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The problem of computing cohomology generators of a cell complex is gaining more and more interest in
various branches of science ranging from computational physics to biology. Focusing on engineering
applications, cohomology generators are currently used in computer aided design (CAD) and in potential
definition for computational electromagnetics and fluid dynamics.

The aim of this paper is to introduce a novel technique to effectively compute cohomology generators
focusing on the application involving the potential definition for h-oriented eddy-current formulations.
This technique, which has been called Thinned Current Technique (TCT), is completely automatic, compu-
tationally efficient and general. The TCT runs in most cases in linear time and exhibits a speed up of
orders of magnitude with respect to the best alternative documented implementation.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The problem of computing cohomology generators [1–5] of a
cell complex is gaining more and more interest in various branches
of science ranging from computational physics [6–23] to biology
[24] and quantum chemistry [25]. Focusing on engineering, coho-
mology generators are currently used in computer aided design
(CAD) for feature detection [26,27], shape analysis [28,29], param-
etrization and mesh generation [30,31] and in definition of poten-
tials for magnetostatic, eddy-current problems [6–23] and for
Navier–Stokes equations [16]. In particular, in the last 25 years,
cohomology computation draw sensible attention in the computa-
tional electromagnetics community. In fact, generators of the first
cohomology group—usually called thick cuts [10–23] in this con-
text—are expressly needed to solve eddy-current problems with
the efficient magnetic scalar potential-based T-X formulation
[11,17,18,20,23]. Even though a considerable effort has been in-
vested by the computational electromagnetics community to de-
velop fast and general algorithms to produce cohomology
generators, the required computational complexity and memory
consumption render them still far from being attractive.

In mathematics and computer science communities, computa-
tions of cohomology groups and generators has not been exten-
sively explored so far. As far as we know, the only field of
ll rights reserved.
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mathematics where cohomology group has been computed (with
cup and cap products [32,5]) is group theory [33,34]. As for the
case of computing cohomology of cell complexes the only ap-
proach known to the Authors has been by using the concept of
graph pyramids in [29]. However, this approach is limited to
two-dimensional cubical complexes only. The lack of results con-
cerning cohomology computations—in contrast with the great
number of publications concerning homology computations—
could be due to several reasons. One may be that cohomology the-
ory is less intuitive and render finding novel applications more
difficult.

A general algorithm for the computation of a basis of the coho-
mology group over integers is well known since many decades
ago and it is based on the Smith Normal Form [1–5] computation.
The problem of this algorithm is that its computational complexity
is hyper-cubical with the best implementation available [35] and
consequently it cannot be used in practice even on extremely coarse
meshes. The same problem in case of homology computations has
been solved by using a sparse matrix data structure [36] and reduc-
tions techniques [37]. Sparse matrices are used to effectively store
boundary matrices and reduction techniques are used to reduce
the complex before the Smith Normal Form computation is run. A
survey of these reduction techniques in the context of computa-
tional electromagnetics is addressed in the review paper [38]. One
can in fact use Smith Normal Form and some of the reductions
designed for homology computations in order to obtain cohomology
groups and their generators. Once the cohomology generators are
found on the reduced complex via the standard Smith Normal Form
algorithm, they are restored into the original complex by the
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2 We assume to solve the eddy-current problem in frequency domain. If the eddy-
current problem is solved in time domain, the group of reals has to be used in the
whole paper in place of the group of complex numbers without any further changes.

3 Instead of giving the formal argument, let us just present the very idea. Since Ka is
embedded in R3, the homology groups are torsion free. Therefore, from the Universal
Coefficient Theorem for homology (see Th. 3.A [43]), there is a bijective correspon-
dence of generators of H1ðKa ;CÞ and generators of H1ðKa ;ZÞ. Therefore, from the
Universal Coefficient Theorem for cohomology (see Th. 3.1 [43]), there is a bijective
correspondence between generators H1ðKa ;CÞ and H1ðKa ;ZÞ. Again from the
Universal Coefficient Theorem for cohomology, there is a bijective correspondence
between generators of H1ðKa;ZÞ and H1ðKa ;ZÞ. Putting those two together we get the
bijective correspondence between generators of H1ðKa;ZÞ and H1ðKa;CÞ. We are
using cohomology computed over integers since they—unlike complex and real
cohomologies—can be rigorously computed with a computer.
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so-called pull-back operation [37]. Pulling back the generators rep-
resents, however, a considerable extra computational cost. There-
fore, a so-called shaving for cohomology is desired, which enables
a reduction of the complex without the need of pulling-back the
generators. This is due to the property that the cohomology gener-
ators of the shaved complex are generators also of the original com-
plex. The concept of shaving for cohomology has been introduced in
[20]. In the same paper, the authors introduced an automatic, gen-
eral, and efficient algorithm to compute cohomology generators in
computational electromagnetics. The [20] algorithm uses as shav-
ings the reduction procedures presented in [39,40].

An attempt of producing thick cuts avoiding (co) homology
computations has been reported in [11]. First, the first cohomology
group generators are found on the surface of conductors. However,
only half of them have to be selected, namely the ones that are
non-bounding in the conducting region. The question of how to se-
lect them automatically and efficiently is left unaddressed in the
paper. Second, it grows an acyclic sub-complex inside the insulat-
ing region and, at the end of this process, the complement of the
acyclic sub-complex is considered as the support of thick cuts.
Again, how to construct the acyclic sub-complex is not described
at all in the paper. The lack of these and other necessary details
does not allow a serious analysis of this algorithm.

In [12], a different algorithm—which the Authors call General-
ized Spanning Tree Technique (GSTT)—has been introduced. This
algorithm attempts to generate a basis for the first cohomology
group once a basis for the first homology group is given as input.
In [12], homology generators have been constructed ‘‘by hand’’
and no discussion about the termination of the algorithm has been
addressed. In [18], an efficient algorithm to automatically produce
the homology generators has been described and in [21] a detailed
analysis of the GSTT has been presented by the Authors. The con-
clusion is that the GSTT algorithm may present many termination
failures that are very difficult to solve in practice.

We would like also to point out that an algorithm similar to the
GSTT has been introduced by Kotiuga in the pioneering works [6–
8,13]. More precisely, a GSTT-like algorithm is applied on the dual
complex to obtain the so-called thin cuts, that are generators of the
first cohomology group of the insulating domain on the dual com-
plex. This technique is not attractive from the computational com-
plexity point of view because a non-physical Poisson problem have
to be solved for each generator to avoid cut self-intersections (i.e.
the level sets of the solution of the each non-physical Poisson prob-
lem are embedded sub-manifolds).

