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In this paper a Geometric T–X formulation to solve eddy-current problems on a tetrahedral mesh is pre-
sented. When non-simply-connected conducting regions are considered, the formulation requires the so-
called thick cuts, while, in the literature, more attention is usually given to the so-called thin cuts. While
the automatic construction of thin cuts has been theoretically solved many years ago, no implementation
of an algorithm to compute the thick cuts which can be used in practice exists so far.

In this paper, we propose how to fill this gap by introducing an algorithm to automatically compute the
thick cuts on real-sized meshes, based on a belted tree and a tree–cotree decomposition. The belted tree is
constructed by means of a homology computation by exploiting efficient reduction methods. A number of
benchmarks are presented to demonstrate the generality and the robustness of the algorithm. A rigorous
definition of thick cuts, which necessarily has to rely on cohomology, is presented in addition.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

In the recent years the use of algebraic topology gained a con-
siderable importance in the research on computational electro-
magnetism. In particular, the fundamental works of Branin [1],
Tonti [3,4], Weiland [5], Bossavit, Kettunen [6,7] and Kotiuga [8]
gave rise to a way to solve Maxwell’s equations alternative with re-
spect to the classical Finite Element Method (FEM). This class of
numerical methods, that can be called ‘‘Discrete Geometric Ap-
proach” (DGA), allows the construction of an algebraic system of
equations by combining both the physical laws of electromagne-
tism, formulated exactly in a purely topological way and the con-
stitutive relations, approximated in a geometric way on a
specified grid.

The DGA have been already applied as a numerical method to
solve various classes of physical problems. In [40] two complemen-
tary Discrete Geometric Formulations to solve eddy-current prob-
lems are described. A domain of interest D of the eddy-current
problem is introduced as a compact subset of the three-dimen-
sional Euclidean space. In D, a set of passive conductive regions
Dc is defined. The complement of Dc in D represents the non-con-
ll rights reserved.
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ducting region Da (air region). To take advantage of the irrotation-
ality of the magnetic field in the non-conducting region, the T–X
formulation, based on the circulation of an electric vector potential
T in Dc and a magnetic scalar potential X in the whole domain D, is
considered in this paper. This formulation uses a magnetic scalar
potential in Da in order to reduce the computational cost with re-
spect to the other complementary formulation A � v, based on the
circulation of a magnetic vector potential A in the whole domain D
and an electric scalar potential in the conducting region Dc [40].

The DGA, thanks to the use of physical balance laws, can be ele-
gantly formalized with algebraic topology [1,3]. There exists a large
mathematical literature about algebraic topology, which unfortu-
nately is usually far away with respect to the theoretical back-
ground available to physicists and especially to engineers. For
this reason, in the next section the relevant concepts of algebraic
topology are briefly recalled in an informal way. For a more formal
introduction on algebraic topology refer to [13–15].

It is well known that the T–X formulation requires the so-called
thick cuts [23,41], while, usually, in the literature the thin cuts [19]
are introduced instead. Even though the automatic computation of
thin cuts has been known for many years [19,18], we are not aware
of any implementation that can be used with real-sized finite ele-
ment meshes. Moreover, as will be illustrated in the paper, extract
a thick cut from a general thin cut is not trivial at all.

The aim of the paper is to use the methods from computational
topology to design a general and reliable algorithm for the
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automatic computation of thick cuts. The thick cuts produced by
the algorithm presented in this paper can also be adopted to solve
an eddy-current problem using the classical Finite Element Method
(FEM) with a h-oriented formulation based on edge elements.

The paper is structured as follows: in Section 2 an informal
introduction to homology and cohomology theories is presented.
In Section 3 the barycentric complex is introduced and its proper-
ties are highlighted. The T–X formulation is presented in Section 4.
In Section 5 the loop fields and the thick cuts are defined by using
the cohomology theory. In Section 6 the non-local Faraday’s equa-
tions, arising when a non-simply-connected conductive region is
considered, are described. Section 7 contains a critical survey of
the algorithms used to automatically generate cuts. The algorithm
proposed in this paper to automatically compute the thick cuts is
presented in Section 8. Finally, in Section 9 the numerical results
on some relevant benchmark problems are shown and in Section
10 the conclusions are drawn.

2. Informal introduction to homology and cohomology theories

2.1. Abstract simplicial complex

The domain of interest D is described by a finite element mesh
of tetrahedra. It is assumed that the generated mesh reflects the
topology of the domain of interest, i.e. the mesh is adequately re-
fined in such a way that all topological features of the domain of
interest are captured.

A tetrahedral mesh is composed by (geometrical) simplices. In
mesh generation literature [11] usually a simplex of dimension k,
or k-simplex, is defined as the convex hull2 of the k + 1 affinely
independent3 nodes fx0; . . . ; xkg. The concept of simplices is used
to separate the topological information contained in a mesh of an ob-
ject of interest (like its topological invariants)4 from its geometric
shape. In fact the topology of the mesh can be represented only by
the incidence information5 of the simplices, while the geometry is de-
scribed with the list of the node’s coordinates. This separation is
quite important, in fact the algorithms presented in this paper will
deal only with the incidence information. The geometry will be used
only for the field computation in the discrete counterpart of the
physical constitutive relations. Considering this aim, it is useful to
formalize the incidence without the geometry defining a combinato-
rial object called abstract simplicial complex.

Definition 1. A collection K of finite, non-empty sets is called an
abstract simplicial complex if for any set S 2K every non-empty
subset of S belongs to K. Any element S 2K is called abstract
simplex.

From this point on the word abstract will be omitted from the
definitions, since only abstract simplices and abstract simplicial
complexes will be considered.

The dimension of a simplex S in a simplicial complex K is an
integer, p, which is equal to the cardinality of S minus one.

Definition 2. For any given p-simplex S, any non-empty subset of S
is called a sub-simplex of S.
2 The convex hull of a set of points S is the minimal convex set containing these
points. For further details see for example [11].

