids), while producing the same results as
WG and RT basis functions for tetrahedral meshes.

Third, the new basis functions allow to factorize the inductance matrix and to introduce a novel family of groundbreaking
ow-rank inductance matrix compression techniques that show several orders of magnitude improvement in memory occupation
nd computational effort than state-of-the-art alternatives, allowing to solve problems that otherwise cannot be faced.
2022 Elsevier B.V. All rights reserved.

SC: 78M25; 35Q61; 45E99; 65R20

eywords: Eddy currents; Electric field integral equation; Unstructured partial equivalent electric circuit; Volume integral method; Polyhedral
rid; Low-rank approximation

1. Introduction

Electromagnetic phenomena are governed by Maxwell’s laws [1] and constitutive relations of materials.
or slowly time-varying fields, whose change in magnetic field energy is dominant and electromagnetic wave
ropagation can be ignored, it is typical to neglect the displacement current in the Ampère—Maxwell’s equation.

This paper focuses on the numerical solution of these boundary value problems, referred to as eddy current
problems [2]. This well-studied class of problems has a vast number of industrial applications ranging from power
electronics [3,4], wireless power transfer [5], non-destructive testing and assessment of human exposure to low-
frequency electromagnetic fields [6], electromagnetic breaking, metal separation in waste, induction heating [7],
metal detectors and position sensing. With no purpose to be exhaustive, it can be said that various numerical methods
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have been used to solve electromagnetic problems, ranging from the classical Finite Element Method (FEM) [8],
Isogeometric Analysis (IGA) [9,10] and Hybridizable Discontinuous Galerkin (HDG) [11] to Mimetic Methods
(MM) [12], Virtual Element Methods (VEM) [13,14] and Discrete De-Rham Methods (DDR) [15].

Other appealing techniques for solving eddy current problems are the integral methods—like the Partial Element
quivalent Circuit (PEEC) methods based on loop currents of network theory [16–20] or Volume Integral (VI)

formulations based on the electric vector potential [21–24]. Integral methods are very appealing because, unlike
the standard Finite Element differential formulations, the computational domain is formed by conductors only, so
that modelling and meshing of insulators are avoided. This fact renders integral methods particularly efficient for
problems involving moving conductors. Considering only conductors is made possible by formulating the eddy
current problem with the Electric Field Integral Equation (EFIE), which uses the Biot–Savart law as a non-local
constitutive relation.

However, integral methods also have two serious drawbacks. First, the discretization of the EFIE leads to a
fully populated generalized mass matrix, that is called inductance matrix or magnetic matrix in the electromagnetic
ontext. Dealing with full matrices means that the time spent for their construction and the computer memory to
tore them scale quadratically when the mesh is refined.1 Second, the computation of an element of the inductance
atrix is computationally costly since it requires the evaluation of a double integral. The double integral becomes

ingular for the diagonal entries of the inductance matrix, which is the manifestation of a singularity in the EFIE.
he typical solution, even in recent contributions [24], is to use two different numerical integration rules for the

wo nested integrals. Unfortunately, as it will be shown in Section 6, this solution leads to numerical instability and
o poor accuracy in the computation of the diagonal elements of the inductance matrix. For instance, as shown in
ection 6, errors up to 200% may occur in the evaluation of the diagonal elements if they are computed with a
ouble numerical integration.

The interest in integral methods revived when inductance matrix compression techniques were developed. These
echniques exploit the fact that the inductance matrices have low-rank off-diagonal blocks, so that they can be
pproximated by using hierarchical matrices (H-matrices) and Adaptive Cross Approximation (ACA), see for
xample [20,24–27]. The compression techniques mitigate the first drawback of integral methods, providing a typical
ompression which ranges from 30% [27] up to 95% [24] of the total occupation of the full matrix. Yet, the time
aving is very limited given that the construction of the matrix requires nearly half of the time required to compute
he full matrix [24,27]. This fact limits drastically the range of problems addressable with integral methods.

To overcame the limits due to computational performances, the VoxHenry technique [4,28] has been recently
ntroduced to solve exactly the same problem addressed in this paper. It uses the Fast Fourier Transform (FFT)
o sensibly speed up the simulation, but it has the strong limitation of working with a Cartesian mesh. Such
oxelized geometries present the well-known “staircase” error in the geometric representation when a slanted
r curved boundary is rendered on a Cartesian grid, the same error which makes one to prefer Finite Element
ethod over Finite Differences. Moreover, a voxels grid prevents the use of local mesh refinement. Eventually, also
ested Equivalent Source Approximation (NESA) techniques can be found in literature [29,30] to compress dense

mpedance matrices generated by surface meshes made by triangles.
This paper provides the foundations of novel compatible integral methods for solving eddy current problems

hat mitigate both issues of integral methods while extending the simulation speed of VoxHenry to geometrically
onforming Finite Element meshes made by arbitrary polyhedra.

The state-of-the-art for tetrahedral grids is surveyed in Section 2. In particular, after recalling the standard electric
eld integral equation, the lowest-order Raviart–Thomas (RT) and Rao–Wilton–Glisson (RWG) face basis functions,
ttention is given on comparing three different techniques developed independently in literature to enforce implicitly
he current conservation. It is also mentioned that another point of view of integral methods is their interpretation
n terms of electrical networks, see for example [17,24]. It is remarked that this paper is deliberately focused on
ow-order methods for various reasons. First of all, low-order methods enable a clear circuit interpretation of the
FIE which is the main reason for the success of computer codes like FASTHENRY [17]. Second, physical and
eometric parameters are generally known with a tolerance in the percent range, which means that extreme accuracy
an be hardly justified for those applications. Hence, for industrial three-dimensional problems, low-order methods

1 We remark that, in principle, the dominant computational effort is the solution of the full linear system whose asymptotic complexity
is cubical. Yet, asymptotic complexity neglects constants: for example, for 10,000 elements, the assembly of the inductance matrix typically
takes one hour whereas the system solution with a direct solver (zsptrf and zsptrs LAPACK’s routine) just requires few seconds.
2
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Fig. 1. Electromagnetic problem configuration: an arbitrarily shaped conducting body Ωc under the influence of the source domain Ωs .

that are characterized by a simpler simulation set up (e.g. high order schemes suffer from the lack of high order
representation of curved geometry in off-the-shelf mesh generators) and a faster running time are more appealing
in this respect.

A first contribution of this paper, developed in Section 3, is to bridge all the three methods mentioned above to
enforce the current conservation showing that, while they produce the same solution in terms of current density,
one of these approaches has to be preferred with respect to others in terms of computational performances.

A second contribution, shown in Section 4, discusses why it is hard to extend the volume integral method and
its circuit interpretation to meshes that contain other elements than tetrahedra. It is shown that mass matrices
produced with RT or RWG face basis functions for hexahedra are not consistent. Hence, such mass matrices cannot
be generalized to arbitrary polyhedral elements.

A third contribution, contained in Section 5, is to extend the use of volume uniform face basis functions
introduced in [31] for tetrahedra to volume integral formulations and general polyhedral mesh elements. They can
be thought as the generalization of RWG and RT basis function for hexahedral or even general polyhedral elements
because, as shown at the end of Section 5, they produce the same stiffness matrix as the RT and RWG in case of
tetrahedral meshes.

The paper presents in particular two groundbreaking advantages induced by the use of the proposed basis
functions. First, Section 6 shows that they enable a faster computation of the inductance matrix and, in addition, the
use of a faster singularity extraction technique to compute the diagonal terms of the inductance matrix accurately;
second, the novel basis functions enable an original factorization of this matrix. Then, in Section 7, the benefits of
this new factorization when coupled either with low-rank compression techniques or with black box implementations
of the Fast Multipole Method (FMM) [32] are exposed and compared critically to the state-of-the-art.

Finally, in Section 8, some numerical results are shown while, in Section 9, the conclusions are drawn.

2. State of the art EFIE to solve eddy current problems on tetrahedral grids

2.1. The eddy current problem: From the continuum to the discrete framework

As a physical reference framework, we consider the setting of Fig. 1, where a conducting domain Ωc of arbitrary
topology—technically, a compact manifold [33] embedded in the three dimensional Euclidean space Ω—is placed
under the influence of a time-varying magnetic field. Such a source magnetic field, produced by a known current
density j s (r, t)—where r ∈ R3 is a point of Ω and t a time instant—flowing in a source domain Ωs , produces an
unknown induced current j (r, t) in Ωc accordingly to the Faraday–Neumann law. The conductor is characterized by
its resistivity ρ (r) (or its reciprocal, i.e. the conductivity σ (r)) while, for simplicity, the whole domain is considered
a medium whose magnetic permeability µ is constant in time and uniform in space and it is equal to the vacuum
permeability µ0. In fact, the contributions introduced in this paper can be extended to problems involving magnetic
materials by using consolidated techniques to deal with them like [18]. Thus, the extension of the formulation to
problems containing magnetic materials is left for further developments. In the continuation, the time-and-space
variation of the fields might be sometimes hidden for the sake of brevity.

We consider the total magnetic field

h = h + h
t s

3
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as a sum of the unknown reaction h (r, t) of the conducting domain—produced by the current density j in Ωc—with
the field hs (r, t) generated by j s , and the same for the total magnetic induction field

bt = b + bs

in which b (r, t) is the unknown contribution and bs (r, t) the known one produced by the current density j s .
In this framework, it is known that, under the hypothesis of magneto quasi-static approximation, the following

et of equations that characterizes the sources of the problem holds in Ω

∇ · bs (r, t) = 0, (1)
∇ · j s (r, t) = 0, (2)
∇ × hs (r, t) = j s (r, t) , (3)

in addition the one that has to be enforced to determine the unknown eddy currents

∇ · b (r, t) = 0, (4)
∇ · j (r, t) = 0, (5)
∇ × h (r, t) = j (r, t) , (6)

∇ × e (r, t) −
∂

∂t
bt (r, t) = 0. (7)

Moreover, constitutive laws read

bs (r, t) = µ0hs (r, t) , r ∈ Ω (8)
bt (r, t) = µ0ht (r, t) , r ∈ Ω (9)
e (r, t) = ρ (r) j (r, t) , r ∈ Ωc (10)

where e (r, t) refers to the unknown electric field related to the unknown current j (r, t) flowing in the conductor
Ωc.

For the well posedness of the eddy current problem, we also consider regularity condition at infinity for h, b
and e since Ω is unbounded. In addition, we impose the boundary conditions on j in such a way that

j (r, t) · n = 0, ∀r ∈ Γ

where Γ is the boundary of Ωc and n is an outgoing vector normal to Γ in r . We remark that in this paper, for
the sake of simplicity in the exposition, we assume that no electrodes are present. The extension to the case with
electrodes presents no difficulty and will be presented elsewhere.