Even using the best general and documented algorithm for
cohomology computation [20], the timings are far from being sat-
isfactory for everyday industrial problems, since the remaining
part of the electromagnetic simulation with state-of-the-art imple-
mentations is frequently at least one order of magnitude faster
than cohomology computation. Just to present an example, the
spiral conductor represented in Fig. 10 requires less than a minute
for solving the linear system with the CDICE code [41], while the
computation of cohomology generators with state-of-the-art
reductions needs at least one order of magnitude more time,
(612 or 4040 s, as shown in Table 2, depending on the reduction
technique employed.) The gap tends even to increase when one
considers large scale problems. For this reason, there is the need
for an automatic and general algorithm for cohomology computa-
tions which exhibits a sensible speed up, at least for typical config-
urations arising in engineering practice.

The novel contributions of this paper are: (a) a new thinning
algorithm, that works only on top dimensional cells, (b) an adapta-
tion of the ESTT algorithm [22] to be run without the need of the
cell complex data structure, (c) Theorem 2 that provides a theoret-
ical background for a novel algorithm for cohomology computa-
tions introduced in this paper called Thinned Current Technique
(TCT) which is easy to implement in a parallel or distributed com-
puting environment.

The paper is structured as follows. In Section 2 the need of a first
cohomology group basis for electromagnetic potentials definition
is recalled. In Section 3, we present a novel algorithm for cohomol-
ogy computation called Thinned Current Technique (TCT), which
stems from an alternative approach with respect to the ones pre-
sented in the literature survey. Section 4 describes the modifica-
tions that need to be applied when one wants to take advantage
of some symmetry in the eddy-current problem. In Section 5,
real-life examples are provided to benchmark the efficiency and
robustness of the presented method with respect to the ones doc-
umented in literature. Finally, in Section 6, the conclusions are
drawn.

2. (Co) homology in electromagnetic modeling

For the sake of brevity, the relevant concepts from algebraic
topology as (co) chains, (co) boundaries and (co) homology are
not recalled in this paper. For an informal introduction to the sub-
ject the reader is invited to consult [13,18,21]. A more formal pre-
sentation can be found in any algebraic topology textbook as [5].

Let us assume that the cell complex K provided by the input
mesh of the computational domain is homeomorphic to the
three-dimensional ball, which is a standard assumption in practical
meaningful problems. Elements of K belonging to the conducting
region are stored in the sub-complex Kc , whereas the elements
of K belonging to the insulating region form the sub-complex Ka.
Moreover, we assume, that K;Ka and Kc are combinatorial mani-
folds (see [42]).

In this section, we intuitively explain why cohomology theory is
expressly needed in the context of computational electromagnet-
ics. A more comprehensive and detailed treatment on this topic
is presented in [23]. To this aim, let us concentrate on the defini-
tion of potentials in the insulating region Ka for h-oriented eddy-
current formulations.2 The discrete Ampère’s law in the insulating
region can be written as
dF ¼ I ¼ 0; ð1Þ
where I is the complex-valued electric current 2-cochain—being
zero by hypothesis since Ka models the insulating region—and F
is the magneto-motive force (mmf) complex-valued 1-cochain.
Thanks to the discrete Ampère’s law, F is a 1-cocycle in
Ka; ðF 2 Z1ðKa;CÞÞ. Consequently, the 1-cocycle F can be expressed
as a linear combination of a basis of the first cohomology group
H1ðKa;CÞ plus a 1-coboundary B1ðKa;CÞ. However, the basis
H1ðKa;CÞ in this case can be obtained form a basis of H1ðKa;ZÞ
where the elements of Z are treated as elements of C.3 Later in
the paper the homology and cohomology groups are considered over
integers if the coefficient group is not specified. The 1-coboundary
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Fig. 1. (a) Two representatives c1 and c2 of H1ðKaÞ group generators. (b) The
support of the H1ðKaÞ generator t2 dual to the homology generator c2. (c) Two
possible 2-chains s1; s2 2 C2ðKÞ whose boundaries are c1 and c2, respectively.

4 We want to point out that the dot product of a cochain on a chain is a discrete
analog of integration.

5 The 2-chain si is not unique (it is defined up to its boundary ci) but, since the
current 2-cochain I is a 2-cocycle, the linked current does not depend on the
particular 2-chain si used in the dot product, see [23]. We want to point out that si is a
2-chain in the whole (homologically trivial) complex K.
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B1ðKa;CÞ is provided by taking the 0-coboundary of a complex-
valued 0-cochain X usually called magnetic scalar potential. We want
to point out that X is not unique and depends on the chosen first
cohomology group generators and on gauging (i.e. fixing the value
of X in one arbitrary node). Hence, one has

F ¼ dXþ
Xb1ðKaÞ

j¼1

ij tj; ð2Þ

where the ftjgb1ðKaÞ
j¼1 are the representatives of the first cohomology

group H1ðKaÞ generators over integers and b1ðKaÞ is the first Betti
number of the Ka sub-complex. By a little abuse of notation, when
it is not confusing, by cohomology generators we refer to both the
cohomology classes and their representatives. The coefficients
fijgb1ðKaÞ

j¼1 of the linear combination, called independent currents, are
defined in the following.

Example 1. In the present and following sections, to help the
exposition, we are going to use as an example a conductor which is
formed by a connected sum of two tori. This conductor, that form
the conducting region Kc , is surrounded by the insulating region
Ka. The conductor is represented in gray in Fig. 1a, while Ka is not
depicted for the sake of clarity. In the same picture, two possible
representatives c1 and c2 of the H1ðKaÞ homology generators for
the complement of the conductor are represented. In Fig. 1b, the
support of the t2 cohomology generator dual to the homology
generator c2 is shown.
Let us fix the H1ðKaÞ generators in (2). In [44] it has been shown
that in case of complexes embedded in R3 there is a straightfor-
ward correspondence between cohomology and homology group
generators. Namely, for ftjgb1ðKaÞ

j¼1 being the representatives of the
fixed H1ðKaÞ cohomology group basis, there exists a set of cycles
fcigb1ðKaÞ

i¼1 being the representatives of a H1ðKaÞ homology group ba-
sis such that htj; cii ¼ dij hold, where by h�; �i we denote the dot
product of a cochain on a chain.4 Since the 1-cycles fcigb1ðKaÞ

i¼1 are
H1ðKaÞ generators and K is homologically trivial there exists
2-chains fsigb1ðKaÞ

i¼1 2 C2ðKÞ whose boundaries are the 1-cycles
fcigb1ðKaÞ

i¼1 . Moreover, the 2-chains fsigb1ðKaÞ
i¼1 2 C2ðKÞ intersect Kc . Let

us consider the exact sequence of the pair ðK;KaÞ [43]:

� � � ! H2ðKaÞ ! H2ðKÞ ! H2ðK;KaÞ ! H1ðKaÞ ! � � � :