3 In our case it is required that any three points that constitute a 2-simplex
(triangle) must not lie in the same line and that the four points that constitute a 3-
simplex (tetrahedron) must not lie in the same plane.

4 A topological invariant is a topological property that does not depend on
continuous deformations of the object, like for example the number of holes.

5 Intuitively the incidence contains information on how the simplices are glued
together in the mesh.
For a geometric simplex, which is a subset of Rn spanned by af-
finely independent nodes fx0; . . . ; xng, the corresponding abstract
representation consists of the nodes themselves fx0; . . . ; xng; let
us denote 0-simplices for nodes, 1-simplices for edges, 2-simplices
for faces, and 3-simplices for tetrahedra.

The analogy between the abstract and geometric simplex en-
tails a corresponding analogy between abstract and geometric sim-
plicial complexes, as presented for example in [15]. The definition
of a geometric simplicial complex corresponds to the definition of a
conformal mesh given in mesh generation literature:

Definition 3. A mesh is said conformal if and only if:

(1) Every sub-simplex of a geometric simplex is contained in the
mesh.

(2) The intersection of any two geometric simplices is either a
common sub-simplex, or it is empty.

Example 1. The reader can easily verify that the mesh on the left
in Fig. 1 is a conformal mesh (and in this case its abstract represen-
tation is the abstract simplicial complex), while the mesh on the
right is a non-conformal mesh (and the abstract representation is
not the abstract simplicial complex).

In our implementation a conformal mesh of the domain of
interest D is produced using the software Netgen [10] and the ab-
stract simplicial complex is constructed, using the mesh file, by the
algorithm described in Appendix A. The simplices in the abstract
simplicial complex are the sets consisting of numbers given to
the corresponding geometric nodes by Netgen.

2.2. Oriented simplices and chains

Now, let us consider all orderings of the k + 1 nodes of a given k-
simplex S. The ordering is defined as the arbitrary bijection from
f0; . . . ; kg into the set S. Orderings can be classified by the equiva-
lence relation6 introduced as follows. Two orderings S1; S2 of a sim-
plex S are said to be equivalent, if they differ by an even
permutation.7 If those orderings differ by an odd permutation, they
are not equivalent. So all those orderings can be divided into two
equivalence classes. Such a class of ordering is called an (inner) ori-
entation and the set of all oriented n-simplices of a complex K will
be denoted by SnðKÞ.

Definition 4. An oriented simplex r is a simplex S together with a
choice of orientation. An n-simplex S ¼ fx0; . . . ; xng endowed with
orientation will be denoted as rn ¼ ½x0; . . . ; xn�, where [�] stands for
an ordered list of nodes.

Example 2. If one considers the 2-simplex (triangle) in Fig. 1 with
indices of nodes 1, 2 and 3. As a model decision, one can fix [1,2,3]
as positive orientation, see Fig. 2a. As a consequence, the 2-simplex
[2,3,1] in Fig. 2b represents the same oriented 2-simplex since it is
in the same equivalence class, while for example [2,1,3] in Fig. 2c
is negatively oriented, since it is not in the orientation class of sim-
plex [1,2,3] which was chosen as a representative of positively ori-
ented class.
6 An equivalence relation is a binary relation between two elements of a set which
groups them together as being ‘‘equivalent” in some way. An equivalence relation � is
reflexive, symmetric, and transitive. The equivalence class of the element a, under �,
denoted [a], is the subset of S whose elements b are such that a � b.

7 A permutation is the bijective map P : f0; . . . ; kg ! f0; . . . ; kg. Even (odd)
permutations can be represented as a sequence of an even (odd) number of swaps
of neighboring elements.



Fig. 1. The abstract simplicial complex corresponding to the geometric 2-simplex
(triangle) on the left is: K ¼ ff1g; f2g; f3g; f1;2g; f1;3g; f2;3g; f1;2;3gg. Consider
the abstract representation K1 ¼K n f1;2g of the complex on the right. When one
consider the simplex f1;2;3g 2K1 and the sub-simplex f1;2g 
 f1;2;3g, one has
that f1;2g R K1. Thus one can conclude from the definition that K1 is not an
abstract simplicial complex.

Fig. 2. Positive and negative oriented 2-simplices.
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The order of nodes obtained by increasing ordering of the list of
node indices is assumed as representative for positive orientation
of each simplex. All further computations are independent from
the chosen orientation. The orientation of each simplex is fixed
with the positive orientation previously defined. This means that,
for example, in the computations [2,1] will not appear, being rep-
resented by – [1,2].

Definition 5. A q-chain cq with integer coefficients is a formal
combination of oriented q-simplices with integer coefficients. The
set of all q-chains in a complex K will be denoted as CqðKÞ. All the
oriented q-simplices form a basis of CqðKÞ. The elements of CqðKÞ
form a group with addition.8

Example 3. Consider the oriented abstract simplicial complex K

corresponding to the simplices in Fig. 3a. An example of 1-chain,
depicted in Fig. 3b, is c1 ¼ �r1

1 � r1
4 � r1

5 þ r1
8 þ r1

9. Since a base
of C1ðKÞ (all 1-simplices with positive orientation) was fixed as
in Definition 5, the chain c1 can be represented by the vector
f�1;0;0;�1;�1;0;0;1;1;0gT . The coefficient corresponding to
the 1-simplex with index 1 is �1 because, for example, one wants
all the edges iso-oriented with the path r. An example of 2-chain
c2 ¼ r2

4 þ r2
5 ¼ f0;0;0;1;1g

T is depicted in Fig. 3c.
2.3. Cochains and chain–cochain duality

Definition 6. The group of the elementary q-cochains is equal to the
group of all maps going from one oriented q-simplex of the
complex K to integers with addition.