Following [34], we introduce the Hilbert vector spaces L2(Ωc) and L2(Ωc) with the usual scalar products. Then,
given the subspaces H 1

grad(Ωc) := {ϕ ∈ L2(Ωc) : ∇ϕ ∈ L2(Ωc)} and Hdiv(Ωc) = { j ∈ L2(Ωc) : ∇ · j ∈ L2(Ωc)}, we
define the closed subspace Hdiv,0(Ωc) := { j ∈ Hdiv : ∇ · j = 0 in Ωc, j ·n = 0 in Γ }. In the vector space Hdiv,0(Ωc)
property Hdiv,0(Ωc)⊥ = ∇

(
H 1

grad(Ωc)
)

holds for the orthogonal subspace Hdiv,0(Ωc)⊥. Indeed, by applying Green’s
theorem we have

∫
Ωc

∇φ · j dv = −
∫
Ωc

φ (∇ · j ) dv +
∫
Γ φ ( j · n) d S = 0, where we have used the fact that vector

fields j ∈ Hdiv,0(Ωc) are solenoidal and their normal trace on Γ vanishes.
Because of (1) and (4), it is customary to introduce a magnetic vector potential at so that bt = ∇ × at thus

ewriting Faraday’s law in (7) as
∂

∂t
at + e = −∇φ (11)

y using the electric scalar potential φ.
In order to solve eddy currents by means of an integral approach, the linear integral relation called Biot–Savart

aw linking the magnetic vector potential on an arbitrary point of the space r ∈ Ω to a given current density field
jd reads as

ad (r, t) =
µ0

4π

∫
Ω

jd

(
r ′, t

)
|r − r ′|

dv = G jd (12)

ia the integral linear operator G. We note that G j s gives the vector potential as relative to the solution, in a given

ime instant t , of the magnetostatic problem expressed by (1), (2), (3) and (8).

4
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By separating the known contribution as of the source domain Ωs from the unknown part a due the eddy currents
in Ωc, namely at = a + as with a = G j and as = G j s , we obtain the Electric Field Integral Equation (EFIE) from
(11) as

∂

∂t
G j +

∂

∂t
as + e = −∇φ. (13)

To develop the finite element formulation of (13), the partial differential equations must be restated in a weak
form, which reads

d
dt

(
G j , j ′

)
+
(
ρ (r) j , j ′

)
= −

d
dt

(
as, j ′

)
, ∀ j ′

∈ Hdiv,0(Ωc) (14)

where (10) has been used and plugged into (13).
In order to solve (14) numerically, we partition the conductive domain Ωc, into a standard finite element

mesh made by tetrahedra. The simplicial mesh K will thus be formed by V volumes vi , i = 1, . . . , V , F faces
f j , j = 1, . . . , F , E edges ek, k = 1, . . . , E and N nodes nl , l = 1, . . . , N . We assume that the generated mesh
reflects the topology of the domain of interest, i.e. the mesh is adequately refined in such a way that all geometric
and topological features of the domain of interest are captured. Thus, since Ωc is a compact manifold, the mesh K
is a three dimensional combinatorial manifold with boundary [33].

The partitioning into finite elements allows the interpolation of the current density vector field j by means of
suitable vector functions w f j as

j (r, t) =

F∑
j=1

w f j (r)I j (t) . (15)

The vector functions w f j (r) are called face basis functions because they are attached to mesh faces. Their value,
generally, depends on the position of the calculation point r . I j is the value of the current flowing through the j th
face of the mesh and it configures as the degree of freedom (DoF, plural DoFs) of the discrete numerical model. The
choice of the proper type of basis functions is crucial for the numerical model to be convergent, well-conditioned,
robust and efficient. For this reason, we will treat this aspect separately in Section 2.2, and we now proceed without
providing more accurate details how such basis functions are defined.

Eq. (14) with the use of (15) and the standard Galerkin method, which sets j ′
= w f , yields a symmetric system

of linear equations that writes

RI +M
d
dt

I = −
d
dt

As, (16)

n which the DoFs vector I stores the values of the face currents I j . Moreover, in (16), we impose the boundary
conditions j (r, t) · n = 0 on Γ by setting to zero all the DoFs I j related to the faces that belong to the boundary
of K, hereafter denoted as ∂K.

In order to define the other terms of the last expression, let Ovh be the restriction matrix that provides the local
current DoFs of a volume vh when it is applied to the vector I of the current DoFs. Called Fvh the number of
local faces f vh

j of the volume vh , forming its boundary, Ovh is defined as a matrix of size Fvh × F whose rows
have exactly one entry equal to 1 in correspondence of the j th face f j that belongs to the boundary of vh and zero
everywhere else.

It follows that, in a tetrahedron vh , the (i, j) entry Rvh
i j of the resistance matrix restricted to vh , namely Rvh ,

where i = 1, . . . , Fvh and also j = 1, . . . , Fvh , results to be defined as

Rvh
i j =

∫
vh

ρ (r) w
vh
fi

(r) · w
vh
f j

(r ′) dvh, (17)

being w
vh
fi

(r), r ∈ vh , the basis function whose only support is the i th face of vh . Then, by using Ovh , the global
resistance matrix R can be obtained by means of the standard finite element assembling process as

R =

V∑
Ovh TRvhOvh . (18)
h=1

5
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In a similar way, by considering two volumes vh and vk , that can also be coincident, whose boundaries are
composed by Fvh and Fvk local faces, and given the two corresponding restriction matrices Ovh and Ovk , the (i, j)
ntry Mvhvk

i j of the local inductance matrix Mvhvk is first introduced as

Mvhvk
i j =

µ0

4π

∫
vh

∫
vk

w
vh
fi

(r) · w
vk
f j

(r ′)

|r − r ′|
dvh dvk (19)

rom which the global one follows as

M =

V∑
h=1

V∑
k=1

Ovh TMvhvkOvk . (20)

Finally, with the same reasoning, the entries of the right hand side vector As can be computed as

As =

V∑
h=1

Ovh T Avh
s (21)

in which the i th entry Avh
s,i of the local array Avh

s is

Avh
s,i =

∫
vh

as(r) · w
vh
fi

(r) dvh . (22)

Yet, Eq. (16) alone is not sufficient since, as it is, it does not verify (5), whose discrete version on mesh K reads

DI = 0, (23)

here D is the volumes-faces incidence matrix. In fact, a solenoidal basis for the face currents must be constructed
efore solving the system. To that end, in Section 2.4, we identify three different approaches followed in literature,
ach of them exploiting alternative techniques that, even if leading to a different set of linear systems, produce the
ame solution in terms of I.

.2. Face basis functions for tetrahedral meshes

In this section we report a brief review of how to construct the face basis functions to be used in (16). A
ypical requirement is to use basis functions that belong to Hdiv [2,35]. As explained for instance in [35] or in [22],
his imposes that the normal component of the j field must be continuous through the faces of K; instead, no
equirements are needed for the tangential components.

The standard choice is represented by Whitney facet elements better known as Raviart–Thomas (RT) basis
functions [35,36]. They are defined starting from nodal basis functions wv

ni
(r) on a tetrahedron v, with ni being the

th node of the considered volume. Then, the facet basis function for the j th face of a tetrahedron v is defined as

wv
f j

= 2 (wv
na

∇wv
nb

× ∇wv
nc

+ wv
nb

∇wv
nc

× ∇wv
na

+ wv
nc

∇wv
na

× ∇wv
nb

), (24)

here na , nb and nc are the boundary nodes of f j as shown in Fig. 2a.
Another choice, which will be proved to be equivalent to RT and is popular in the computational electromag-

etics community, is the use of Rao–Wilton–Glisson (RWG) shape functions firstly introduced for 2D simplicial
lements [37] and then extended to tetrahedra [38]. Exactly as RT basis functions also RWG are conformal: the
ormal component of j perfectly matches on each shared face f j when moving from one volume to its neighbour
hrough f j .

Let us consider Fig. 2b wherein the face f j is shared between two tetrahedra denoted T +

f and T −

f . The tetrahedra
igns are chosen accordingly with the reciprocal orientation of f j in such a way that the direction of the flux of w f j

as to be outgoing for T +

f and ingoing for T −

f , or conversely. Under this premise, the face basis function referred
o f j can be defined as

w f j (r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A f j ρ
+

f

3|v|
+

if r ∈ T +

f

A f j ρ
−

f

3|v|
−

if r ∈ T −

f
(25)
0 elsewhere,
6
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Fig. 2. Left: the j th face f j whose vertices are nodes na , nb , and nc; nd is the missing vertex opposite to f j . Right: the j th face of a
esh K shared between the two tetrahedra T +

f and T −

f .

ith ρ−

f := (r−

f − r), ρ+

f := (r − r+

f ) and where A f j is the area of f j and |v|
± is the volume of T ±

f . Vectors r±

f
oint to the tetrahedron nodes opposite to f j considered, respectively, either from T +

f or from T −

f .
It has already been shown in [39] that, even though the (24) and (25) appear to be quite different, they provide

he same set of basis functions.

.3. Interpretation as electrical circuits

The idea of interpreting (16) in terms of electric circuits has been already discussed in the literature but without
ny theoretical explanation on how this is possible. The aim of this section is to provide a rigorous interpretation
f Eq. (16) in terms of electric circuits.

Let us start by showing what is the physical interpretation of the array Ũ in

Ũ = RI, (26)

where I is the vector of current DoFs and R is the resistance finite element mass matrix (18). It turns out, from
he study of the measurement units, that each DoF of Ũ is a voltage. It is therefore legitimate to ask whether there

exists a path on which this voltage is sampled.
With this goal in mind, we now describe how the so-called dual edges are constructed. Starting from the

tetrahedral mesh K, it is possible to construct a barycentric dual mesh K̃ [40,41] by considering the barycenters
f each volume vi of K as the dual nodes ñvi , i = 1, . . . , V of K̃ thus achieving the one-to-one correspondence
etween vi and ñvi . A dual edge ẽ f j , j = 1, . . . , F connects two dual nodes ñvi and ñvh passing through the
arycenter of a face f j which is shared between vi and vh is in a one-to-one correspondence with the face f j .
inally, a dual face f̃ek , k = 1, . . . , E is in correspondence with primal edges ek and a dual node ñnl , l = 1, . . . , N
ith primal nodes nl . The result of this subdivision is depicted in Fig. 3.
We also define the restriction of dual edges to a volume as follows. Let vk be a volume containing the face fi .

he restriction of ẽ fi to vk , denoted by ẽvk
fi

, is the segment connecting the dual node ñvk with b fi , the barycenter
f the face fi . We denote by ẽvk

fi
the edge vector associated with ẽvk

fi
.