Since H2ðKÞ ¼ 0, there is an isomorphism between H2ðK;KaÞ
and H1ðKaÞ induced by the boundary map. From the excision prop-
erty [43], H2ðK;KaÞ is isomorphic to H2ðKc; @KcÞ. Therefore, the
restrictions frigb1ðKaÞ

i¼1 of the 2-chains fsigb1ðKaÞ
i¼1 to Kc are generators

of the H2ðKc; @KcÞ homology group.
The current linked by the 1-cycle ci is defined as the dot product

of the current 2-cocycle I and a 2-chain5 si 2 C2ðKÞwhose boundary
is ci, see Fig. 1b,

ij ¼ hI; sji: ð3Þ

The independent currents fijgb1ðKaÞ
j¼1 are defined as the currents

linked by the H1ðKaÞ generators fcigb1ðKaÞ
i¼1 . The independent currents

have been defined in (3) as the currents flowing through the
2-chains fsigb1ðKaÞ

i¼1 . Since the contribution to the current is zero in
Ka, the independent currents as defined in (3) match the currents
that flow in the branches of the conductor identified by the
H2ðKc; @KcÞ generators frigb1ðKaÞ

i¼1 previously introduced. This gives
a physical interpretation of complex numbers fijgb1ðKaÞ

j¼1 used in (2).
An independent current may be known in some cases (i.e. a cur-
rent-driven coil), but in general they are extra unknowns to be
determined by solving the eddy-current problem. In the first case,
it is clear that by setting the value of an independent current one
can impose a desired value of current in the branch of the conductor
identified by the corresponding frigb1ðKaÞ

i¼1 .

3. The thinned current technique (TCT)

In this section a novel technique, referred to as Thinned Current
Technique (TCT), to compute cohomology generators of the first
integer cohomology group of the insulating region sub-complex
H1ðKaÞ is introduced. The TCT stems from an original approach
with respect to the ones presented in the literature survey in the
Introduction. In particular, all the proposed techniques to compute
the H1ðKaÞ generators work directly on the Ka sub-complex. The
novel idea of the proposed approach is to put the emphasis on
the sub-complex Kc taking advantage—as it is described further
in the paper—of the feature that the whole complex K is homolog-
ically trivial.

The idea behind the algorithm has a physical root. In fact, let us
‘‘compress’’ the conductors as much as possible. At the end of this
thinning process, let us imagine the same independent currents of
the original configuration that flows in ‘‘tubes’’ formed by pillars of
tetrahedra, see Fig. 2a to visualize the thinned conductive region in
the proposed example. The skeleton of these pillars on the dual com-
plex [5,18] is a graph, see Fig. 2b. Since the linked currents in the case



(a) (b)
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Fig. 2. (a) The pillars of tetrahedra obtained after the thinning process on Kc . (b) The skeleton of Kc on the so called dual complex, which pierces the pillars of the tetrahedra.
(c) and (d) The two c1 and c2 independent cycles.

Ensure: vector of vectors of tetrahedra in connected
components of Lc

Require: list Lc

1: vector of vector of tetrahedra result;
2: set tetrahedraAlreadyAssigned ¼ ;;
3: for i = 0 to size of Lc

4: if Lc½i� 2tetrahedraAlreadyAssigned then
5: continue;
6: vector of tetrahedra cc;
7: queue Q
8: EnqueueðQ ; Lc½i�Þ;
9: while Q is not empty

10: tetrahedra T :¼ popðQÞ;
11: tetrahedraAlreadyAssigned 

tetrahedraAlreadyAssigned [ T;
12: cc cc [ T;
13: for every tetrahedron T 0 2 Lc such that T 0 is a neighbor

(use H hash table to determine neighbors of T) of Tdo
14: if T0 R tetrahedraAlreadyAssigned then
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of thinned conductors are the same as the ones in the original config-
uration by hypothesis, it is clear that even though the current distri-
bution inside Kc is different, cohomology generators relative to the
new current distribution restricted toKa are cohomology generators
for the original configuration (see Section 3.8 for the proof).

In the following the TCT algorithm is described in detail.

3.1. Data structures

The key feature of the presented Fortran 90 implementation of
the TCT algorithm is that it does not require the construction of the
whole 0-, 1- and 2-dimensional data structure needed to store the
cell complex.6 We assume that the nodes of the tetrahedra are enu-
merated with integers by the mesh generator. Then, each tetrahe-
dron is an ordered vector of the indices of its four nodes. The
increasing ordering of element indices fixes its orientation [5,20].
The algorithms operate in most cases on the list L of tetrahedra,
where L ¼ Lc [ La. Lc denotes the tetrahedra in Kc , whereas La de-
notes tetrahedra in Ka. Moreover, both conducting and insulating re-
gions are modeled in the solid modeling sense as combinatorial
manifolds with boundaries, i.e. a link7 of every vertex is a sphere
or semi-sphere of dimension two.

3.2. Connected components of Kc

Algorithm findConnectedComponent finds the connected
components of Kc once the list Lc is given as input. Let H be a hash
table with integer keys. Let us assume that H½i�; i 2 N, is the list of
all tetrahedra possessing the node i. This hash table, which can be
trivially constructed in linear time, is used to efficiently find the
neighbors of a given tetrahedron. For practical meshes the length
6 If the cohomology computations are not required.
7 Let us consider all maximal elements T1; . . . ; Ts containing a given node n. The link

of n is the set of all nodes, edges and faces of T1; . . . ; Ts that do not contain n.
of every list in the hash table H is constant. The set tetrahe-

draAlreadyAssigned in the line 2 of the findConnectedCom-

ponent Algorithm can be also coded as a boolean vector of
length as the number of cells. In that case we can assume that
the instructions at lines 4 and 13 of the algorithm take Oð1Þ time.
The while loop starting at line 8 and ending at line 15 takes a time
proportional to the cardinality of cc. Therefore, it is clear that the
whole for loop at line 3 requires OðcardðLcÞÞ time.

Algorithm 1. findConnectedComponent
15: enqueue (Q ; T 0);
16: result result [ cc;
17: return result;



Fig. 3. A 2-dimensional conductor Kc is shown in grey. For the sake of clarity, the insulator Ka is not shown. In real 3-dimensional cases, a set of tetrahedra should be
considered in place of the triangles. On left and right, 2-dimensional examples of the two strategies are shown. On the left, the result of the thinning when acyclicity of the
intersection of triangles with the conductor is checked. It is clearly not a skeleton. On the right, the result of the thinning when acyclicity of the intersection of triangles with
the insulating region is checked. The markers on triangles denote which triangles are removed during each iteration of the algorithm.
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3.3. Skeletonization of the conductor

Let us first define formally the concept of skeleton of a complex.
For this purpose the concept of dual complex is required. The for-
mal definition can be found in [18]. In short, elements dual to tet-
rahedra A are the vertices DðAÞ of the dual complex. A triangle B
between two tetrahedra A1;A2 correspond to an edge of the dual
complex DðBÞ joining TðA1Þ and TðA2Þ. An edge E incidental to trian-
gles T1; . . . ; Tn correspond to a dual face DðEÞ bounded by
DðT1Þ; . . . ;DðTnÞ. Finally, a vertex V incidental to edges E1; . . . ; En

corresponds to dual volume DðVÞ bounded by DðE1Þ; . . . ;DðEnÞ.
We want to point out that the complex dual to a simplicial com-
plex is not a simplicial complex.