Definition 7. A q-cochain cq with integer coefficients is a formal
combination of elementary q-cochains. It will be denoted by
CqðKÞ ¼ f/ : SqðKÞ ! Zg.
8 A group is an algebraic structure consisting of the set S and binary operation +
defined in S. The operation needs to be associative, and the identity element e 2 S of
the operation + has to exists in S. Moreover each element x 2 S has to posses an
inverse with respect to the operation +. In this paper only abelian groups will be used,
for which the operation is also commutative. The integers with addition are a
standard example of an abelian group.
Note that a one-to-one correspondence between a chain and a
cochain exists. This chain–cochain natural duality yields

CpðKÞ ffi 9CpðKÞ: ð1Þ

2.4. Boundary (coboundary) operator and homology (cohomology)

Definition 8. For k � 1, the boundary operator @k : CkðKÞ !
Ck�1ðKÞ is defined in the following way:

(1) For an oriented k-simplex rk ¼ ½x0; x1; . . . ; xk� 2 CkðKÞ yields
@kðrkÞ :¼

Pk
i¼0ð�1Þi½x0; x1; . . . ; x̂i; . . . ; xk� 2 Ck�1ðKÞ, where

½x0; x1; . . . ; x̂i; . . . ; xk� denotes the simplex ½x0; x1; . . . ;

xi�1; xiþ1; . . . ; xk�.
(2) For a linear combination of oriented simplices, the linear

extension of this operator is applied: @kð
P

iairk
i Þ ¼P

iai@kðrk
i Þ, where rk

i is the ith simplex in the sum.

The boundary operator is defined as above in order to comply
with the equality @k�1 � @k ¼ 0 [15].

Example 4a. Consider the oriented abstract simplicial complex K

corresponding to the simplices in Fig. 4a. The aim now is to find the
boundary of the 2-chain c2 ¼ r2

1 þ r2
2 in Fig. 4b.

@2c2 ¼ @2r2
1 þ @2r2

2 ¼
10 @2½1;2;3� þ @2½1;3;4� ¼ ½2;3� � ½1;3� þ ½1;2�

þ½3;4� � ½1;4� þ ½1;3� ¼ ½2;3� þ ½1;2� þ ½3;4� � ½1;4� ¼ r1
2 þ r1

1 þ r1
4�

r1
5 that can be represented by the 1-chain c1 ¼ @2c2 ¼ f1;1;0;1;�1g

in Fig. 4c. If one applies again the boundary operator on c1, he
obtains: c0 ¼ @1c1 ¼ @1½2;3� þ @1½1;2� þ @1½3;4� � @1½1;4� ¼ ½3� � ½2�þ
½2� � ½1� þ ½4� � ½3� � ½4� þ ½1� ¼ 0.

Since the boundary operator is a linear map between CkðKÞ and
Ck�1ðKÞ, once a basis for Ck�1ðKÞ and CkðKÞ is fixed, it can be rep-
resented as the matrix M@k

.

Example 4b. In fact, in the Example of Fig. 4 one has:

M@1 ¼

�1 0 �1 0 �1
1 �1 0 0 0
0 1 1 �1 0
0 0 0 1 1

2
6664

3
7775; M@2 ¼

1 0
1 0
�1 1
0 1
0 �1

2
6666664

3
7777775
;

and it is easy to verify that M@1 M@2 ¼ 0.

In the cohomology theory, the so-called coboundary operator
dk�1 : Ck�1ðKÞ ! CkðKÞ is defined. For our purpose it is enough
to say that both boundary and coboundary can be expressed by a
matrix. If M@k

is a matrix of boundary operator @k, for the matrix
of coboundary operator dk�1;Mdk�1 ¼MT

@k
holds.

Since in general @k�1 � @k ¼ 0ðM@k�1
M@k
¼ 0Þ, this implies that

ðM@k�1
M@k
ÞT ¼MT

@k
MT

@k�1
¼Mdk�1 �Mdk�2 ¼ 0 holds.

Usually, in computational electromagnetism, the matrices rep-
resenting the coboundary operator are expressed in terms of inci-
dence matrices:

	 G ¼MT
@1

, between the edges and the nodes;

	 C ¼MT
@2

, between the faces and the edges;

	 D ¼MT
@3

, between the tetrahedra and the faces.
9 Informally, two groups are isomorphic (ffi) if they are identical up to the name of
elements and name of operation.

10 For sake of brevity, the 0-simplex r0
i will be denoted as i.



Fig. 3. An example of 1-chain and 2-chain.

Fig. 4. A complex that is used to exemplify the boundary operator.
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The boundary operator gives rise to a classification of chains.
From @k�1 � @k ¼ 0 it is straightforward to verify that the image of
the @k is a subgroup of the kernel of @k�1. The imð@kþ1Þ is called
the boundary group of a simplicial complex K and is denoted by
BkðKÞ. The kerð@kÞ is called the cycles group of a complex K and
is denoted by ZkðKÞ. Elements of ZkðKÞ are called cycles and ele-
ments of BkðKÞ are called boundaries in the simplicial complex K.

Analogous classification can be given for the cochains:
ZkðKÞ ¼ kerðdkÞ ¼ kerðMT

@kþ1
Þ is the group of k-cocycles and

BkðKÞ ¼ imðdk�1Þ ¼ imðMT
@k
Þ is the group of k-coboundaries.

The homology group consists of all the elements from ZkðKÞ
which are not elements of BkðKÞ, formally

Definition 9. The homology group is the quotient group
HkðKÞ ¼ ZkðKÞ=BkðKÞ for k 2 N:

Given a cycle z in the kth homology group, adding any k-bound-
11 In fact the difference of the two cycles can be the boundary of a surface contained
in K. In the Example such a surface is the generalized cylinder depicted in Fig. 5b
having p3 and �p4 as boundary.