Let us now consider the element-wise uniform current density

j (r) =

F∑
j=1

w f j (r)I j (27)

nd define the element-wise uniform electric field

e(r) = ρ j (r). (28)

ince also e(r) is uniform inside each volume vh and the following property holds, see [42],∫
w

vh
fi

(r) dvh = ẽvh
fi

(29)

vh

7
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Fig. 3. Dual partition of a tetrahedron. Primal faces f j , j = 1, . . . , 4 are in a one-to-one correspondence with half dual edges ẽ f j (dashed
red lines) related to the depicted volume. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

we have∫
vh

e · w
vh
fi

(r) dvh = e ·

∫
vh

w
vh
fi

(r) dvh = e · ẽvh
fi
. (30)

Thus, we can finally claim that the entry Ũi of the vector Ũ stores the integral of the electric field e along the dual
edge ẽ fi

Ũi =

∫
Ω

e(r) · w fi (r) dv = e(r) ·

(
ẽvh

fi
+ ẽvk

fi

)
=

∫
ẽ fi

e(r) · d l, (31)

where vh and vk are the only two tetrahedra sharing the face fi .
This geometric interpretation of the finite elements is at the root of the Discrete Geometric Approach (DGA)

[43,44].
Afterwards, we move on to the physical interpretation of Ã =MI. It turns out, from the study of measurement

units, that the time derivative of each DoF of Ã is a voltage. Thus, in analogy to what was done before, we ask
ourself if there exists a path on which this voltage is sampled. To this end, let us consider the vector field

a(r) =
µ0

4π

∫
Ω

j (r ′)
|r − r ′|

dv. (32)

here j is defined as in (27). Yet, contrary to the previous case, the i th entry of Ã, namely Ãi , cannot be directly
nterpreted as the line integral of the magnetic vector potential on dual edges. Indeed, we have that

Ãi =

∫
Ω

a(r) · w fi (r) dv (33)

s in general different from∫
ẽ fi

a(r) · d l. (34)

To get an interpretation of Ã as the line integral of the magnetic vector potential on dual edges, we introduce
he element-wise uniform vector field

am(r) =
1

|vh |

∫
vh

a(r) dvh, r ∈ vh, (35)

amely the average vector field of a(r) on each volume vh . Since am(r) is element-wise uniform we clearly have∫
am · w

vh
fi

(r) dvh = am ·

∫
w

vh
fi

(r) dvh = am · ẽvh
fi
. (36)
vh vh

8
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so that (33) can be recast as

Am,i =

∫
Ω

am(r) · w fi (r) dv = am(r) ·

(
ẽvh

fi
+ ẽvk

fi

)
=

∫
ẽ fi

am(r) · d l, (37)

where, as before, vh and vk are the only two tetrahedra sharing the face fi .
We now prove that the difference between Am,i and Ãi exhibits a faster convergence order than the discretization

error when the mesh is refined. Thus, the approximation made in replacing a(r) with am(r) is negligible in practice
and yet it allows to formally introduce a network interpretation of the physical quantities. Let us consider the
difference on a single volume vh∫

vh

(a(r) − am) · w
vh
fi

(r) dvh =
ẽvh

fi

|vh |
·

∫
vh

(a(r) − am) dvh +

∫
vh

(a(r) − am) ·

(
w

vh
fi

(r) −
ẽvh

fi

|vh |

)
dvh . (38)

irst, note that
∫
vh

(a(r) − am) dvh is zero because of the definition of am . Second, (a(r) − am) and (wvh
fi

(r) −
ẽvh

fi
|vh |

)
are at least linear fields with zero average so that |As,i − Ãi | exhibits a second convergence order with respect to
the mesh size.

Only now that we know that a path on which voltages are defined exists, we can interpret the discretized EFIE
(16) with an electric circuit that can be solved by standard methods of network analysis. The graph of the electrical
network is thus formed by dual nodes and dual edges of K. We remark that, because of boundary conditions, the
dual edges which are dual to faces in ∂K do not belong to the dual graph.

Thanks to this interpretation, the left hand side of Eq. (16) can be regarded as the resistive and inductive voltage
drop caused by the current flow. This, in the frequency domain, configures R+ iωM as the impedance of Ωc which

rites

ZI = −iωÃs (39)

eing ω = 2π f the angular frequency and i the imaginary unit.

.4. Solenoidal currents

We now deal with the issue of enforcing implicitly (23) on K. As announced, we compare three different
approaches followed in literature that will be shown to be strictly related.

2.4.1. Solution based on the electric vector potential and additional DoFs: The CARIDDI code
Historically, a first solution was proposed in 1985 by Albanese and Rubinacci [45]. They had the idea of

representing the solenoidal current density as the curl of an electric vector potential t

j (r, t) = ∇ × t (r, t) . (40)

In the discrete setting, the current density is represented inside the tetrahedron v by

j (r, t) =

6∑
k=1

∇ × Nv
ek

(r) Tk(t), (41)

where Nv
ek

are the Nédélec’s edge basis functions [46] defined inside element v and Tk(t) is the line integral of t
on the kth edge of v. This gives rise to the system of equations

RC ART + LC AR d
dt

T = −
d
dt

UC AR (42)

n which, following the discussion in [22], we have that

• the (i, j) entry of RC AR is

RC AR
i j =

∫
ρ (r) ∇ × Nvh

ei
(r) · ∇ × Nvh

e j
(r ′) dv, ∀h ∈ {1, . . . , V } (43)
vh

9
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• the (i, j) entry of LC AR is

LC AR
i j =

µ0

4π

∫
vh

∫
vk

∇ × Nvh
ei

(r) · ∇ × Nvk
e j

(r ′)

|r − r ′|
dvh dvk, ∀h, k ∈ {1, . . . , V }; (44)

• the i th entry of the right hand side is

U C AR
i =

∫
vh

as · ∇ × Nvh
ei

(r) dv, ∀h ∈ {1, . . . , V }. (45)

he unknown vector T of DoFs contains line integrals of t on all mesh edges. To reduce the unknowns and obtain
full rank system, the so-called tree-cotree gauge [21] was developed, which foresees setting to zero the entries of

he array T on a suitable spanning tree of K. More details of gauging will be provided in Section 3.
It is fundamental to note that (42) holds only for simply connected conductors. The most up-to-date extension

o conductors that are not simply connected is presented in [47] and it is based on adding some “additional DoFs”.
hese additional DoFs do not have a precise mathematical definition, therefore the approach lacks clear theoretical

oundations. More importantly, an efficient way to find the global basis functions is missing. With the approach
roposed in [47], the computation of such global basis functions may easily take hours given that it requires the
olution of many global linear systems.

.4.2. Solution based on mesh current analysis (MCA): The unstructured partial elements equivalent circuit
PEEC) for eddy currents

A second approach exploits the electric circuits interpretation and solves the problem by applying the mesh
urrent analysis (MCA), which is a standard method of network theory [48,49]. This approach, proposed for the
rst time as far as we know in [17], computes a cycle basis on the circuit graph with the help of a tree-cotree
ecomposition. In particular, once one adds a cotree dual edge to the tree of the dual graph, exactly one loop is
reated. The set of these loops built for all cotree edges forms a cycle basis of the graph [48,49]. These global
ycles may be interpreted on the primal complex as a set of faces which produce a basis for solenoidal currents.
reater details are provided in Section 3. This approach has been recently rediscovered and called unstructured
artial Elements Equivalent Circuit (PEEC) for eddy currents, see for example [50].

.4.3. Solution based on algebraic topology: the VINCO code
The third possible solution, introduced in [51], stems from the discrete design of the potentials with the help of

lgebraic topology [40]. In this case, the so-called cohomology theory tells us formally—by its very definition—that
ll solenoidal currents I (formally, a 2-cocycle [40]) can be spanned by

I = CT +Wi, (46)

here the DoFs array T stores the integral of the electric vector potential on mesh edges (formally, a 1-cochain),
the array of independent currents [51,52] and the columns of W store the representatives of generators of the

econd relative cohomology group H 2(K, ∂K) [40], see Fig. 4a.
Cohomology theory may seem scary at first, but it has a clear physical meaning and it is unavoidable to develop

general solution. Looking at (46), the second relative cohomology group H 2(K, ∂K), by its very definition, spans
olenoidal fields tangent to ∂K that are not curl of anything. As an example, the W for a solid toric conductor
s formed by a single column whose entries, interpreted as electric current DoFs, form a unit current that flows
hrough the red thin tube around the torus, see Fig. 4a. The independent currents i are additional unknowns of the
ddy current problem. Their number is usually very small since it depends on the topology of the conductor, in
articular its number of “handles”. We also note that the dual of the faces in the red thin tube form a dual cycle
ade by dual edges that goes around the torus like in Fig. 4b.
A second advantage of using cohomology theory is that there exist efficient algorithms for the automatic

omputation of W. For efficiency, it is preferable to construct W by working on ∂K only, first because there
re less geometric elements to process in ∂K than in K. Second, the algorithms are intrinsically simpler and they
xhibit a linear complexity in the worst case. As shown in [52], W may be constructed starting from elements of
he boundary as W = CH, where columns of matrix H store some suitable representative of the first cohomology

1 1 2
roup H (∂K) [40] generator. In case of the example, the representatives c and c of the two boundary generators

10
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Fig. 4. Examples of cohomology generators H2(K, ∂K) and H1(∂K) for a solid torus. a) The support of a representative t1
∈ H2(K, ∂K)

enerator. b) The dual of t1 is a cycle made of dual edges that are dual to the faces of t1. (c) The support of two representatives c1, c2

f the H1(∂K) generators of ∂K. (d) The support of the homology generator d1 = D(c1) is constituted by dual edges that are dual to the
rimal edges of c1.

or a torus are shown in Fig. 4c; they are stored into the column of H. In this case, t1 can be obtained as Cc1.
oreover, the dual d1 = D(c1) of c1, shown in Fig. 4d, is a dual cycle homologous to D(t1), where D denotes the

uality map.
Yet, there is also a theoretical downside of using ∂K only: the major difficulty here is that the H 1(∂K)

ohomology group produces twice the number of generators of a H 2(K, ∂K) basis. For example, when dealing with
he solid torus depicted in Fig. 4, the two boundary generators able to represent the poloidal and toroidal currents
hat flow in ∂K appear. A first solution proposed in [51,52] suggests to use all representatives of the H 1(∂K) basis
o produce the W matrix by pre-multiplying the representative by the C matrix. The obtained W is called a lazy
ohomology basis and the obtained system turns out to be singular. Yet, most iterative and direct solvers do not
ave any problem in solving it since it is algebraically consistent. On the contrary, if one wants for some reason to
btain a full rank system, a cheap technique to find the required change of cohomology basis to obtain the matrix

has been introduced in [52] and described in more detail in [24]. Consequently, by using W = CH, the current
s thus represented with

I = C (T +Hi) . (47)

By enforcing the discrete Faraday’s law locally on the boundary of all dual faces as CT Ũ + iωCT (Ã + Ãs) = 0
nd globally on the non-local dual cycles like D(t1) = D(Cc1) of Fig. 4b as HT

(
CT Ũ + iωCT (Ã + Ãs)

)
= 0,

he complete set of equations reads as[
K KH
HTK HTKH

] [
T
i

]
=

[
−iωCT Ãs

−iωHTCT Ãs

]
, (48)

here

K = CT (R+ iωM)C. (49)

Exactly like in CARIDDI, we set to zero the entries of the array T relative to edges on ∂K because of boundary
onditions and, to reduce the unknowns and obtain a full rank system, one may apply the tree-cotree gauge [21]
y setting to zero the entries of the array T on a suitable tree inside K.

.4.4. Which solution is the best?
Even if developed independently in the literature, next section shows the relationship between all these three
ethods. It will be shown that all three methods return the same solution up to machine precision or linear solver

11
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algebraic error because they are algebraically equivalent (i.e. they enforce equivalent constraints). Nevertheless,
even if they are identical concerning accuracy of the solution, they are not in terms of computational efficiency
especially when applied to large problems that requires advanced compression algorithms.

3. Bridging all volumetric integral methods for solving eddy currents

The easiest method to introduce the EFIE for eddy currents is the one based on MCA, known also as unstructured
PEEC for eddy currents, because all topological issues are seamlessly taken into account2 when computing the cycle
basis of the dual graph. Yet, as a downside, there is no control on the length of the cycle basis. In practice each
cycle runs through a large portion of the mesh. This fact has terrible consequences, given that state-of-the-art system
matrix compression techniques do not work at all on matrices produced with such a cycle basis.