In this paper by a skeleton of a complex we mean a sequence of
tetrahedra whose dual complex is a retract of the support of the ini-
tial simplicial complex. Moreover, we require that each tetrahedron
in the skeleton, with the exception of tetrahedra with faces on the
external boundary of K, has at least two neighboring tetrahedra
(i.e. there are no ‘‘hanging’’ tetrahedra). We also assume that the
complex dual to the skeleton is a graph. This definition, at a first
glance, may seem hard to check algorithmically. However, later in
the paper we show that in most practical cases such a skeleton can
be easily obtained. In Fig. 3 two possible homotopical retracts of
the whole conductor are depicted as dark triangles. Only the one
on the right is a valid skeleton according to the presented definition.

Let us now present the Algorithm 2 to skeletonize a conductor.
Standard skeletonization procedures can be found in many papers
[19]. For instance, one can produce a skeletonization by using core-
duction [40]. However, we do not want to store the global struc-
ture of simplicial complex for the sake of maximum efficiency,
therefore, a novel skeletonization technique is sought. In this paper
we introduce a novel effective one based on the acyclicity test ta-
bles introduced in [20] and presented in [48].
Fig. 4. On the left, two tetrahedra intersecting in a node. On the right, two
tetrahedra intersecting in an edge.
Algorithm 2. Skeletonization

Ensure: List of tetrahedra in the skeleton of the conductor
result and a boolean array computationStatus (the
value on ith position denotes if the skeletonization process
was successful for ith connected component.)

Require: vector of vectors cc of tetrahedra in connected
components of Kc

1: boolean[size of cc] computationStatus = true;
2: vector of vectors of result;
3: for i = 1 to size of cc do
4: set removedTets = ;;
5: list candidatesToRemove = ;;
6: for every tetrahedron T 2 cc½i� do
7: if T has faces not shared by other elements in cc½i� then
8: candidatesToRemove T;
9: while true do
10: boolean wasTetrahedronRemoved = false;
11: for every tetrahedron T 2 candidatesToRemove do
12: Let f be the set of all nodes, edges and faces of T

that belong to the external boundary of cc½i� or
removedTets;

13: if f is an acyclic configuration (Testing acyclicity of
a configuration is based on [48]. The procedure is described
in [20].) then

14: removedTets  T;
15: wasTetrahedronRemoved = true;
16: if wasTetrahedronRemoved = false then
17: break;
18: candidatesToRemove = ;;
19: for every tetrahedron T 2 cc[i]—T R removedTets do
20: if T has faces not shared by other elements in cc½i� or

faces shared by elements in removedTets then
21: candidatesToRemove T;
22: vector of tetrahedra skeleton {T 2 cc [i]—

T R removedTets};
23: boolean wasSkeletonizationSuccessfull = true;
24: for every tetrahedron T 2 result do
25: for every edge E 2 T do
26: if all tetrahedrons incidental to E in K are in
skeleton then

27: wasSkeletonizationSuccessfull = false;
28: if wasSkeletonizationSuccessfull then
29: result skeleton;
30: computationStatus[i] = true;
31: else
32: computationStatus[i] = false;
33: return result, computationStatus;
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As one can see, Algorithm 2 may not provide a valid skeleton for

some conductor, which is consequently marked by setting the flag
(corresponding to the number of the connected component for
which skeletonization fails) in computationStatus vector to
false. In fact, in quite rare cases the skeletonization procedure
may end up in some configuration similar to the Bing’s House
[45] or it may not be possible to find the skeleton of the conductor
when the conductor cannot be retracted to a graph.8 However,
when the Skeletonization algorithm returns false at ith posi-
tion of the computationStatus vector, one may use the general
algorithm presented in [20] to compute the H1ðK n Ki

cÞ cohomology
group generators, where Ki

c is the sub-complex with the elements
of Kc belonging to the considered ith connected component. We
emphasize that the computation is performed for the complement
of the considered connected component Ki

c (it suffices to treat all
remaining conductors as part of the complement). After the compu-
tations, the obtained cocycles representing the first cohomology
group basis of Ki

c complement restricted to Ka are—as demonstrated
in the following—cohomology generators of H1ðKaÞ.

Let us call by thinned conductor the output of Skeletoniza-
tion Algorithm. We show that the obtained thinned conductor
is a skeleton of the conductor. First, let us show that the homology
of the thinned conductor obtained by the Skeletonization Algo-
rithm is preserved with respect to Kc. At a fixed stage of the algo-
rithm execution, let us denote by K̂a the union of the insulating
domain Ka with removedTets. In the same spirit, K̂c denotes tet-
rahedra in the conductor Kc that are not in removedTets. It is
clear from the Mayer–Vietoris theorem [43] that in the line 2
and the succeeding line of the Skeletonization algorithm we
ensure that homology of K̂a does not change. To show this, let us
write a Mayer–Vietoris sequence for reduced homology for the pair
ðK̂a; TÞ, where T is a tetrahedron for which the test in the line 2 re-
turns true (i.e. T has an acyclic intersection with K̂a):

� � � ! eHnðK̂a \ TÞ ! eHnðK̂aÞ � eHnðTÞ ! eHnðK̂a [ TÞ ! � � � :

Due to the line 2 of the algorithm, eHnðK̂a \ TÞ ¼ 0. Therefore, we
have an isomorphism between eHnðK̂aÞ � eHnðTÞ and eHnðK̂a [ TÞ.
Since eHnðTÞ ¼ 0, we get an isomorphism between eHnðK̂aÞ andeHnðK̂a [ TÞ. As a consequence, one can add T to K̂a without chang-
ing the homology of K̂a.

Due to the test in line 2 of the algorithm, we also know that
HnðK̂a; @K̂aÞ ¼ HnðK; K̂cÞ remains unchanged. The rest is a simple
consequence from the exact sequence of the pair ðK; K̂cÞ [43]:

� � � ! HnðK̂cÞ ! HnðKÞ ! HnðK; K̂cÞ ! Hn�1ðK̂cÞ ! � � � :

Since HnðKÞ is homologically trivial, we have an isomorphism
between HnðK; K̂cÞ and Hn�1ðK̂cÞ. Therefore, the topology of K̂c is
also preserved (with respect to Kc) during skeletonization.