12 In homotopy theory a non-trivial cycle is a cycle that cannot be deformed into a
point by continuous deformations. Such a cycle is referred to as non-contractible,
while the cycles that can be deformed to the point are called contractible. For
example p3 and p4 cannot be reduced into a point by continuous deformations in K,
while p1 and p2 are homotopically trivial.
ary b to it does not make zþ b a boundary. For homology theory z
and zþ b are the same, what motivates the following equivalence
relation:

Definition 10. Two k-cycles z1 and z2 are homologous (or homo-
logically equivalent) if their difference is a boundary

z1 � z2 () z1 � z2 2 BkðKÞ:

The homology is an equivalence relation that divides the cycles
into equivalence classes, which are called homology classes. There
exists a set of homology classes such that any other homology class
can be written in unique way as a combination of these classes
with integer coefficients. The basic set of homology classes will
be referred to as homology generators. From homology generators
one can generate the whole homology group, the set of all homol-
ogy generators is called a homology basis. Only one representatives
z from each class is needed, being possible to obtain all other cycles
in the class by adding a boundary chain to z. When it is not confus-
ing, for brevity, by homology generators, we will refer to both the
equivalence classes of the presented relation and the cycles that
represents the equivalence class.

Example 5. Consider K as the oriented simplicial complex
obtained by the complement of the torus (whose triangulated
boundary is visible in the Fig. 5a) with respect to a bigger box that
contains it (only outlined in the same figure). The boundary of K is
the union of the boundary of the torus and the boundary of the
external box. In Fig. 5a four cycles pi 2 Z1ðKÞ; i ¼ 1; . . . ;4 are
drawn with a continuous black line; p1 and p2 can be boundaries of
a surface in K, while p3 and p4 cannot be boundaries of any surface
entirely contained in K. Thus p1 and p2 are trivial (zero) elements
of the 1st homology group H1ðKÞ, while p3 and p4 are non-zero
elements of H1ðKÞ. These type of cycles are also called non-
bounding cycles. Moreover, since p3 and p4 differ by a boundary,11

they are in the same homology (equivalence) class. In the case
presented in the Fig. 5, either p3 or p4 can be considered as the
H1ðKÞ homology basis.

Remark. Even though the same conclusions in the Example 5a can
be reached considering homotopy theory,12 in general the two theo-
ries produce different results [28–30]. This issue will be discussed in
Section 7.



Fig. 5. (a) p3 and p4 are two possible absolute 1st homology generators for the torus complement. (b) p3 and p4 are the boundary of the depicted cylindrical surface.

Fig. 6. Some homologically non-trivial cycles for the double torus complement.
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Example 6. Consider now K as the oriented simplicial complex
obtained by the complement of the double torus with respect to
a bigger box that contains it, Fig. 6. As an example of homology
generators one may take p5 and p7. In this case p6 2 H1ðKÞ can
be obtained by linear combination of p5 and p7 (and a cycle which
is a boundary). Also p8 2 H1ðKÞ is a combination of p5; p7. The
independent cycles p5 and p6 or p5 and p7 are different examples
of basis for H1ðKÞ.

The analog quotient for the cocycles and coboundaries can be
defined.

Definition 11. The cohomology group is the quotient group
HkðKÞ ¼ ZkðKÞ=BkðKÞ, thus contains cocycles that are not
coboundaries.

It is demonstrated, for example in [15,17,19], that in case of the
complexes K, whose geometric realizations are compact subsets
of tree-dimensional Euclidean space, the following isomorphisms
exist:

HkðKÞ ffi HkðKÞ: ð2Þ
13 From a topological viewpoint they are equivalent.
2.5. Computational homology

The idea of the homology computation is now briefly presented.
Based on the abstract simplicial complex, constructed as described
in Appendix A, each matrix M@1 ;M@2 ;M@3 representing the bound-
ary operators in a fixed basis is assumed as given. Then the basis of
ZkðKÞ ¼ kerðM@k

Þ and BkðKÞ ¼ imðM@kþ1
Þ are computed. This is

achieved by transforming the boundary operator matrices to the
so-called column echelon form [12] from which one can retrieve
the basis of ZkðKÞ and BkðKÞ. The most complicated and time con-
suming part is to obtain the quotient of those groups ZkðKÞ=BkðKÞ.
These computations are implemented in many packages, like
[49,50]. During the homology computations reduction algorithms
can be profitably used in order to decrease the abstract simplicial
complex cardinality without changing its topology [12,47,48] be-
fore Smith normal form [12] computations. In most of the practical
cases the reductions are so efficient, that there is no need to use the
algebraic Smith normal form diagonalization to obtain the homol-
ogy generators.

3. Barycentric cell complex

A complex that is more general than the simplicial complex is
now introduced. Instead of the notion of simplex, it is based on
the notion of cell, that is a general polyhedron homeomorphic13

to a simplex. For our purposes it is not necessary to define a cell
complex in a general way. Only a particular type of cell complex,
called the barycentric complex B, is defined by means of the barycen-
tric subdivision [3] of K. It is fundamental to note that, while the def-
inition of the barycentric complex B relies on geometry, its
incidences can be recovered from the incidences of K without the
geometric construction of the barycentric complex.

The geometric elements of K are denoted by n for nodes, e for
edges, f for triangular faces and v for tetrahedra; whereas the geo-
metric elements of the barycentric complex B are denoted by
nB; eB; fB and vB, respectively.

The nodes of the barycentric complex are defined as the centers
of mass of the tetrahedra of K.

Consider two tetrahedra sharing a common triangular face f (2-
simplex), Fig. 7a. The edges of the barycentric complex eB are
formed as in Fig. 7a by the union of two segments that join the
two centers of mass of the two contiguous tetrahedra with the cen-
ter of mass of the triangle. The 2-simplex f and the edge of the
barycentric complex eB, considered as the union of the two seg-
ments, are in one-to-one correspondence. If the triangle is on the
boundary of the domain, eB is composed by just a single segment.

Consider the cluster of tetrahedra constructed by a given edge e.
A face of the barycentric complex can be constructed as the union
of quadrangles, as in Fig. 7b, one for each tetrahedron T in the clus-
ter. Each quadrangle has one corner in the middle point of the
edge, one in the center of mass of T, the other two in the center
of mass of the two triangles in the boundary of T that have the edge
e in their boundaries. So a one-to-one correspondence between an
edge e (1-simplex) and a face of the barycentric complex fB consid-
ered as the union of the quadrangles is evident.