It is therefore natural to ask if there are techniques to find the shortest cycle basis or at least one of its close
approximations. Shortest in our case means a basis with the minimum number of total dual edges contained in all
the cycles. This is not directly feasible with graph theoretic algorithms, since the complexity of general algorithms
to compute a minimal cycle basis is cubical in the number of graph edges. Therefore, a practical solution has to
exploit some additional structure of the problem.

3.1. VINCO is a MCA method with a short cycle basis

The main idea is that the boundary of a dual face is a “short” dual cycle and we can try to build a cycle basis
from the local cycles produced by taking the boundaries of all dual faces. What is missing is just a recipe to extract
a set of local cycles in such a way they form a basis.

How many independent local loops one has to add? To answer this question we note that, thanks to Stokes’
theorem, local cycles are dependent if their dual faces form a closed surface. Therefore, we have to avoid closed
surfaces in the set of dual faces. This can be realized by removing the local cycles relative to dual faces that are
dual to a primal edges which belong to a suitable spanning tree of K.

There is another issue. When the topology is not trivial, local loops alone are not able to span all the cycle
basis. By definition of homology, what is needed in addition is a H1(K̃) homology basis. The representatives of
this homology basis are called global dual cycles and they are obtained as the dual of the cohomology generators.
For example, the global dual cycle in Fig. 4b is obtained by D(t1) or by D(Cc1).

What follows is a formal proof of the claim of this section. We show in particular that the rank of the cycle
asis obtained by VINCO is the same as the one obtained by the MCA method. We start from the Euler–Poincaré

formula for combinatorial 3-manifolds

N − E + F − V = β0(K) − β1(K) + β2(K), (50)

where βi (K) is the i th Betti number [40] of the polyhedral grid K. We write also the Euler–Poincaré formula for
ombinatorial 2-manifolds like the boundary of K:

N b
− Eb

+ Fb
= β0(∂K) − β1(∂K) + β2(∂K), (51)

here N b, Eb and Fb are the number of nodes, edges and faces contained in ∂K, respectively. We remark that in
he considered case ∂K is a surface without boundary. A more general setting will be considered in a forthcoming
ork.
Here we find how many cycles are contained inside the cycle basis of the MCA method. Considering the boundary

onditions, the number cMC A of internal loop currents is

cMC A = (F − Fb) − V + β0(K), (52)

ince the edges of the tree are number of available dual edges minus dual nodes plus the number of connected
omponents.

From 50 we have that

F − V = β0(K) − β1(K) + β2(K) + E − N (53)

2 Actually, the computation of the cycle basis on the dual graph G̃ is exactly the computation of the generators of the H1(G̃,Z) homology
group [53, p. 506].
12
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Fig. 5. An example of a spanning tree suitable for gauging. The example represents a two-dimensional domain for clarity. Dark black edges
form an internal tree, whereas thick red edges form a tree on ∂K. Thick green edges transform a forest in a spanning tree of K. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and

Fb
= β0(∂K) − β1(∂K) + β2(∂K) + Eb

− N b. (54)

Let us substitute these two (53) and (54) inside (52) to get

cMC A = [β0(K) − β1(K) + β2(K) + E − N ] + β0(K)

−
[
β0(∂K) − β1(∂K) + β2(∂K) + Eb

− N b] . (55)

Let us rearrange the terms as

cMC A = E − N + β0(K) + [β0(K) − β0(∂K)]

− [β1(K) − β1(∂K)] + [β2(K) − β2(∂K)] −
[
Eb

− N b] . (56)

Let us use the relationship between Betti numbers to simplify the last formula. Let us call β0(K) = c the number
f connected components of K. Let us call β1(K) = g, where g is the genus of K. Then, it is well known that
1(∂K) = 2g. Let us call β2(K) = p, where p is the number of cavities (or voids) of K. Then, the number of
onnected components β0(∂K) of ∂K is β0(∂K) = p + c. Concerning the number β2(∂K) of cavities of ∂K, they
re p + c. Finally, β3(K) = 0. By substituting these results we have

β0(K) + [β0(K) − β0(∂K)] − [β1(K) − β1(∂K)] + [β2(K) − β2(∂K)]
= c + [c − p − c] − [g − 2g] + [p − c − p]

= g − p. (57)

By substituting this result inside (56) we get

cMC A = E − N + g − p −
[
Eb

− N b] . (58)

Let us now compute the number cV I loop currents produced by the VINCO framework and show that they are
he same as cMC A. The primal tree produced by taking into account the gauging constraints contains the following
umber of edges

(N − N b) − c + N b
− (p + c) + p + c = N − c, (59)

here (N − N b) − c is the number of edges of an internal tree (i.e. a tree made by using the mesh edges and nodes
n K \ ∂K), N b

− (p + c) the boundary tree (i.e. a tree made by using the mesh edges and nodes in ∂K). To get a
panning tree of K, p + c edges have to be added, see Fig. 5. We remark that this is the same number of edges of

ny unconstrained tree of K. The constraint is needed just to being able to enforce boundary conditions. Therefore,

13
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the unknowns of the VINCO formulation are internal cotree edges (on the boundary they are set to zero because
of boundary conditions) plus g cohomology generators

cV I = E − Eb
−
[
(N − N b) − c + p + c

]
+ g

= cMC A, (60)

since the obtained expression is exactly Eq. (58).
To conclude, we can state that the VINCO is able to obtain a quasi-minimal cycle basis. There exist techniques

also to minimize the global loops which result from cohomology when the domain is not simply connected, see for
example [24], but, in the authors’ opinion, usually there is no sensible gain in doing it in our setting.

We also remark that in general it is also interesting to use an ungauged formulation3, lazy cohomology generators
or both. We will explore also these solutions in the numerical results section.

3.2. CARIDDI is a particular case of VINCO

The equivalence between CARIDDI and VINCO in case of a simply-connected conductor could be soon
established by using the results of [54]. By applying them, we get

K = CT (R+ iωM)C = CTRC+ iωCTMC = RC AR
+ iωLC AR . (61)

Thus, all the results on cohomology computation obtained in VINCO can be directly applied to CARIDDI.
To summarize, all three methods differ just in the dual cycles bases used, therefore they can be thought as

equivalent from the theoretical point of view and their solutions are the same. Concerning the computational
efficiency, VINCO has been already demonstrated faster than the alternatives. In Section 7 these advantages are
much improved and pushed to the limits.

4. Generalization to hexahedral and polyhedral meshes

The aim of this section is to show that extending the integral method on hexahedral or general polyhedral meshes
is not trivial. A first indication is that the circuit interpretation of CARIDDI and PEEC methods on hexahedral
meshes by using standard Raviart–Thomas face basis functions [55] lacks theoretical foundations.

We start by claiming that the Raviart–Thomas mass matrix on a hexahedron is not consistent. Let the coordinates
of the nodes of the hexahedron v in Fig. 6a be as in the caption of the picture. We assume a unitary uniform
resistivity. We denote with p fi , with i = 1, . . . , Fv the intersection between face fi and the corresponding dual
edge ẽv

fi
. Let ñv be the dual node in v. We stress that, for the present discussion, the points p fi and ñv are arbitrary

positions and do not necessarily coincide with the barycenter of face fi and hexahedron v, respectively. A necessary
and sufficient condition for the consistency of Rv according to the definition reported in [42,44] is

RvFv
= ẼvT

, (62)

where Fv and Ẽv are, respectively, the Fv × 3 and 3 × Fv matrices in which, for Fv , the i th row represents the
three components of the face vector f i and for Ẽv its i th column corresponds to the dual edge vector ẽv

fi restricted
to v, with i = 1, . . . , Fv . In what follows we will prove that condition (62) is not satisfied for any choice of the
dual grid. By direct computation, the right hand side of (62) yields

rowi (RvFv) = (0, 0, 3 log(2)/4), with i = 1, 2
rowi (RvFv) = (3/4, 0, 0), with i = 3, 4
rowi (RvFv) = (−1/4, 1/2, 0), with i = 5, 6,

where with rowi we denote the i th row of an array. Let us consider the vectors ẽv
f1

, ẽv
f2

associated with the dual edges
ẽv

f1
, ẽv

f2
respectively; in order to guarantee that ẽv

f1
, ẽv

f2
are parallel to the vectors rowi (RvFv) = (0, 0, 3 log(2)/4),

with i = 1, 2, it is necessary that ñv , p f1 and p f2 are on a straight line parallel to the z-axis of the Cartesian

3 The ungauged formulation is the formulation as exposed in Section 2.4.3 in which the tree-cotree gauge is not applied thus producing
an underdetermined system of equations.
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Fig. 6. The hexahedron v used in the counterexample. The coordinates of the nodes are p1 = (0, 0, 0), p2 = (2, 0, 0), p3 = (0, 1, 0),
p4 = (1, 1, 0), p5 = (0, 0, 1), p6 = (2, 0, 1), p7 = (0, 1, 1), p8 = (1, 1, 1).

coordinate system. Thus, by assuming for ñv = (x2, y2, x2) it results in p f1 = (x2, y2, 0), p f2 = (x2, y2, 1). Then,
given that ẑ is the unitary vector (0, 0, 1), it is

3
2

log(2) = (row1(RvFv) + row2(RvFv)) · ẑ =

(ẽv
f1

+ ẽv
f2

) · ẑ =
(
(ñv − p f1 ) + ( p f2 − ñv)

)
· ẑ =

((0, 0, x2) + (0, 0, 1 − x2)) · ẑ = 1

hich is clearly false.
A consequence of the fact that consistency condition (62) does not hold is that the voltages Ũ obtained by

Ũ = Rv
RTI, (63)

here RRT is the Raviart–Thomas resistance mass matrix and I is a set of solenoidal currents on the faces of v

orresponding to a uniform current density, cannot exist, i.e. there exists no segment on which Ũ can be evaluated.
his, in our opinion, renders the interpretation in terms of circuits questionable whenever applied to an hexahedral
esh whose constitutive matrices are computed by means of Raviart–Thomas shape functions.
To generalize in a consistent way the integral formulations for eddy currents to hexahedral meshes and even the

ost general polyhedral meshes we need to use the VINCO framework. This framework not only allows to obtain a
onsistent matrix on a mesh constituted by arbitrary polyhedra but it also enables to present the novel and original
esults contained in the next sections.

. Novel construction of mass matrices

In this section we introduce novel basis functions which are uniform inside polyhedral elements. They are a
ey ingredient to produce mass matrices and generalized mass matrices that are positive-definite, symmetric and
onsistent for arbitrary polyhedral elements. This property has strong implications from both a theoretical and a
ractical point of view that will be analysed in the forthcoming sections.