Let us show that the thinned conductor is a skeleton. Let us first
show two possible ways of obtaining two different, homologically
equivalent skeletons. One can in fact check the acyclicity of the
intersection of a tetrahedron with K̂c or with K̂a. The two strategies
applied to a simple example are visualized in Fig. 3. It is clear from
Fig. 3 that, in order to obtain a skeleton as defined in this paper,
one should perform the acyclicity test where the intersection of
the tetrahedra with the insulating region is considered (as it is
done in the loops 2 and 2 of the Algorithm). Let us demonstrate

P. Dłotko, R. Specogna / Comput. Metho
8 Unfortunately, we cannot give sufficient conditions for a tree dimensional
complex to be skeletonizable. This is a consequence of the well-known problem of
testing the contractibility of complexes. In two dimensions this problem can be solved
in linear time. In dimension three this problem is at least as hard as finding optimal
discrete Morse function which is an NP-hard problem, see [46] (a sequence of
collapses on a contractible space gives an optimal Discrete Morse function). In
dimension four and higher this problem is undecidable [49].
that in this case one always obtain a valid skeleton or a false va-
lue is returned in the corresponding position of the computation-
Status vector.

We want to point out that the situation we consider is different
from the acyclic subspace method considered in [39]. In [39] the
relative homology of a space modulo an acyclic set is computed,
while in this paper we are using a topological criterion to perform
a topology preserving thinning of the connected components of Kc .

In order to show that if computationStatus[i] = true the
complex dual to the thinned conductor obtained by the skeletoniza-
tion of Ki

c is one dimensional (i.e. a graph), let us analyze the for

loop at line 2 of the algorithm. If the test fails for an edge E, the 2-
dimensional cell DðEÞ would appear in the dual complex. It is clear
that, if the test passed, neither 2- nor 3-dimensional elements can
occur in the dual complex. Therefore, let us now assume that the
algorithm does not return false at any position of the computa-

tionStatus vector. We give a rather informal argument why
hanging tetrahedra cannot occur in this setting. By doing a simple
case study, one can easily be convinced that if a tetrahedra T is a
hanging tetrahedron, then the intersection of the boundary of T
with the thinned conductor complement is acyclic. Therefore, T
should have been removed in the while loop at the line 2 of the
algorithm. It remains to show that the tetrahedra in the thinned
conductor intersect on a common face or do not intersect at all.
To show this, a simple and intuitive case study is presented in
Fig. 4. On the left, let us consider a situation where two tetrahedra
of the thinned conductor touch in a node. We show that this
situation cannot occur. In the initial mesh there was another tetra-
hedron incidental to this node (since we started from a combinato-
rial manifold, and the presented configuration cannot occur in
combinatorial manifolds.) Let us consider the first tetrahedron T
incidental to this node removed in the course of the Skeletoniza-
tion algorithm whose removal causes this configuration not to be a
combinatorial manifold. Checking the acyclicity gives the informa-
tion whether the topology of the complement does not change.
However, removing T changes the topology of the complement. This
is because T is closed and its removal changes either b0 or b1 of the
conductor. Therefore, the suitable Betti number of the complement
is changed (as a consequence of exact sequence of the pair), that
gives a contradiction. Exactly the same situation holds for the
situation represented on the right of Fig. 4. Again, the situation on
the right of Fig. 4 cannot occur in combinatorial manifolds, and
the same idea can be used to show that this situation cannot
happen.

This intuitive demonstration shows that indeed a skeleton is
obtained as a result of the Skeletonization algorithm. A formal
proof, due to technical difficulties in the exposition, will be pub-
lished elsewhere.

3.4. Minimal independent cycles in the skeleton and integer 2-cocycle
construction

The next step of the TCT algorithm, when the skeletons of con-
ductors are provided, is to find a suitable cycle basis. In many cases
minimal length cycle basis of the obtained graph suffices. An algo-
rithm to find the minimal cycle basis in a graph can be found in
[50]. The time complexity of the algorithm is Oðm2nÞ, where m is
the number of edges and n is the number of nodes in the graph.
The intuition is that the numbers m and n for a skeleton should
be very small comparing to the cardinality of K.

For simplicity, in this paper we use a simple technique based on
a tree-cotree decomposition of the skeleton to obtain a cycle basis.
The two independent cycles on the dual complex obtained in the
proposed example are represented in Fig. 2c and d.

Later, let us assume that the algorithm Skeletonization re-
turns a graph G. For every connected component of G a set of cycles



Fig. 5. A simple 2-dimensional example with a 1-dimensional analogous of the
procedure. We want to obtain a 1-dimensional cocycle c from dual edges around
the annulus. To do this, the coefficient of one edge in c is fixed. Then, the coefficients
of all remaining edges are in such a way that the coboundary of the resulting
cocycle is void (note that the depicted orientation have to be taken into account as
it is done by using incidence index j).
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fc1; . . . ; cng being a cycle basis of this connected component of G is
obtained. Let us moreover interpret each 1-cycle ci in the dual
complex as a sequence of succeeding tetrahedra such that a pair
of neighboring tetrahedra share a triangle. Each cycle needs to be
oriented by using the standard incidence index j for simplices
(the obvious technical details are left to the Reader)

jðA;BÞ :¼
ð�1Þi if A ¼ ½a1; . . . ; ai�1; ai; aiþ1; . . . ; an�;

B ¼ ½a1; . . . ; ai�1; aiþ1; . . . ; an�
0 otherwise

8><
>:

9>=
>;:

Then, the Algorithm CreateCocycles is used to construct the vec-
tor of 2-cocycles fcig. It is clear that the Algorithm CreateCocy-

cles works in a linear time Oðcard KÞ. Orienting the dual cycle
ensures that the output cochain is a cocycle. The idea of the proce-
dure is presented in Fig. 5.

Algorithm 3. CreateCocycles

Ensure: Vector of vectors of pairs (triangle, value)
representing the 2-cocycles

Require: Vector of vectors of tetrahedra, cycles representing
the cycle basis

1: Vector of vectors of pairs (triangle, value) result;
2: for i = 1 to size of cycles do
3: vectors of pairs (triangle, value) cocycle;
4: Let T1 be a triangle between first and last tetrahedron in
cycles;

5: cocycle (T1, 1);
6: for j = 1 to length of cycles[i] do
7: Let T1 and T2 be two triangles in cycles½i�½j�, let
ðT1; l1Þ 2 cocycle;

8: l2 :¼ �jðcycles[i][j]; T1Þl1jðcycles[i][j]; T2Þ;
9: cocycle  ðT2; l2Þ;

10: result cocycle;
11: return result;
9 Such a chain f always exists, since K is homologically trivial.
3.5. ESTT algorithm

The Extended Spanning Tree Technique (ESTT) algorithm [22] is a
general version of the so-called Spanning Tree Technique (STT)
[12,21,22]. It works on the whole (homologically trivial) complexK.
Once a 2-cochain cj obtained by the Algorithm CreateCocycles

is provided at input, it finds a 1-cocycle d such that dd ¼ cj. The de-
tails of the ESTT algorithm, together with a proof of its generality,
can be found in [22]. Concerning the time complexity of the ESTT
algorithm, it is linear OðKÞ in all practical cases, see [22].