Fig. 7. (a) A face f of the simplicial complex and its one-to-one edge of the barycentric complex eB; (b) an edge e of the simplicial complex and its one-to-one face of the
barycentric complex fB; (c–d) One-to-one correspondence between a node n of the simplicial complex and the volume of the barycentric complex vB .

Fig. 8. Association of the integral variables and the geometric entities of K (a) and B (b).
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Finally consider the cluster of tetrahedra that shares a common
node n (0-simplex), Fig. 7d. For every tetrahedron in the cluster an
hexahedron is formed, as in Fig. 7c. Considering again all the tetra-
hedra in the cluster and adding all the respective hexahedra, a solid
having as boundary the faces highlighted in Fig. 7d is obtained.
Again, a one-to-one correspondence between a node n and a
volume of the barycentric complex vB is evident.

3.1. K�B duality

As noticed in the last paragraphs, another kind of duality with
respect to the previously defined chain–cochain duality arise. In
fact, every p-simplex of K is in one-to-one correspondence with
one (3-p)-cell of B.14 This duality can be formalized as

CpðKÞ ffi C3�pðBÞ: ð3Þ

The (1) and (3) yield the following isomorphism:

CpðKÞ ffi C3�pðBÞ; ð4Þ

which allows to construct the incidence matrices of B starting from
the incidence matrices of K.

Example 7. G is the incidence matrix between e and n of K. From
the isomorphism (4), G can be reinterpreted on B as the 3-
boundary matrix eDT . Thus eD ¼ GT is the incidence matrix between
vB and fB of B.15
14 This is the reason why B is usually called dual complex.
15 Usually �GT is considered as the incidence matrices between vB and fB of B. The

minus sign comes from an assumption that a node is oriented as a sink, whereas the
boundary of a volume is oriented by outward normal.
4. Maxwell’s balance equations and the T–X geometric
formulation

4.1. Degrees of freedom

The integrals of the electromagnetic field quantities with re-
spect to the oriented geometric elements of the pair of complexes
K;B, are referred to Degrees of Freedom16 (DoFs) and the arrays
they form will be denoted in boldface type. Each entry of a DoFs ar-
ray is indexed over the corresponding geometric element and the
row of array x relative to the geometric element k will be denoted
by ðxÞk. According to the Tonti’s classification of variables [2–4],
there is a unique association between every physical variable and
the corresponding oriented17 geometric element, see Fig. 8. In order
to formulate an eddy-current problem using the T–X formulation,
the following DoFs arrays are introduced:

	 U the array of magnetic induction fluxes associated with fB 2 D;
	 F the array of magnetomotive forces (m.m.f.s) associated with

e 2 D;
	 I the array of electric currents associated with f 2 Dc;
	 U the array of e.m.f.s on edges eB 2 D.

4.2. The T–X geometric formulation

The algebraic equations governing the discrete eddy-currents
problem in the framework of the Discrete Geometric Approach
16 These are just elementary cochains with values in R.
17 Tonti, in his classification of physical variables, distinguish between inner or outer

orientation. For further details see [2–4].



Fig. 9. Consider a conductive region Dc consisting of a circular coil, outlined in the

P. Dłotko et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3765–3781 3771
[40] are now recalled. The linearity of the media is assumed, to-
gether with a permeability l0 in D and a resistivity q in Dc. The fol-
lowing DoFs arrays are also introduced:

	 T the array of the circulations of the electric vector potential T
along e 2 Dc.

	 X the array of magnetic scalar potential X associated to the
nodes n 2 D.

Using the incidence matrices, Maxwell’s laws can be written ex-
actly as balance equations between Dofs arrays as

GTU ¼ 0 ðaÞ; CT U ¼ �ixU ðbÞ; ð5Þ

where (5a) is the Gauss’ magnetic law at discrete level and (5b) is
the Faraday’s Law. The array T is defined such that the Ampere’s
balance law

ðCFÞf ¼ ðIÞf 8f 2 Dc; ð6Þ

holds

ðFÞe ¼ ðGXÞe þ ðTÞe 8e 2 Dc � @Dc;

ðFÞe ¼ ðGXÞe 8e 2 Da:
ð7Þ

In fact one has CcT ¼ I, where Cc is the sub-matrix of C relative to
the faces and edges in Dc . This implies that the continuity law
DcI ¼ 0 is identically satisfied,18 where Dc is the sub-matrix of D rel-
ative to the volumes and faces in Dc . The interface conditions that
avoid the current flow outside the region Dc are already taken into
account by considering T ¼ 0; 8e 2 @Dc . In this way, in fact,
ðIÞf ¼ 0; 8f 2 @Dc holds.

The discrete counterpart of the constitutive laws can be written
as

U ¼ lF in DðaÞ; Uc ¼ qI in DcðbÞ; ð8Þ

where Uc is the sub-array of U relative to edges eB 2 Dc . The square
matrix q (dimðqÞ ¼ Nfc ;Nfc being the number of faces of K in Dc) is
the resistivity matrix such that (8b) holds exactly at least for an ele-
ment-wise uniform current density field J and electric field E in each
tetrahedron and it is the approximate discrete counterpart of the
constitutive relation E ¼ q J at continuous level, q being the resistiv-
ity assumed element-wise a constant. The square matrix l
(dimðlÞ ¼ Ne;Ne being the number of edges in D) is the permeance
matrix such that (8a) holds exactly at least for an element-wise uni-
form magnetic field H and induction field B in each tetrahedron and
it is the approximate discrete counterpart of the constitutive rela-
tion B ¼ lH at continuous level, l being the permeability assumed
element-wise a constant.