.1. Volume uniform (VU) face basis functions

emma 1. Let j be a constant vector field defined on a volume vh . Define ẽvh
f := b f − ñvh with b f the barycenter

f a face f of vh . The following equality holds

j =
1

|vh |

∑
ẽvh

f I f . (64)

f ∈∂vh
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Proof. Let w, x ∈ R3. Let n∂vh denote the outgoing vector normal to ∂vh . We have

|vh | j · w =

∫
vh

j · w dvh =

∫
vh

j · ∇(w · (x − ñvh )) dvh (65)

=

∫
∂vh

( j · n∂vh ) (w · (x − ñvh )) d S (66)

=

∑
f ∈∂vh

( j · f ) ((b f − ñvh ) · w), (67)

here f is the face vector of face f . By using the definition of ẽvh
f and I f = j · f which holds since j is uniform

in vh , it follows that

|vh | j · w =

∑
f ∈∂vh

( j · f ) (ẽvh
f · w). (68)

Since w is arbitrary, we obtain the claimed equality. □

We define w f j
(r) as the uniform basis function whose support is the union of the unique two volumes vh and

vk that are adjacent to f j face. In each of these volumes, w f j
(r) is a constant vector given by

w
vi
f j

(r) =
1

|vi |
ẽvi

f j
, r ∈ vi , i ∈ {h, k}. (69)

We can restate Lemma 1 by saying that the functions w
vi
f j

form a basis for the vector subspace of the constant
vector fields defined in vi .

5.2. Construction of a symmetric and consistent constitutive matrices

An efficient recipe to construct consistent and symmetric mass matrices exploits the uniform basis function
introduced in (64), which are able to represent a uniform vector field defined in a given volume.

5.2.1. Resistance mass matrix
The (i, j) entry of the local resistance matrix Rvh , built for vh whose resistivity tensor is Kρ , is constructed as

Rvh
i j =

∫
vh

w
vh
fi

(r) ·Kρw
vh
f j

(r) dvh . (70)

Being the integration exact since the basis functions are uniform inside vh , it follows that

Rvh
i j = |vh | w

vh
fi

·Kρw
vh
f j
. (71)

The global R matrix is then constructed as

R =

V∑
h=1

Ovh TRvhOvh . (72)

.2.2. Magnetic mass matrix
The (i, j) entry of the local magnetic mass matrix Mvhvk between two considered volumes vh and vk is

Mvhvk
i j =

µ0

4π

∫
vh

∫
vk

w
vh
fi

(r) · w
vk
f j

(r ′)

|r − r ′|
dvh dvk . (73)

et tvhvk be the positive number defined as follows

tvhvk =
µ0

4π

∫
vh

∫
vk

1
|r − r ′|

dvh dvk, (74)

hen (73) becomes

Mvhvk
= tvhvk w

vh
· w

vk . (75)
i j fi f j
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And, in conclusion, the global M matrix construction follows as

M =

V∑
h=1

V∑
k=1

Ovh TMvhvkOvk . (76)

.3. Construction of symmetric positive definite and consistent constitutive matrices

The construction of symmetric positive definite consistent mass matrices is inspired by a well established design
trategy which decomposes a local mass matrix as the sum of a consistent and a stabilization part [56,57]. Each
art plays a specific role: the consistent part enforces the polynomial consistency property while the stabilization
art ensures positive-definiteness, preserving the consistency already achieved.

In this section, we add to the local mass matrix Rvh a stabilization matrix which is symmetric and positive
emidefinite and we look for a suitable new stabilization matrix, which is shown to be symmetric and positive

semidefinite too, to be added to the dense Mvhvk .

Definition 5.1 (Stabilization Matrix). Let Fvh be the number of faces of vh . Let Fvh be the Fvh × 3 matrix whose
ows collect face vectors associated with the volume vh . A matrix Svh of size Fvh × Fvh is called a stabilization
atrix for the volume vh if it is symmetric, positive semidefinte matrix and such that ker(Svh ) = im(Fvh ).

We provide two canonical examples of stabilization matrices that can be used on every polyhedral volume vh .
s a first example, let α = (α1, . . . , αFvh −3) ∈ (R+)Fvh −3 be any (Fvh − 3)-upla of positive real numbers. Let

k1, . . . , kFvh −3) be an orthonormal basis of the orthogonal complement of im(Fvh ). We define a stabilization matrix
vh by setting

Svh =

Fvh −3∑
i=1

αi ki (ki )T . (77)

hile this approach is very general, it requires the computation of the kernel of a matrix. If vh is a tetrahedron,
hen the recipe proposed in [58] can be applied, which is a particular case of the above construction. As a more
eometric approach, we introduce the following stabilization matrix, which is a reinterpretation of the vector basis
unctions introduced in [43]. We denote by Ẽvh the matrix whose columns collect edge vectors associated with the
estriction of dual edges to vh . Let

Avh = IFvh
−

1
|vh |
Fvh Ẽvh , (78)

here IFvh
is identity matrix of order Fvh . By applying Lemma 1 we have that im(Fvh ) ⊂ ker(Avh ). In particular,

rank(Avh ) = Fvh − 3 and thus, we define a valid stabilization matrix by setting

Svh = Avh TAvh . (79)

5.3.1. Positive definite resistance mass matrix
Let Rvh

S be the matrix defined as follows

Rvh
S = Rvh + Svh . (80)

The corresponding global matrix RS is constructed as follows

RS =

V∑
h=1

Ovh TRvh
S O

vh . (81)

Theorem 1. Matrix RS is symmetric and positive-definite.

Proof. It is sufficient to prove that Rvh
S is positive definite. Let z ∈ RFvh such that zTRvh

S z = 0. In order to
prove that Rvh T vh
S is positive definite, we have to show that z = 0. The condition z RS z = 0 is equivalent to require

17
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that

zTRvh z = 0, (82)

zTSvh z = 0. (83)

Based on the properties of the stabilization matrix, it follows that z ∈ im(Fvh ), thus z = Fvh y for some y ∈ R3.
By substituting in (82), it follows that

(Fvh y)TRvhFvh y = 0, (84)

rom which, using Lemma 1 and the definition of Rvh , we conclude that y = 0 and z = Fvh y = 0. □

.3.2. Positive definite magnetic mass matrix
Let Mvhvk

S be the matrix defined as follows

Mvhvk
S =

{
Mvhvk + Svk if h = k
Mvhvk if h ̸= k

. (85)

The corresponding global matrix MS is constructed as follows

MS =

V∑
h=1

V∑
k=1

Ovh TMvhvk
S Ovk . (86)

heorem 2. Matrix MS is symmetric and positive-definite.

roof. Let z ∈ RF such that zTMS z = 0. In order to prove that MS is positive definite, we have to show that
z = 0. By using (86) we have

0 = zTMS z

=

V∑
h=1

V∑
k=1

zTOvh TMvhvk
S Ovk z

=

V∑
h=1

zTOvh TMvhvh
S Ovh z +

V∑
h=1

V∑
k=1,k ̸=h

zTOvh TMvhvk
S Ovk z.

(87)

87) is equivalent to require that
V∑

h=1

zTOvh T (Mvhvh + Svh )Ovh z = 0, (88)

V∑
h=1

V∑
k=1,k ̸=h

zTOvh TMvhvkOvk z = 0, (89)

here we have used (85). By repeating the same argument used in the proof of Theorem 1, it follows that each
atrix Mvhvh + Svh is positive definite. Thus, from (88) it follows that z = 0. As a consequence, (89) is also

atisfied. □

.4. Relations of the novel basis functions to the ones proposed in literature

.4.1. Equivalence of RT, RWG, VU basis functions on tetrahedral meshes
This section remarks that when constructing CT (RS + iωMS)C in tetrahedral meshes the stabilization part is

ot needed. In other words

CT (RS + iωMS)C = CT (R+ iωM)C. (90)

This fact has two consequences. First, the construction of the resistance and inductance matrices may be

erformed by using just the part encompassing the uniform fields inside the elements, since the construction of
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the stabilization matrix can be avoided. Second, since the uniform field reconstructed from solenoidal currents on
mesh faces is unique, it turns out that

CT (R+ iωM)C = CT (RRW G + iωMRW G)C. (91)

Yet another consequence is that the RT and RWG mass matrices can be interpreted as the one obtained with VU
basis functions with a different choice for the stabilization part.

All of this implies that the accuracy of the novel method based on VU basis functions produces exactly the same
matrices and the same solution of the one from standard Raviart–Thomas or RWG basis functions. Section 6 shows

hy the VU framework is to be preferred even in case of tetrahedral meshes.

.5. State-of-the-art for polyhedra: Piecewise uniform (PWU) basis functions

For meshes composed by general polyhedra, the only technique that we are aware to produce a consistent,
ymmetric and positive definite matrix is introduced in [51]. It is based on the piecewise uniform (PWU) basis
unctions introduced in [43]. For hexahedra, prisms and pyramids one may use RT basis function that, however,
roduce inconsistent mass matrices.

. From VU basis functions to inductance matrix factorization

EFIE formulations for solving eddy current problems, as discussed in this paper, are mainly afflicted by two
hortcomings. First, the construction of the entries of M matrix is slow due to the presence of the double integral
hat, in addition, for its self terms becomes singular; as a second aspect, the inductance matrix is fully populated
nd thus extremely expensive to be assembled and stored. Indeed, in this section, we illustrate how these two issues
an be faced for arbitrary polyhedral meshes (wherein hexahedra, tetrahedra, prisms and pyramids are naturally
ncluded) thanks to the application of the novel VU basis functions.

.1. Speeding up M assembly with VU basis function

Let us consider a pair of volumes vh, vk of a mesh K. The (i, j) entry of the local magnetic mass matrix Mvhvk

s generally defined, as in (19), as

Mvhvk
i j =

µ0

4π

∫
vh

∫
vk

w
vh
fi

(r) · w
vk
f j

(r ′)

|r − r ′|
dvh dvk . (92)

If VU basis functions are employed in (92), then the computational cost for Mvhvk assembly is reduced, even
when K is a tetrahedral mesh. Indeed, if standard RWG or RT basis functions are employed, one has to directly
use (92). Instead, as reported in Section 5, when VU basis functions are considered, (92) becomes

Mvhvk
i j = tvhvk w

vh
fi

· w
vk
f j
, (93)

herein tvhvk is

tvhvk =
µ0

4π

∫
vh

∫
vk

1
|r − r ′|

dvh dvk, (94)

If we now suppose vh, vk to be distinct volumes with Fvh , Fvk faces each, under the hypothesis that the floating
oint operations cost is ruled by the computation of 1/|r − r ′

|
4 it turns out that the obtained speed up when using

(93) instead of (92) is around Fvh · Fvk . In fact, with our approach one has to compute just one double numerical
integral (94) whereas in the standard case (92) one has to compute Fvh · Fvk numerical integrals.

4 CPU cycles to perform division and square root dominate the dot products between the basis functions.
19
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6.2. Singularity extraction with VU basis functions

The evaluation of the double integral (92) is singular whenever vh = vk , i.e. for all the diagonal terms of M [21].
From a survey of literature on this topic, it is soon clear that the presence of affine basis functions in (92) leads

o complex recipes to get rid of the singularity because each proposed technique is necessarily influenced by the
ntegration domain shape (triangular, tetrahedral, prismatic, polyhedral) and by the basis functions definition; see,
or instance, [21,59] for 3D integration domains or [60,61] for 2D. Hence, the possibility of dealing with volume
niform basis functions has a great potential in this respect since it allows to drastically simplify and speed up the
omputation. Yet, in case of a simplicial mesh, the germ of this idea is presented in [21], but no volume uniform
asis functions are proposed. On the contrary, the idea seems to be entirely new when working with hexahedra,
yramids and polyhedral volumes in general.