The ESTT algorithm used in the following is different from the
one presented in [22]. The version presented in this paper does
not use the global data structure of a complex, which yields a more
efficient implementation. It works only on the list of all tetrahedra
in the complex K. At first, we need to construct a spanning tree on
K. It is important to remind that the best strategy to forming a tree
for our purpose is to use minimal diameter trees [21,22].

Algorithm 4. ConstructSpanningTree

Ensure: Vector of edges (i.e. pairs of node indices)
representing a spanning tree of K

Require: Vector of all tetrahedra in K
1: Vector of edges result;
2: Let H be a hash table assigning to a given index i a list of

tetrahedra possessing a node i;
3: Let vert be a boolean array, initially set to false. The

value at position i indicates if a node i is already in the
constructed tree;

4: Let T be a tetrahedron for which there exists a node i 2 T
such that vert ½i� ¼false;

5: vert ½i� :¼ true;
6: Queue Q  H½i�;
7: while Q – ; do
8: T = pop (Q);
9: for Every node j 2 T do

10: if vert ½j� ¼true then
11: continue;
12: Let k 2 T be such that vert½k� is equal true;
13: result  ðj; kÞ;
14: vert ½j� :¼true;
15: Q H[j];
16: if There exists a vertex i such that vert½i� is false then
17: GOTO 4;
18: return result;
Theorem 1. The algorithm ConstructSpanningTree constructs a
spanning tree of edges of K.

Due to the condition 4, it is clear that all vertices are set to true
in the vector vert. Therefore, due to the line 4 of the Algorithm,
they are all connected in their connected components (although
in the considered case complex K is connected, the ConstructS-

panningTree Algorithm works in the general case, for non con-
nected complexes.) To show that no cycle can occur in the
output graph, let us suppose by contrary that the output graph
contains a cycle c. Let an edge ðk; lÞ be the last edge added to the
cycle c. In the iteration of the for loop at the line 4 in which the
edge ðk; lÞ is added to the output, we have vert½k� = vert½l� = true.
Therefore, the edge ðk; lÞ cannot be added to the output due to the
condition in the line 4 of the algorithm. We get a contradiction and
complete the proof.

The remaining part of the TCT algorithm is the ESTT algorithm.
The algorithm together with its detailed description can be found
in [22]. In the following the raw idea of the algorithm is presented.
ESTT algorithm for a given 2-cocycle c 2 C2ðKÞ produces a 1-cocy-
cle d 2 C1ðKÞ such that for every 1-cycle e 2 Z1ðKÞ and 2-chain
f 2 C2ðKÞ with @f ¼ e9 we have hc; f i ¼ hd; ei. As it is shown in
[22], it always works provided that a cocycle is given as input, which



Fig. 6. (a) and (b) Dual faces dual to edges in the support of the cochains d1 and d2, respectively. (c) and (d) Dual faces dual to edges in the support of the cochains t1 and t2,
respectively.
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is the case of the TCT algorithm. The implementation required here is
a little bit different with respect to the one presented in [22]. How-
ever, it is fairly easy by using hash tables to produce a list of all tri-
angles in the complex K. The details are left to the reader.

3.6. TCT algorithm

In this short section we basically put together all the intermedi-
ate algorithms in order to present the TCT algorithm.

Algorithm 5. TCT
Ensure: Vector of vectors of pairs (edge, value) representing
1-cocycles (thick cuts)

Require: K ¼ Kc [ Ka list of tetrahedra, Kc conductive region,
Ka insulating region

1: Vector of vectors of pairs (edge, value) result,
cohomologyGens;

2: Vector of vectors of tetrahedra cc =
findConnectedComponent(Kc);

3: boolean array skeletonizationSucces;
4: List of tetrahedra in skeletons of conductors skeleton;
5: (skeleton,skeletonizationSucces) =
Skeletonization(cc);

6: if skeletonizationSucces[i] = false then

7: Compute first cohomology generators of K n cc½i� by
using standard first cohomology group computations [20]
and add the resulting cohomology generators to
cohomologyGens;

8: Vector of vectors of tetrahedra cycles – cycle basis of the
graph cc;

9: Vector of 2-cocycles cocycles = CreateCocycles
(cycles);

10: result :¼ ESTT (cocycles) + cohomologyGens;
11: Restrict supports of cocycles in result to Ka;
12: return result;
Let t1 and t2 be the 1-cocycles obtained as output of TCT algo-
rithm for the example considered in Fig. 1. The dual faces, dual
to the edges in the support of the cochains d1 and d2 related with
the example are represented in Fig. 6a and b, respectively. The cor-
responding cohomology H1ðKaÞ generators t1 and t2 are repre-
sented in Fig. 6c and d.

Using only maximal elements (tetrahedra) in place of a simpli-
cial complex data structure not only does not bring any perfor-
mance penalty but speeds up the algorithm a lot and enables a
dramatic reduction of memory usage. The timings of the presented
algorithm are presented in Section 5.

3.7. Complexity analysis of the TCT algorithm

In this short section a summary of the results on the complexity
analysis of TCT algorithm is given. First of all, we would like to
point out that there is a huge difference between the typical and
the worst case complexity estimates of this algorithm. This should
not discourage the reader since dependence on heuristics is fre-
quent in engineering and computer science. The worst case com-
plexity analysis for the conjugate gradient method, optimization,
and quicksort may be discouraging, while those algorithms per-
form perfectly well in practice.

The complexity of the TCT algorithm depends on the following
factors:

1. Are we able to skeletonize the conductor?
2. How many extra symbolic variables (see [22]) are used during

the ESTT algorithm run?

In a very unlucky case when the skeletonization process fail, we
are in fact using pure cohomology computations as described in
[20]. In this case the worst case computational complexity is
OðcardðKaÞ3Þ.

If the skeletonization is performed, the ESTT algorithm may take
OðcardðKaÞ3Þ time in the worst case. That gives OðcardðKaÞ3Þ as the
theoretical worst case bound for the computational complexity of
the algorithm. However, we would like to remark that those cases
were never seen in practical computations provided BFS trees are
used.