Classical ways to construct the constitutive matrices q and l are
the Discrete Hodge technique based on Whitney’s maps, described
for example in [44], or the so-called Galerkin Hodge [45] that pro-
duces the same matrix as the Finite Element Method (FEM) with
first order edge element basis functions. In this paper, another ori-
ginal solution that use the edge and face vector basis functions de-
fined in [46] is used. These basis functions assure that symmetry,
positive-definiteness and consistency19 properties are satisfied for
both the constitutive matrices q and l.

The sources of the problem are enforced in a sub-region Ds of Da,
where the m.m.f. is obtained by

ðFÞe ¼ ðGXÞe þ ðTsÞe 8e 2 Ds; ð9Þ

where Ts is prescribed value of the electric vector potential calcu-
lated in such a way that CsTs ¼ Is, where Cs is the sub-matrix of C
18 Since the coboundary of a coboundary DC is identically zero.
19 A precise definition of the notion of consistency for constitutive matrices is given

in [7].
relative to the faces and edges in Ds and Is is the array containing
the impressed currents on f 2 Ds. To compute the array Ts form Is,
the iterative technique described in [43] can be used.

By substituting (8a), (8b) and (7) in (5a), the algebraic equations
corresponding to the nodes in D are obtained. By substituting (8a),
(8b) and (7) in (5b) the algebraic equations corresponding to edges
in Dc are derived. The final algebraic system, having T and X as un-
knowns DoFs arrays, can be written as

ðGT
lGXÞn ¼ 0 8n 2 Da � Ds;

ðGT
lGXÞn ¼ �ðG

T
s lsTsÞn 8n 2 Ds;

ðGT
lGXÞn þ ðG

T
c lcTÞn ¼ 0 8n 2 Dc;

ðCT
c qCcTÞe þ ix lcðTþ GcXcÞð Þe ¼ 0 8e 2 Dc:

ð10Þ

where the subscripts c and s represent the corresponding sub-array
or sub-matrix relative to geometric elements, respectively, in Dc

and Ds. The system (10) is singular and, to solve it, a conjugate gra-
dient method without gauge condition is used.

5. From cohomology to thick cuts

In Section 4 the Ampère’s balance law was introduced in (6) as a
relation imposed between the current associated with a face f 2 Dc

and the m.m.f.s associated with its boundary edges:
ðCFÞf ¼ ðIÞf ; 8f 2 Dc .

Ampère’s balance law can be written also on an arbitrary 1-cy-
cle c1 2 Z1ðKDa Þ, where KDa is the sub-complex of K restricted to
the non-conducting domain Da, see Fig. 9. Chosen an orientation
for c1, Ampère’s balance law enforce the m.m.f. Fc1 evaluated on
c1 to match with the linked current Ic1 . A 2-chain S 2K is defined
such that has c1 as boundary, @S ¼ c1. Moreover is required that
the set of faces, denoted as jSj, having non-zero coefficients in
the 2-chain S constitute a (orientable) surface. Then the linked cur-
rent can be obtained by the sum with incidence of the currents
crossing S

Ic1 ¼
X

fi2ðjSj\DcÞ
sfi
ðIÞfi

; ð11Þ

where sfi is the incidence between the orientation of the surface S,
inherited from the orientation of its boundary c1 through the
right-hand rule, and the orientation of the face fi. Ic1 does not de-
pend on the choice of S: the current verifies the continuity law
DcI ¼ 0, thus the flux through all (orientable) surfaces having the
same boundary is the same.
figure. The non-conducting region Da is assumed to be the complement of Dc with
respect to a bigger box, not represented in Figure, which surrounds all Dc . The 1-
cycle c1 2 Z1ðKDa Þ (that is non-bounding in Da) and the 2-chain S 2 C2ðKÞ are
shown in the picture. Orienting c1 as in the Figure, the incidence relative for
example to the edges e1 and e2 will be, respectively, se1 ¼ �1 and se2 ¼ 1.
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Fc1 is obtained as the sum of the contributions due to all m.m.f.s
ðFÞe; e 2 c1, multiplied by the incidence sei

between the orientation
of the edge ei and the orientation chosen for the cycle c1. Thanks to
the Eq. (7) relative to edges e 2 Da, one has

Fc1 ¼
X
ei2c1

sei
ðFÞei

¼
X
ei2c1

sei
ðGXÞei

: ð12Þ

Since c1 is a cycle, it is easy to verify that in the sum each node will
be counted two times with opposite signs, so Fc1 will be always zero
for every cycle c1. This contradicts the Ampère’s balance law, since
the linked current Ic1 is in general non-zero.

Let us consider a cycle c2 2 @Dc that encircle a conductor’s sec-
tion. One can deduce the same inconsistency from the Ampère’s
balance law applied on c2, in fact the sum of the T over the cycle
c2 will be always zero. It again follows that this would force to zero
the net current on every conductor’s section.

This result is not surprising since it is well known that, when
homologically non-trivial conductive regions are present, the
m.m.f. Fc evaluated along some 1-cycle c 2 Z1ðKDa Þ cannot be de-
scribed completely using only a magnetic scalar potential. In par-
ticular, the m.m.f.s that cannot be represented by a scalar
potential are by Definition 11 the one that are non-zero in the
1st cohomology group H1ðKDa Þ.20 These considerations and the fact
that Ampère’s law has to be verified implicitly in Da, being not im-
posed explicitly in (10), motivate the introduction of the so-called
loop fields.

Definition 12. A loop field is a cohomology generator belonging to
a basis of H1ðKDa Þ. Each loop field generator is required to verify
Ampère’s balance law for every 1-cycle c 2 Z1ðKDa Þ. The loop field
will be denoted as the array Ti

0, where each integer ðTi
0Þe, with

e 2 Da, is the value of the cocycle relative to the 1-simplex e.

The set of loop fields can be constructed in such a way that they
correspond naturally to a fixed basis of homology H1ðKDa Þ gener-
ators.21 In this case for each loop field Ti

0 the sum with incidence of
the ðTi

0Þe will be the unit current only when evaluated on exactly
one H1ðKDa Þ homology generator; for the remaining H1ðKDa Þ gen-
erators this sum will be zero.