We use the well established approach called singularity extraction (sometimes also referred to as singularity
ubtraction) that consists of extracting a singular term from the double integral and integrate it in closed form to
hen treat the obtained expression numerically by mean of quadrature rules [59,61]. The singularity extraction has
een already applied in literature, but not with volume uniform basis functions. In fact, when the new VU basis
unctions are used, the singularity extraction can be applied to Eq. (93), in which the singular double integral tvhvk

an be computed separately from the calculation of the involved basis functions values. This yields a speed up of at
east Fvh · Fvk , where Fvh , Fvk are the number of faces of elements vh, vk , because only one numerical integral has to
e computed (namely tvhvk ) in place of Fvh ·Fvk numerical integrals in (92). The obtained gain is even more, because
he integral (94) is simpler. In fact, since the w f are no more part of the singular integral, several closed-form exact
xpressions as the ones in [62], can now be applied to analytically calculate the innermost integral thus eliminating
he singularity.

Given that it has just been shown that our (93) has to be preferred with respect to (92), now we investigate
he difference between the results obtained with singularity extraction and the common solution that uses a double
umerical integration. To this aim, a standard tetrahedron T whose vertices are (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)
s considered on which the double integral

DD =

∫
T

∫
T ′

1
|r − r ′|

dv dv′,

s computed in three different ways: with a double numeric integration, with the singularity extraction approach
nd, finally, with an analytic formula developed for this case only, by successively applying the Gauss Divergence
heorem [63,64] and by means of a symbolic calculus software. This last one will be considered as the reference
alue for the double integral.

In Fig. 7, we report the results of this computation with several integration orders: the top plot shows the actual
alues obtained, the bottom plot shows the percentage error computed as

ε% = 100|DD − DDre f |/|DDre f |.

Indeed, as reported in literature, the singularity extraction approach yields accurate values also for low numerical
integration orders, whereas the purely numeric integration results to be highly inaccurate.

To complete the picture, in Fig. 8 we propose the same computation wherein one of the two domains of the
double integral changes its position with respect to a first fixed tetrahedron. In this case we just compare the values
obtained by applying the singularity extraction with the ones obtained with a double numerical integration: the error
is computed against the value obtained with the singularity extraction combined with the highest order of numerical
integration (namely, Sing. Extr., O(x16)) given that the previous plot showed the accuracy of this approach. The

lot shows that when the two domains superpose, the double numerical integration yields inaccurate and oscillating
esults, whereas without a superposition of the two tetrahedra a good accuracy is obtained also with double numeric
ntegration since for disjoint integration domains there is no singularity.

.3. Factorization of the inductance matrix: MAGICA

We now recall the fact that, being M or K dense matrices, commonly advanced compression techniques must be

aken into consideration whenever eddy currents have to be computed on large conducting domains that otherwise
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Fig. 7. Double integral calculation over a tetrahedron by varying integration order n. For the double numerical integration, at each point of
the graph, a pair of n integration orders is intended to be applied.

Fig. 8. Double integral calculation over a pair of tetrahedra whose mutual distance is successively increased. As a reference value to compute
he error for this test, the “Sing. Extr., O(x16)" case is used since in the previous plot this approach was shown to be accurate.

ould be not affordable by means of EFIE. This happens both because of the too large memory requirements
or the matrix storage and because of the prohibitive computation time for the matrix assembly, see for example
24,27].

Usually one computes and stores the dense matrix M whose dimension is F × F to then assemble the complex
system of Eq. (48) by means of the matrix–matrix product K := CTMC finally obtaining a dense E × E ; also,
M

21
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as an alternative, the matrix–matrix product can be performed locally on each mesh volume and then matrix KM

without computing the full M. A third alternative for tetrahedral meshes is to assemble KM directly by using the
curl of the Nédélec basis functions. We remark that, in all the three case, the number of elements in the system

atrix scales quadratically with the number of the mesh edges E .
The seed of the idea here exposed stems from the fact that it might be much more convenient to compute and

store a dense matrix N of dimension V × V containing all the results of the computation of the double integral
vhvk for each couple vh and vk of the mesh and then reconstruct KM via a factorized expression involving sparse
atrices whose memory occupation scales linearly with the number of unknowns of the problem. Since in a mesh
the number of volumes V is typically lower than the number of edges E (or even faces), a memory saving is

btained.5 In addition, it is here remarked that this reformulation is obtained by algebraic manipulation only, without
ny approximation or loss of accuracy.

Once the interaction matrix N is computed and defined as

Nhk =
tvhvk

|vh ||vk |
∀h, k = 1, . . . , V, (95)

it is then worth solving the system iteratively, in a matrix-free fashion, in order to just calculate matrix–vector
roducts and never assemble the whole KM as it should be done in case of system solutions by means of direct
inear solvers.

If, for the sake of simplicity, we for now consider the case of a tetrahedral mesh only, from (49), (75) and (85), an
quivalent expression for KM based on the here introduced Matrix fActorization for Geometrical Integral mAtrices
MAGICA) can be obtained as

KM = CTOT
FB

(
ẼT

xNẼx + ẼT
yNẼy + ẼT

z NẼz

)
OFBC. (96)

In this last expression:

• OFB is a sparse matrix of dimension FB × F . FB is the total number of blossomed faces that are obtained by
considering pairs ( f j , vh) for j = 1, . . . , F , h = 1, . . . , V , i.e., renumbering independently the faces of each
volume of K; this means that all the faces shared between two volumes, i.e. not belonging to the conductor
boundary K, are repeated.6 OFB maps F faces of the mesh to blossomed FB faces and each row, corresponding
to a pair ( f j , vh), has only one non-zero entry that is equal to one.

• Ẽx , Ẽy and Ẽz are sparse matrices of dimensions V × FB . Each column of Ẽx , Ẽy and Ẽz , corresponding
to a pair ( f j , vh), contains just one non-zero entry which is equal to x · ẽvh

f j
, y · ẽvh

f j
and z · ẽvh

f j
, respectively,

where ẽvh
f j

is the edge vector associated with the restriction of dual edge ẽvh
f j

of face f j to vh and x̂ = (1, 0, 0),
ŷ = (0, 1, 0), ẑ = (0, 0, 1). By recalling the definition of Ẽvh given in Section 4 as the matrix storing in its
columns edge vectors ẽvh

j , j = 1, . . . , Fvh with Fvh the number of faces of the polyhedron vh , it follows that
x̂Ẽvh , ŷẼvh and ẑẼvh are the rows blocks of the desired global Ẽx , Ẽy and Ẽz as determined in the following
for Ẽx :

Ẽx =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̂Ẽv1 0 0 . . . . . . . . . . . . 0
... x̂Ẽv2

... x̂Ẽv3

...
. . .

...
. . .

...
. . .

0 x̂ẼvV

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

5 For instance, for a simplicial grid the number of edges is, on average, 30% greater than the volumes, hence obtaining E/V ≈ 1.3; for
an hexahedral mesh this ratio increases up to E/V ≈ 4–5. This traduces, for hexahedra, into a memory occupation reduction up to 25 times
when storing the real dense N in place of KM .

6 As a consequence, in a simplicial mesh F = 4 V.
B
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When the mesh is constituted by tetrahedra only, the stabilization matrix is not necessary. Thus, the expression
n (96) is complete and the only hurdle left is the construction of Ẽx , Ẽy and Ẽz matrices.

Differently, for general polyhedra, the factorization in (96) is not complete and also the stabilization part has to
e taken into account in order to be compliant with the definition of MS of (85). In this case is necessary to add
ew terms to (96) expressing the stabilization matrix Svh of (85). The most efficient way to that goal is the direct
ssembly of the global stabilization matrix S as

S =

V∑
h=1

Ovh TSvhOvh . (97)

ndeed, thanks to the definition in (85) in which the local stabilization matrix Svh has to be summed to Mvhvk only
n the case vh = vk , Eq. (97) produces a sparse matrix with exactly the same sparsity of RS , as detailed in (81).
ence, it affects neither the assembly time nor the memory consumption for its storage since it scales linearly with

he mesh dimension. In addition, it can be efficiently assembled simultaneously to RS , since the Svh matrix has to
e added both to Rvh and to Mvhvh , hence it can be constructed only once per considered volume vh .

As a matter of fact, in case of polyhedra, Eq. (96) becomes

KM = CTOT
FB

(
ẼT

xNẼx + ẼT
yNẼy + ẼT

z NẼz

)
OFBC+CTSC. (98)

It is here also noticed that MAGICA expression in (98) does not reflect the actual implementation. In fact, from
practical point of view, instead of storing C and OFB to then perform the matrix–matrix product with Ẽx , Ẽy

nd Ẽz it is wiser to directly assemble each of the three products ẼxOFBC, ẼyOFBC and ẼzOFBC as sparse
V × E matrices. In addition, we also recall for the sake of precision, that Eq. (98) takes into account neither the
oundary conditions nor the gauging: to this purpose, the same techniques described in Section 2 can be directly
pplied without any loss of generality.

. A new family of compression techniques

In the previous section the MAGICA factorization of the dense inductance matrix KM of (48) was introduced.
ndeed, it was shown that thanks to (96) for simplicial meshes and to (98) for polyhedral ones, a lossless compression
f the memory occupation can be usually achieved. What is missing now is the system solution that can be
chieved by means of two different iterative approaches: a lossless technique that directly applies (98) to (48) and
n approximated scheme that can exploit either the Fast Multipole Method [17], ACA or any other fast summation
lgorithm in order to efficiently compute the off-diagonal terms of N, with a consequent drastic reduction of the
emory footprint and of the computation time. Let us carefully delineate them both.

.1. LIME: A lossless integral matrix compression

The first possibility is represented by the application of the factorized expression of (98) into (48). In order
o avoid the construction of a full, for instance, ẼT

xNẼx matrix, only on-the-fly matrix–vector products are
llowed. Hence, matrix-free algorithms for the iterative solution of symmetric positive definite (SPD) systems,
ike GMRES [65], can be used. As far as the preconditioner is concerned, the diagonal part of K = KR + iωKM ,
amely diag(K), has been used.

In addition to this, also resorting to the solution of an ungauged system results to be very effective when working
ith Krylov’s subspace-based iterative solvers.

INCO solution with LIME. The process described above yields the flow chart of Fig. 9 in which it is illustrated
ow to face the solution of an eddy current problem as expressed by EFIE in which MAGICA is applied for the
ompression and factorization of KM .

We here remark that in this section and thus in the proposed flow chart too, we did not specify whether the
omain is simply connected or not; in fact, this distinction is not necessary since Eq. (98) can be plugged into (48)
ithout loss of generality.
23
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Fig. 9. Flow chart of the iterative system solution with LIME.
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7.2. Approximated compressions of integral matrices

In order to further increase the size of the problems affordable with the EFIE formulation here exposed, it may
e very useful to apply more advanced compression techniques than the lossless factorization based on the full
omputation of N matrix exposed in the last section.