Fig. 7. An Y-shaped conductor.
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Typically, in engineering practice, one should expect that the
skeletonization algorithm does not fail and the ESTT algorithm
takes OðcardðKaÞÞ time. Then, the typical overall complexity of
the TCT algorithm is OðcardðKÞÞ, since:

(1) Finding connected components of Kc takes OðcardðKcÞÞ.
(2) Skeletonization procedure takes OðcardðKcÞÞ.
(3) Finding the cycle basis by using spanning tree technique and

creating cocyles takes OðcardðKcÞÞ.
(4) ESTT algorithm and restricting support of generators takes

OðcardðKÞÞ.

No problem has been reported in the skeletonization procedure
and no symbolic variable has been introduced for ESTT propagation
Fig. 8. b1: A ci

Fig. 9. b4: A trefoil
in every of the benchmarks tested (that are much more than the
ones reported in this paper.) Therefore, the linear time complexity
behavior is visible in all tested examples.

3.8. Proofs

In this section we are going to show that the 1-cocycles ob-
tained with the TCT algorithm are H1ðKaÞ generators. First, we
show that in the analysis it suffices to restrict to a complement
of a single connected component of Kc in the standard cohomology
computations. To be precise, (co) homology of a set consisting of
many connected components are direct sum of (co) homologies
of its components. Here the situation is different, since the set Ka

whose cohomology is to be computed is connected, but its internal
complements Kc ¼ K1

c [ . . . [ Kn
c are not. We show that it suffices to

compute the cohomology of K n Ki
c for i 2 f1; . . . ;ng and restrict the

output to Ka to obtain a cohomology basis of Ka.
Let fcj

1; . . . ; cj
nj
g denote the H1ðK n Kj

aÞ generators restricted to
Ka. We have the following theorem:

Theorem 2. fcj
1; . . . ; cj

nj
gn

j¼1 generates H1ðKaÞ.

In order to avoid too many technicalities we give here the idea
instead of the whole formal proof. First, let us show that a some-
how similar property holds in case of homology generators. Let
us take a single connected component Ki

c. It is clear that one can
find the representatives of generators of H1ðK n Ki

cÞ that lies on
the boundary of Ki

c . The raw intuition of this fact is the following:
Let us take any representatives c1; . . . ; cn 2 C1ðK n Ki

cÞ of generators
of H1ðK n Ki

cÞ. Since K is topologically trivial, one can find
b1; . . . ; bn 2 C2ðKÞ such that @bi ¼ ci for i 2 f1; . . . ;ng. Let us now
take the cycles ĉ1; . . . ; ĉn 2 C1ðK n Ki

cÞ being intersections of
b1; . . . ; bn with the boundary of Ki

c. They are clearly cycles, since
@@ ¼ 0. They are also in the same class as ci, so they form the de-
sired set of H1ðK n Ki

cÞ generators.
Then, by using the exact sequence of the pair ðK;KaÞ [43]

� � �!@2 H2ðKaÞ ! H2ðKÞ ! H2ðK;KaÞ!
@1 H1ðKaÞ ! � � � ;

sinceK is topologically trivial, we get that @1 : H2ðK;KaÞ ! H1ðKaÞ is
an isomorphism. Moreover, thanks to the excision property, we get
rcular coil.

knot conductor.



Fig. 11. b101: A micro-inductor.

Fig. 10. b9: A spiral conductor.

Fig. 12. b102: A micro-transformer.
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that the inclusion H2ðK;KaÞ,!H2ðKc; @KcÞ induces an isomorphism
in homology. Hence, @1 : H2ðKc; @KcÞ ! H1ðKaÞ is an isomorphism.
And, since Kc is composed with connected components
K1

c [ . . . [ Kn
c we have H2ðKc ; @KcÞ ¼a

n
i¼1H2ðKi

c ; @K
i
cÞ. Therefore,

one can simply take for i 2 f1; . . . ;ng the boundaries of
H2ðKi

c; @K
i
cÞ generators to obtain H1ðKaÞ generators.10
10 To cut a long story short, in the considered case we cannot use the axiom of the
sum for Ka , since Ka is connected. It has only disconnected internal complement,
namely Kc . Therefore, we use the axiom of sum for Kc instead. Since K ¼ Kc [ Ka ,
once we pick a connected component Ki

c of Kc , it suffices to compute cohomology of
K n Ki

c and later restrict the resulting cochain to Ka .
We just demonstrated that by summing up the described

homology generators of H1ðK n Ki
cÞ, one obtains generators of

H1ðK n KcÞ ¼ H1ðKaÞ. Now we would like to show the same prop-
erty for H1ðKaÞ generators. As it is described in [21], in the consid-
ered setting, for a given H1ðKaÞ generator one can obtain the dual
H1ðKaÞ generator—which actually is what the TCT algorithm does.
The only point that needs to be clarified is that this basis can be
computed independently for each connected component of Kc . In
[21] a characterization of c1; . . . ; ck being the dual H1ðKaÞ genera-
tors is given. Let c1; . . . ; ck be the chosen generators of H1ðKaÞ. Then,



Fig. 13. b104: A micro-coaxial cable.

Fig. 14. b105: A Y-shaped conductor.
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for every cycle c homologous to ci we have hcj; ci ¼ dij. Let us

therefore pick Ki
c and a chosen c1; . . . ; cn generators of H1ðK n Ki

cÞ.
Let the dual H1ðK n Ki

cÞ generators represented by c1; . . . ; cn be ob-
tained from TCT algorithm. It is clear that the restriction of those
cocycles to Ka are again cocycles. Moreover, the property
hcj; ci ¼ dij still holds for every cycle c homologous to ci in Ka (since

it holds for K n Ki
c � Ka). Therefore, by summing up cocycles gener-

ating H1ðK n Ki
cÞ one obtains a set of cocycles generating H1ðKaÞ.

We still need to show that the ESTT algorithm returns the
H1ðKi

cÞ generators. Let us therefore pick an intersection of cycles
b1; . . . ; bn (defined above such that @b1; . . . ; @bn are fixed H1ðKaÞ
generators) with skeletons. Those intersections are supported in
a single triangles, and createCocycles algorithm enforce value
1 (or �1) on this triangle.11 Therefore, ESTT algorithm produces a
1-cocycle enforcing value 1 (or �1) on cycles c1; . . . ; cn and all cycles
homologous to them. Therefore, the cocycles returned by ESTT algo-
rithm are H1ðK n Ki

cÞ generators.
If for a certain connected component the Skeletonization

algorithm returns false at some position of computationSta-
tus vector, then due to the line 5 of TCT algorithm, the algorithm
presented in [20] is called that returns the cohomology generators
of this component complement. If for a certain connected compo-
nent the Skeletonization algorithm does not fail, then Creat-

eCocycles algorithm produces valid 2-cocycles, and ESTT
algorithm produces the first cohomology group generators of the
complement of the connected component. The following theorem
is therefore a straightforward consequence:

Theorem 3. The TCT algorithm when executed on K ¼ Kc [ Ka

computes the H1ðKaÞ generators.
At the end we would like to give one final remark. The pre-

sented theorem yields a way to parallelize cohomology computa-
tions when one wants to compute cohomology groups generators
of an acyclic set in R3 with some elements removed. Cohomology
11 In fact cycle bi may intersect the skeleton many times but is clear that since we
have a cocycle all but one intersections canceled out.
computations can be performed either with standard tools as in
[20] or with the TCT algorithm presented in this paper. The parall-
elized algorithm will be presented in a forthcoming paper.