Remark. The sums of a loop field evaluated on two cycles, c1; c2,
which differ by a boundary are equal; The sum around a trivial
cycle is zero. This statements will be formally demonstrated in
Section 8.

The loop field definition, however, does not imply, that the sum
is the unit current only on the cycles homologous to the corre-
sponding H1ðKDa Þ generator. Let us take for instance a double
torus complement, see Fig. 6. Suppose that the generators of
H1ðKDa Þ are p5 and p7. Once one take a loop field which enforce
1 sum on p5 and 0 on p7, it will also enforce 1 on p5 þ p7 which
is not homologous to p5.

We also note that the loop fields are constructed in such a way
that every non-bounding cycle crosses at least one edge of at least
one loop field.

Using the loop fields, the m.m.f.s associated with an edge e 2 Da

can be expressed by

ðFÞe ¼ ðGXÞe þ
Xb1

j¼1

ijðTj
0Þe; ð13Þ

where ij is the linked current (which can be known or can be an
additional unknown of the problem) and b1 is the number of coho-
mology generators.
20 Due to [19], there is no gain of information in the transition from integer to real
coefficients when computing (co)homology.

21 This reflects the duality H1ðKDa Þ ’ H1ðKDa Þ.
At this point one would like to retain the speed of the scalar po-
tential formulation limiting the support of the unknown circula-
tions of the electric vector potential T, since, as will be described
in Section 6, a bigger support increases the fill-in of the matrix rep-
resenting the linear system of equations. The thick cuts can infor-
mally be presented as an attempt to reduce the support of the
electric vector potential.

A thick cut can be defined as a ‘‘compact” ith loop field, such that
the dual faces fB – dual to the set of edges Ti having a non-
zero value in Ti

0 – form on the dual complex an orientable22 surface
Ri.

For example, in Fig. 10a it is depicted a polyhedron representing
the boundary @Dc of a torus. The set of edges T1 that constitute a
possible thick cut are represented by thick edges. One can easily
see in Fig. 10b that the union of all the faces fB dual to edges
e 2T1 form a surface in the barycentric complex.

We note that using thick cuts does not necessarily guarantee
that the support is minimized with respect to a general loop field.
The surface in fact can fold a big number of times resulting in a
large number of thick cut edges. Nevertheless, thick cuts have also
a pedagogical advantage, yielding visible the surface used for
linked flux evaluation.
6. From thick cuts to non-local Faraday’s equations

The domain of definition of the circulations T of the electric vec-
tor potential, the edges e 2 Dc , is extended to the thick cuts edges
et 2 fTigb1

i¼1. Since additional unknown DoFs ðTÞet
, with

et 2 fTigb1
i¼1, are introduced with respect to (10), to close the new

linear system of equations, additional equations are needed.
A T–X formulation suitable for non-simply-connected conduc-

tive regions was presented in [41]. The additional equations intro-
duced in [41] have to enforce the sum of the circulations of the
electric vector potential along all homologous paths in KDa to have
the same value. After adding these equations, the linear system of
equations becomes non-symmetric.

We note that these equations – and their corresponding new
unknowns ðTÞet

;8et 2 fTigb1
i¼1 – are not explicitly needed, since

these constraints are implicitly taken into account when the loop
fields are constructed. Thus, in this paper, a new formulation is
proposed that uses a reduced number of unknowns and yields a
symmetric linear system of equations. Since Ampère’s balance
law holds in all D, the unknowns that have to be added are just
the linked currents ij introduced in (13), with j ¼ 1; . . . ; b1. In fact,
once the linked currents ij are known, the total m.m.f. associated
to an edge e 2 Da can be calculated in a post-processing stage using
(13). Thus a corresponding number b1 of new equations have then
to be added into the previously introduced linear system of equa-
tions (10), suitable only with simply-connected conducting do-
mains: these are the non-local Faraday’s equations that are
described in the following.

6.1. Non-local Faraday’s equations

For sake of clarity, consider that only one thick cut is
present and it is not self-intersecting, like the one presented in
Fig. 10a.

The local Faraday’s law (5b) has to be written also for the face fB
in a one-to-one with edge e 2T1, as already done in the last sec-
tion for every face fB in Dc:

ðCT UÞfB þ ixðUÞfB ¼ 0 8e 2T1:
23 ð14Þ
22 It can happen that such a surface is self-intersecting.



Fig. 11. (a) A starting edge and its one-to-one face fB; (b) another surface where the Faraday’s law can be written; (c) from an top view, it is possible to see clearly that the cut
surface enters the conductor and its boundary bi in entirely contained in it; (d) the boundary of Ri is the line bi composed by edges eB 2 B.

Fig. 10. (a) A polyhedron representing the boundary @Dc of a torus and a set of thick cut edges e 2T1; (b) the cut surface is obtained as the dual faces in the barycentric
complex with respect to the thick cut edges. (c) The surface Ri and its boundary bi , composed by edges eB 2 B, are shown.
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23These equations cannot be written ‘‘locally” for the edges e 2T1,
because in the non-conductive domain U cannot be expressed in
terms of the DoFs T and X.

Consider the balance Faraday’s law (5b) enforced on a face fB
(dual to an edge e 2T1, see Fig. 11a) and its boundary. One can,
as in Fig. 11b, join other neighboring faces to fB (dual to edges
e 2T1) and write again the Faraday’s equation involving the
new surface and its boundary. When all faces fB dual to edges
e 2T1 are joined, as one can see in Fig. 11c, the boundary of the
resulting surface is entirely contained inside the conductor, thus
U and T thanks to (7) and (8b) can be related as Uc ¼ qCcT.