Literature mainly illustrates two possible approaches to be employed in case of EFIE: from the one hand there are
lgebraic methods based on hierarchical matrices algebra like the Adaptive Cross Approximation that are the most
iffused, to the other hand also analytical approaches that relies on an analytic expansion of the 1/r-kernel-based
xpressions, as it is done by the Fast Multipole Method, can be extremely interesting since these methods are able
o rapidly and efficiently calculate the interactions that have to be computed when assembling the dense magnetic

atrix M. Yet, even if both of them may seem to be equally appealing and theoretically effective in reducing
oth the peak memory usage and the computational time during the system assembly, in truth, when applied to the
ormulation without any factorization as exposed until Section 3, both of them exhibit important limitations and
ownsides.

First, ACA-based approaches are not very efficient when applied to the system matrix K. Indeed, the tricky
aspect resides in the fact that rows and columns of K are referred to the mesh edges whereas usually the assembly

f M has to be constructed sequentially by looping within the mesh volumes. When an ACA library is interfaced
o K, this traduces either into huge assembly inefficiencies. In both cases, the result is that, even if a memory usage
eduction could be achieved, the same does not happen for the assembly time which is reduced to half at most, see
or example [24] or [27].

Second, as extensively explained in [24], standard ACA-based approaches applied on K show poor performances
whenever the problem needs many cohomology generators (i.e., when the conducting domain presents several holes).
This is caused by the non-local basis functions expressed in H matrix that unavoidably have a very large support.

s a consequence, most entries of K have to be computed anyway. In [24] again, the problem is minimized by the
etrieval of cohomology generators whose length is quasi-minimal, but also using a minimal cohomology basis the
ime required is huge.

Last but not least, we cannot forget that K matrix is a complex operator. Since off-the-shelf ACA libraries offer
acilities for the linear system solution, most contributions in literature apply ACA to the complex matrix K. Thus,
he memory allocation is almost doubled with respect to what would have been possible, considering that the real
art of K, i.e. KR , is instead very sparse.

Eventually, we must remark that FMM approaches are not free from criticism too. In this case the main limit
s represented by the fact that the Fast Multipole Method works smoothly only in case of point charges. It follows
hat the standard definition of M in which the w f face basis functions are involved is not well suited by itself for
uch an approach. In fact, the presence of linear w f in the double integral to be approximated with FMM yields,
n the end, the necessity of resorting to complicated strategies in order to make FMM fit into the EFIE framework
s it is done for instance in [66].

In conclusion, the proposal of a new form of (48) able to totally eliminate all the previously exposed drawbacks
oth for ACA-based and FMM-based approaches, represents without any doubt a ground-breaking step forward for
FIE formulation for eddy currents. Indeed, we claim that the factorization expressed by (96) and (98) perfectly

eaches this goal. In the continuation we describe in detail how and why.

.2.1. FAIME: A fast approximated integral matrix compression
In the authors’ opinion, the most interesting and effective technique able both to reduce the memory requirements

nd to shrink the computation time too, which is the main bottleneck of EFIE formulations, is represented by the
ast Approximated Integral Matrix comprEssion approach (FAIME) in which FMM is applied to the computation
f N. More precisely, this new approach is based on the splitting of the dense matrix N into

N = ND
+NO D (99)

n which ND is a very sparse matrix representing the near-field interactions and NO D
= N − ND is the dense

remaining part representing the far-field interactions on which FMM is applied.7 A possible choice is to consider in

7 We remark that this is different with respect to what done previously in the literature, where the matrix K or KM is split. We split
matrix N.
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ND the diagonal term plus some of the off-diagonal terms of N, specifically the ones relative to the neighbouring
volumes.

In addition, when two volumes of the mesh vh and vk are not close from each other, the following approximation
holds

tvhvk =
µ0

4π

∫
vh

∫
vk

1
|r − r ′|

dvh dvk ≈
µ0

4π

|vh ||vk |

|bvh − bvk |
, (100)

in which bvh and bvk are the coordinates of the barycenters of vh and vk volumes, respectively.
Once this approximation is introduced, then any off-the-shelf FMM library can be applied in order to rapidly and

efficiently compute the effects of the off-diagonal terms relative to NO D . Moreover, any alternative fast-summation
technique developed for N-body simulation, molecular dynamics or electrosatics, like Mesh particle method (M3P),
fast Ewald summation, etc, can be easily employed thanks to the MAGICA factorization.

From the implementation point of view, FMM results to be the most effective tool in drastically reducing the
part of N to be stored that can be thus limited to the sparse ND . This traduces into the possibility of rearrange K
too by following the same splitting as of (99), thus obtaining

K = KN E AR
+ iωKF AR

M , (101)

in which

KN E AR
= KR + iωCTOT

FB

(
ẼT

xN
DẼx + ẼT

yN
DẼy + ẼT

z N
DẼz

)
OFBC+CTSC (102)

and

KF AR
= CTOT

FB

(
ẼT

xN
O DẼx + ẼT

yN
O DẼy + ẼT

z N
O DẼz

)
OFBC. (103)

It turns out that, by resorting to the proposed FAIME approach, we can represent the otherwise dense EFIE
atrix K just by only storing a set of sparse real matrices, i.e. KR = CTRSC, KS = CTSC, OFB , Ẽx , Ẽy , Ẽz

nd ND , because KF AR and thus NO D too, are never actually assembled but it is computed their application to a
iven DoFs array provided by GMRES (namely, Tguess of Fig. 9) on the fly at each iterate by means of the FMM.
n addition, it is worth recalling that the computation of ND is very efficient too, because it is highly parallelizable
ithout any peculiar effort due to the fact that ND rows and columns directly refer to the volumes mesh and not

o edges or faces as it happens for M or KM , respectively.
We also mention that the use of FMM for the fast computation of NO D

= N−ND applied to a given DoFs array
esults to be a successful recipe because by doing this the FMM library is applied to a minimal grid of points when
omputing point-to-point interactions between the barycenters of the mesh volumes thus saving time and reducing
emory occupation for the same reasons explained in Section 6.3.

.2.2. Algebraic methods
When discussing about algebraic method, also ACA is suitable to be used in order to compress N.8 The strategy

s exactly the same as that one described for FMM with the only difference that in this case the computation of
he application of N to T is not performed on the fly as for the FMM but it has to be treated as a preprocessing
tep before iteratively solving the system. When ACA library is invoked, a compressed hierarchical expression
f the whole N is computed and stored in the calculator memory. Yet, even if it can be shown that the overall
ompression ratio between FMM and ACA is very similar, the same cannot be said for the peak memory usage,
hat is much higher when ACA is applied. Thus, using FMM extends the applicability of the solver, where ACA is
napplicable because it would use too much memory. By the way, also for this case, the application of ACA for the
alculation of N instead of K automatically resolves, in a efficient and accurate way, all the troubles and limitations
bove exposed both in terms of implementation complications and in terms of theoretical shortcomings caused by
ohomology generators and vector basis functions.

8 Again, we remark that this is different with respect to what appears in literature, where ACA compression can be applied only on
matrix K or K , and not on matrix N as we propose.
M
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8. Numerical results

In this last part, we propose a selection of numerical results aimed at giving proof to the claims of the previous
ections and at assessing the correctness and accuracy of the implementation of the new VINCO code.

In order to obtain the preliminary results of Section 8.1, the code was first implemented in the MATLAB®

framework. Then, the whole code was rewritten in FORTRAN language with the aid of OpenMP instructions when
needed, especially for post processing purpose. Intel®MKL routines are exploited for specific tasks, like sparse
matrix–vector products and sparse matrix factorizations that will be shown to be required when preconditioning in
the low-frequency regime. As far as the FMM implementation is concerned, we make use of the parallel FMM3D
library proposed by the Flatiron Institute [32].

Simulations are performed on a Windows server (hereafter, the Windows Server) in which an AMD Ryzen™
Threadripper PRO 3975WX (32 cores/64 threads @3.49 GHz) processor runs endowed with 256 GB of RAM. Yet,
it is fundamental to highlight that most of the results can be also obtained on a standard Windows laptop (now
on, the Windows Laptop) equipped with an Intel®Core™i7 processor (4 cores @2.9 GHz) with 16 GB of RAM
without incurring in any memory saturation.

In the following, for the first set of results, we resort to the eddy currents computation in the frequency domain
in a solid conductive sphere of radius R0 = 50.0 mm immersed in a uniform induction field Bz = 1.0 mT vertically
directed along the z-axis. The choice of this geometry as a test bench is driven by the fact that an analytical
solution is provided in [67], thus allowing for thorough comparisons and analysis. Later on, once that the code
validity is assessed, eddy currents phenomena are calculated in more general not simply connected geometries,
more specifically, on the TEAM Workshop Problem 7 [68], on a conducting plate with seven holes and a coil
realized on a printed circuit board.

8.1. Singularity extraction effect

In Fig. 10 it is shown how the behaviour represented in Fig. 7 reflects into the computed value of the ohmic
losses Pdiss in a solid sphere. For this test, a conducting sphere with resistivity ρ = 1.68 · 10−8� · m meshed with
a coarse simplicial grid with a DoFs number Ndof s = 317 is used. The frequency f of the vertical induction field
pplied is f = 25 Hz.

The computation of Pdiss that is dissipated due to the eddy current flowing in the discretized representation of
he conductors K, in this case and in all the subsequent sections wherein we make use of it, is calculated as

Pdiss =

∫
Ωc

ρ j2 dv =

V∑
k=1

ρk |vk | j2
rms,k, (104)

ith |vk | the volume of the kth volume vk of K and j rms,k the RMS of the current density value associated to vk .
The graph proves that, when the singularity is not properly treated and the double integral is performed with a

double numerical integration, also the computed power value oscillates as it happens for the values of the double
integral plotted in Fig. 7. Yet, it is also pointed out that singularity is not properly accounted for in most recent
papers, see for example [24,50], where, in fact, this aspect is not plainly reported and discussed.

For the sake of precision, we remark that since for this test high order integration was needed for a rigorous
comparison and a distinct KM matrix was built for each integration order, the employed mesh was chosen with a
limited number of elements (Ndof s = 317) in order to limit the assembly time. For this reason, the dissipated power
value obtained both with the singularity extraction (blue line in Fig. 10) and with the double numerical integration
are not close to the analytic reference (P RE F

diss = 28.44 mW for this problem setting). Nevertheless, the different
behaviour in terms of solution stability when varying the integration order of the two approaches is undeniable.

8.2. FAIME approach accuracy and convergence

As a successive step, the attention is now focused on the solution accuracy that can be achieved with the FAIME
implementation. In more details, the solution of the solid sphere with differently grained meshes is faced first,
both with tetrahedral and hexahedral elements; then, also TEAM 7 benchmark is proposed as a more complicate
geometry example. As a third paramount aspect that is analysed in the following, the behaviour of the iterative

solver convergence when the frequency varies is reported too.
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Fig. 10. Ohmic losses convergence varying the integration order (n) on a deliberately coarse mesh constituted by 472 tetrahedra. For the
double numerical integration, at each point of the graph, a pair of (n, n) integration orders with different integration rules is intended to be
pplied.

Fig. 11. Ohmic losses trend for simplicial and hexahedral meshes successively refined. Top: Pdiss convergence versus the computation time.
ottom: Pdiss convergence versus number of mesh elements V . For this chart P RE F

diss = 111.49 mW.

.2.1. Ohmic losses in a solid sphere
In Fig. 11 a comparison versus both the total computational time and the mesh volumes in the solid conducting

phere of radius R0 = 50 mm is proposed. For this test, the frequency is f = 250 Hz, the resistivity ρ =

.68 · 10−8 � · m and the external induction field is uniform: Bz = 1.0 mT. Convergence and accuracy are always
ery good.