4. Taking advantage of symmetries

When symmetries in the region can be exploited, it may happen
that the conducive region touches the boundary of K. In this case
there is no need to modify the definition of potentials but the
Skeletonization procedure requires some minor modifications.
Apart from finding a cycle basis as described previously, one
should also add to the skeleton all paths in DðKcÞ that join different



Table 1
Information about the mesh used for each benchmark.

Benchmark Nodes Edges Faces Tetrahedra b0ðKcÞ b1ðKaÞ

b1 (circular coil) 4000 27,047 45,776 22,728 1 1
b4 (trefoil knot) 34,057 233,479 398,631 199,208 1 1
b9 (spiral) 288,635 2,130,836 3,684,272 1,842,070 1 1
b101 (micro-inductor) 368,451 2,566,054 4,394,796 2,197,192 1 1
b102 (micro-transformer) 433,690 3,016,979 5,166,120 2,582,830 1 2
b104 (micro-coaxial line) 826,987 5,690,102 9,724,771 4,861,655 2 6
b105 (Y-shaped) 219,257 1,495,486 2,549,178 1,272,948 1 2
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connected components of DðKc \ @KÞ. An example of such paths
can be found in the Fig. 7c and d for the Y-shaped conductor rep-
resented in Fig. 7a. Fig. 7b represents the skeleton of the conductor.

A modification that needs to be applied to the Skeletoniza-

tion algorithm is the following. In the two instructions (line 2
and 2 in Algorithm Skeletonization) one needs to ensure that
the faces of tetrahedra lying on the external boundary of the mesh
(i.e. @K) are not considered in those if statements. This trivial
modification is left to the Reader.

Another modification is required for the algorithm to find the
cycle basis. When a dual skeleton is obtained in each connected
component, one needs to check if there exists a tetrahedron T with
a face on the boundary of the complex K. If such T is found, by
using a BFS [47] algorithm, the dual graph is searched for any tet-
rahedron T 0; T – T 0, which is placed on the boundary of K. For every
such a tetrahedron T 0, a path joining T and T 0 can be recovered from
the BFS algorithm. Every such a path is added to the list containing
the cycle basis. This procedure has to be run for each connected
component of the skeleton. The obvious details of the algorithm
are left to the Reader.

Finally, another modification has to be performed in the Cre-

ateCocycles algorithm. As CreateCocycles algorithm has per-
formed the orientation of dual cycles, now it should also perform
the orientation of the dual paths joining the external boundary.
Again, the trivial details of the procedure are left to the Reader.
The ESTT algorithm returns a number of extra cocycles and the
proofs in Section 3.8 work without any change for the case de-
scribed in this Section.

5. Numerical results

The TCT algorithm described in this paper has been integrated
into the research software CDICE [41]. The software has been
implemented in Fortran 90 and the Intel Fortran 90 Compiler has
been used to produce the executable. The hardware used for the
computations consists of an Intel Core 2 Duo T7700 2.4 GHz laptop
with 4 GB of RAM.

To validate the results produced by the TCT algorithm and eval-
uate its performances, some benchmarks have been analyzed. Figs.
8–14 represent the conductive regions which have been analyzed.
In particular, for each benchmark, the Kc and the corresponding
Table 2
Time required (s) for cohomology computation with various algorithms.

Benchmark GSTT
[18,21]

H1 COR
[20]

H1 ACC
[20]

TCT

b1 (circular coil) 1.07 0.91 0.6 0.03
b4 (trefoil knot) 24.38 30 23 0.6
b9 (spiral) (424.14) (4040) (612) 10.1
b101 (micro-inductor) (59359) ð> 70000Þ ð> 70000Þ 24.5
b102 (micro-

transformer)
ð> 70000Þ ð> 70000Þ ð> 70000Þ 32.8

b104 (micro-coaxial
line)

(612828) (57714) (6128) 86.1

b105 (Y-shaped) (155.12) (2631) (289) 4.6
thinned regions are shown first, then the cohomology generators
are visualized as the dual 2-chains with respect to the H1ðKaÞ
1-chain [18] to achieve a better perception. Table 1 contains the
information on the mesh used in each benchmark. The results for
all benchmarks obtained with various algorithms are compared
in terms of computational time in Table 2. In particular, the other
algorithms which have been tested are the GSTT [18,21], the coho-
mology computation with the coreduction (COR) shaving [20,40]
and the cohomology computation with the acyclic sub-complex
(ACC) shaving (the fastest version, which is the one implemented
with lookup tables) [20,39]. As the mesh size increases, the coho-
mology computations end up in failures due to having exceeded
the memory limit of the laptop. This is due to the fact that the cur-
rent implementations of (co) homology computations are quite
memory consuming. We note that we tested the TCT algorithm
on the laptop up to five millions of tetrahedra without encounter-
ing any problem. In case of a failure, a bigger computer (64 GB of
RAM and Intel Xenon E7-8830 2.13 GHz processors) was used for
the cohomology computation. The numbers in brackets denote
the time required for the cohomology computation with the bigger
computer. As one can easily observe, even when run on a powerful
computer, the timings required for the cohomology computations
are not comparable with the TCT algorithm.

6. Conclusions

A novel technique for cohomology computations called Thinned
Current Technique (TCT) has been introduced. The algorithm is
automatic, general, straightforward to implement and paralleliz-
able. The TCT compares quite favorably in term of speed with other
state-of-the-art algorithms documented in literature and it can be
directly extended to deal with a general polyhedral mesh. More-
over, it exhibits also important advantages in the quality of the
cohomology basis obtained. In fact, typical source coils are torus-
like conductors (i.e. b1ðKi

cÞ ¼ 1) and with the TCT there is the
guarantee that the current that flows inside a coil can be directly
related to one and only one cohomology generator. This render
the enforcement of current sources particularly trivial. Further-
more, if the user has the need of some specific basis for the coho-
mology group, the TCT is more appealing than any other methods
since it is easier to implement a drag-and-drop user interface to al-
low the user to select the appropriate cycle basis with respect to
accommodate 1-cocycles.
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