In regard to the specifications of the grids employed for this benchmark, the number of volumes of the meshes
aries from V = 10,566 up to V = 1, 030, 656 volumes for the tetrahedral mesh and from V = 15, 680 up to

V = 1, 835, 008 (hence, almost two millions elements) for the hexahedral one. Also, GMRES iterated 11 times for
28
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Table 1
Mesh data and calculation time in the Windows Server for the solid sphere benchmark.

Mesh type V Ndof s Assembly [s] Solve [s] Tot. time [s]

Simplicial

10,566 9,517 4.35 2.0 6.57
33,652 31,405 14.0 2.6 17.6
116,863 111,677 54.5 8.9 65.0
262,349 253,072 144.4 14.6 163.6
494,865 481,383 249.5 63.0 331.0
1,030,656 1,008,768 541.8 89.0 649.0

Hexahedral

15,680 30,773 14.0 3.2 18.12
28,572 56,577 28.0 7.1 33.0
229,376 455,681 211.0 48.0 261.0
1,835,008 3,657,729 1,809.6 758.0 2,625.0

Fig. 12. Real( j ) colour map at f = 50 Hz in the TEAM 7 conducting plate. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

every simplicial mesh and 14 times for the hexahedral grids. No variation of this parameter was observed during
the trials when increasing V . Further details about these simulations are reported in Table 1.

Generally, from this comparison, it turns out that hexahedral meshes perform better than simplicial ones in terms
of accuracy both when time and mesh volumes are considered and, in particular, when V is lower than 100,000.
Yet, simplicial meshes have the advantage of a faster computation hence, especially when the number of volumes
and DoFs grows, their performance becomes comparable to that one obtained with the hexahedral grids. Moreover,
from a look at Table 1, it should be noticed that, as already stated, hexahedral meshes exhibit a DoFs number which
is at least twice V whereas for simplicial ones this ratio is always equal to 1 or lower: another argument that makes
simplicial grids preferable when V exceeds one million elements.

8.2.2. TEAM7 benchmark: Accuracy and frequency sweep
TEAM Workshop Problem 7 is faced. For the sake of concision the geometrical set up of the problem is not

here reported given that it is carefully described in [68]. To solve the problem, a multi-block hexahedral mesh was
created. The grid is constituted by 575,064 volumes for a corresponding Ndof s = 1, 099, 925 to be solved and the
source field computation is tackled by means of exact closed-form formula. In Fig. 12 the map of the real part of
the current density in the conductor is showcased for the 50 Hz case whereas in Table 2 all the meaningful aspects
of the simulation performance are listed.

Last but not least, in Figs. 13 and 14 the traditional induction field plots along A1–B1 and A2–B2 lines for the
two test frequencies are proposed. Also in this case, an excellent correspondence between the simulated data and
the TEAM 7 reference field is shown.
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Table 2
Mesh data and calculation time in the Windows Server for the TEAM Workshop Problem 7.

Frequency [Hz] V Ndof s Iterates Assembly [s] Solve [s] Tot. time [s]

50.0 575,064 1,099,925 10 578.6 61.6 662.0
200.0 575,064 1,099,925 16 579.0 88.0 690.0

Fig. 13. Real part of the vertical induction field component along A1–B1 sample line.

Fig. 14. Real part of the vertical induction field component along A2–B2 sample line.

Furthermore, the same problem is solved by discretizing the conductor with a mesh constituted by 132,000
exahedra and 514,410 triangular prisms in order to assess the method effectiveness also in presence of a mixed
30
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Fig. 15. Frequency variation and GMRES iterates values on TEAM 7 problem configuration.

mesh. Results reported in Fig. 16 are in perfect agreement with those ones previously obtained with a pure
hexahedral grid.

Eventually, Fig. 15 is about a fundamental aspect when using iterative solvers like GMRES to obtain the solution
of EFIE system: variation of the iterates number when changing the frequency. To that end, TEAM 7 problem is
used as a common problem setting.

It is now worth mentioning that the chart is the result of two different strategies to precondition the system during
its iterative solution: from the one hand, at low frequency i.e. f < 500.0 Hz, a sparse preconditioner coincident to
the real KR matrix is effectively applied to the gauged system of equations by means of its pre-factorized version
obtained with PARDISO, to deeply accelerate the convergence of GMRES; to the other hand, when f exceeds that
threshold another preconditioning technique is pursued that consists of solving an ungauged system whose rows
are then rescaled thanks to a complex diagonal preconditioner KP = diag(KR + iωKM ).

This choice reflects into limiting the iterates to some tens in the high and low frequency range and to obtain just
a dull and affordable peak of one hundred iterates for the intermediate frequencies in the range from one to some
kilo Hertz.

8.3. Assessing the asymptotically linear behaviour of FAIME

This section goal is testing the asymptotically linear behaviour that is achieved thanks to the new formulation
based on the factorization of the inductance matrix for the frequency range typical of application of power electronics
and inductive sensors (from statics to a few MHz). In addition to this, the performance of EFIE system solution
when ACA is directly applied to K matrix in place of its factorized version presented in this paper is compared to
FAIME implementation in which FMM is used to get rid of the bottlenecks caused by being KM a dense matrix.
Benefits and observations on this last point are exposed.

8.3.1. Computational time scaling for a solid sphere
The asymptotically linear behaviour of FAIME is distinctly depicted in Fig. 17. The same result can be obtained

if in place of the total computational time the Peak Memory Usage (PMU) is put in the ordinate axis.
This plot justifies the impact of the use of FMM in addition to the factorized expression of KM and validates the

correctness of the code structure thus eliminating the otherwise quadratic scaling of time and memory occupation
typical of all EFIE formulations. In other words, it is possible to state that FAIME exhibits a better asymptotic
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m
t

Fig. 16. Left-bottom corner of TEAM 7 mesh made of mixed hexahedra and triangular prisms. In the inset, for this mesh, Real( j ) colour
ap at f = 50.0 Hz is shown as a comparison to the one previously obtained in Fig. 12. (For interpretation of the references to colour in

his figure legend, the reader is referred to the web version of this article.)

Fig. 17. Mesh elements and total computational time comparison.

computational complexity than FEM codes based on direct solvers like PARDISO (iterative solvers usually converge
very slowly for eddy current problems formulated with FEM). In the following section, we also show that the same
results cannot be obtained when algebraic compression techniques are directly applied to the whole K.

8.3.2. Overall performance comparison with state-of-the-art
Table 3 relates the performance of the solution of EFIE when afforded with three different approaches: the

standard solution of (48) where K is computed and stored as a fully populated complex matrix (Standard EFIE in
the table header), the algebraic compression of the whole K entries by means of HLIBpro library [69] (HLIBpro
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Table 3
Performance comparison in the Windows Server between state-of-the-art approaches and
this paper code. Symmetry of the mass matrices is exploited in all the approaches.

Standard EFIE ACA/HLIBpro FAIME

Matrices allocated memory [GB] 8,141 – 0.883
Non-zero entries stored 1.0 · 1012 – 95 · 106

Tot. time – >24 h 649 s
PMU [GB] – – 13.5

Table 4
Mesh data and calculation time in the Windows Server for the conducting plate with seven holes.

Frequency [Hz] V Ndof s Iterates Assembly [s] Solve [s] Tot. time [s]

50.0 290,246 528,093 19 265.8 38.8 312.6

in the table header). These two approaches are regarded as state-of-the-art techniques. The third missing term of
the comparison naturally is the novel FAIME approach presented in this paper (FAIME in the table).

In the proposed example, the considered configuration is the solid sphere problem at f = 50 Hz, Bz = 1.0 mT,
n which the conductor is meshed with V = 1, 030, 656 tetrahedra with corresponding 1, 008, 768 DoFs.

From a comparison of the data two main considerations can be done: the first, the trivial one, is that the standard
pproach is not suitable to deal with such a problem because of memory and time requirements that are anyhow
rohibitive for a practical use of the code. The second aspect to be highlighted is that, even if HLIBpro might succeed
n reducing and limiting the memory occupation, the same cannot be said for the computational time that still
ramatically impacts into the overall performance making also this method not considerable to solve problems with
large number of unknowns. Differently, FAIME approach is effective in both squeezing the memory occupation

nd in drastically reducing the computation time too thus rendering this novel approach very promising for a wide
ange of practical problems.

For the sake of precision, it is here remarked that, in virtue of FAIME effectiveness in eliminating EFIE
ottlenecks, the same problem has been also solved with FAIME approach in the Windows Laptop (16 GB of
AM), scoring a total computation time of 1,220 s of which 788.5 s for the matrices assembly. It can be deduced

hat the gap with respect to the computation time of the Windows Server is mainly due to the parallel implementation
f FMM3D library and MKL PARDISO solver (4 vs 32 cores) used to factorize the preconditioner KR applied to
olve the problem.

.4. A prismatic mesh of a plate with seven holes and a printed circuit board coil

To conclude the numerical results section, it is proposed in Fig. 18 the solution of the same problem considered
y the authors in [70] whose results will be regarded as reference values for the present test. This last benchmark
ntroduces two peculiar aspects not faced yet in the previous cases: the presence of a wider number of holes and
hus of cohomology generators and the discretization of the conductor by means of triangular prismatic elements.
he computed ohmic losses in the discrete grid are Pdiss = 0.891 mW that perfectly matches the values in [70].
ther aspects of the simulation performance are reported in Table 4.
Finally, in Fig. 19, a colour map of the real part of the current density field in a PCB coil fed by a sinusoidal

oltage at 5 MHz is shown. The coil is composed by 8 copper turns and the outer turns have a radius of 20 mm. The
opper section is 0.2 mm × 35 µm. The mesh used consists of 514,285 tetrahedra that yields 416,049 unknowns.
he total simulation time is 242 s.
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Fig. 18. Main picture: colour map of the real part of the current density field in the conducting plate with seven holes. Inset: a detail of
the triangular faces of the prisms forming the mesh are depicted in one fourth of the original mesh. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

9. Conclusion

Starting from the classical EFIE in the magneto-quasistatic limit, a novel compatible volume integral method to
solve the eddy current problem has been introduced. The method roots on volume uniform basis functions, which
provide the rational for taming the two main weaknesses of integral formulations. On one hand, the computation of
the elements of the system matrix is improved with respect to speed and implementation simplicity. On the other
hand, a novel factorization of the inductance matrix is introduced. This factorization induces a ground-braking
speedup of various orders of magnitude with respect to the state-of-the-art solutions (in particular, a popular ACA
library) thanks to the use of fast summation techniques, like the Fast Multipole Method, to perform the matrix–vector
product. Moreover, in our framework, one can use any off-the-shelf libraries developed for fast charge summation.

It is clear that all the techniques introduced in this paper for tetrahedra and general polyhedra can be readily
adapted to triangles and general polygons. To deal with electrodes, magnetic materials and full Maxwell problems
are the topics currently under investigation. In particular, the proposed basis functions and factorization can be
universally applicable to any generalized mass matrices arising with any integral method or boundary element
method.
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Fig. 19. Main picture: colour map of the real part of the current density field in a PCB coil. Inset: zoom of current density distribution.
For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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