The process corresponds to the sum of the local equations and
gives rise to the so-called ‘‘non-local” Faraday’s equation24

X
eB2bi

si
eB
ðUÞeB ¼ �ix

X
fB2Ri

si
fB
ðUÞfB ; i ¼ 1; . . . ; b1; ð15Þ

where si
fB

is the incidence between a randomly chosen orientation
of the cut surface Ri and the orientation of the face fB and si

eB
is

the incidence between the orientation of bi, inherited through the
right-hand rule from the orientation of Ri, and the orientation of
the edge eB.

Now, the construction of a non-local equation associated to a
general loop field is addressed. Let us suppose that non-local equa-
tion relative to the ith loop field is considered. Eq. (7), valid only for
a simply-connected conducting region Dc , is modified by adding
the loop field contribution

ðFÞe ¼ ðGXÞe þ ðTÞe 8e 2 Dc � @Dc;

ðFÞe ¼ ðGXÞe þ
Xb1

j¼1

ijðTj
0Þe; 8e 2 Da:

ð16Þ
23 This equation has to be written also for the faces fB dual to the thick cut edges on
oDc, since before only the boundary condition (T)e = 0 was imposed.

24 This name is due to the fact that the balance equation is not enforced on the
neighborhood of a geometric entity, but involves all geometric entities belonging to
the cut surface Ri and its boundary bi .
The non-local equation is formed as the sum of the local equations
belonging to edges e 2Ti using the coefficients ðTi

0ÞeX
e2Ti\Dc

ðTi
0ÞeðC

T
c qCcFcÞe þ ix

X
e2Ti

ðTi
0ÞeðlFÞfB ¼ 0; i ¼ 1; . . . ;b1;

ð17Þ

where Fc is the sub-array of F associated with edges e 2 Dc . For each
edge e; ðFcÞe and ðFÞe can be expressed in terms of the unknown
DoFs X; T and i by (16).

Defining Ca as the sub-matrix of C relative at the entities
belonging to Da; ðCaTj

0Þf is always zero over every face f and for
every index j, thus ðCFÞf ¼ ðCaTj

0Þf ¼ 0 ¼ ðIÞf ; 8f 2 @Dc; holds.
7. Automatic generation of cuts

Now that the definition and the requirements for the thick cuts
are given, an algorithm for computing them will be provided. In
general it is very difficult to define the thick cut edges ‘‘by hand”.
For non-trivial geometries with knots or many links even imagine
such cuts can easily become a challenge. This is the reason why
efficient, general and reliable algorithm to find cuts is essential.
The algorithm should run on a mesh formed by at least hundreds
of thousands of tetrahedra in a reasonable computational time.

Several algorithms to automatically generate cuts for the mag-
netic scalar potential have been proposed in the literature. Most
of them, however, compute the so-called thin cut surfaces (see
Appendix B for definition and examples), while a thick cut is needed
for the eddy-current computations with geometric formulations.

7.1. Homotopical approaches

A lot of papers have been published dealing with automatic
homotopy-based cut construction. These papers have their roots
in homotopy theory. For an introduction on homotopy theory,
homotopy groups and generators consult for example [17,14]. In



Fig. 12. A portion of a two-dimensional mesh is shown. The edges belonging to a
self-intersecting thin cut are highlighted. The integers in the picture denote the
coefficients of the non-zero edges in a relative homology generator.
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these papers the authors aim to construct the homotopy genera-
tors (instead of the homology generators) of the given mesh.
Unfortunately the homotopy groups are in general intractable. It
is a well known fact, that there do not exist any algorithm which
is able to check if the simplicial complex is simply-connected for
all possible inputs. There are some theoretical algorithms to com-
pute homotopy groups, but no implementation exists since the
enormous memory and time complexity required by these algo-
rithms25 (see for example [36]). Moreover those theoretical algo-
rithms work under assumption that the input simplicial complex is
simply-connected, so they are completely useless for our purpose
in all practical cases. All those facts bring us the conclusion that it
is hardly possible for a homotopy-based algorithm to work in gen-
eral case, even with simple non-knotted geometries. In fact, the
demonstration that homotopy-based algorithms return always a
correct set of cuts is not provided in any paper.

7.1.1. Simple reduction
Many authors attempt to compute second homotopy group

generators by using some reduction algorithms [31]. Those meth-
ods have their roots on the simple reductions used in the computa-
tional homology [12]. They essentially reduce the region in a
continuous manner, such that the relevant homotopy groups re-
main invariant. Nevertheless, the simple reductions can end up in
a sets of simplices that are non-reducible but contractible (for
example the Bing’s house [32]), being not good as a valid cuts.

The method described in [27,33,35,34] uses a modification of
the simple reduction method. In this method the maximal con-
nected and simply-connected set, C, is grown in the non-conduct-
ing region of the complex K. From the volume in the non-
conducting region that does not belongs to the set C, a set of tetra-
hedra D is retrieved; D is considered as the union of the cut
surfaces.

The set D is constructed in a way that the complement of D

with respect to Da is always simply-connected. This is an unneces-
sary additional requirement for a thin cut, that generates when one
decides to employ the homotopy theory instead of using the
homology theory. In fact, there are examples of thin cuts that do
not necessarily leave the complement simply-connected,see for
example [28–30].

Furthermore, the biggest practical limitation seams to be the
case of a problem for which more then one cut is required. Then
the thin cuts have to be generated by separating each of them from
set D: such a separation procedure is not described in detail in the
literature and seems to be highly non-trivial.

7.2. Approaches based on computational homology

In this Section a review of the approaches based on computa-
tional homology that has been developed so far is presented.

7.2.1. Computations of second relative homology group generators
All methods that compute a second relative homology group

(see Appendix B) on K, H2ðKDa ; @KDa Þ, [26] are not useful in prac-
tice for the computation of thick cuts. The computations of
H2ðKDa ; @KDa Þ was the path that was originally followed by the
authors. This algorithm, however, did not work in practice since
very often the thin cuts obtained were self-intersecting.

A thick cut could be constructed by ‘‘growing” a layer of edges
from one side of an orientable and non-self-intersecting thin cut.
If the thin cuts provided are self-intersecting, an algorithm to ex-
tract the thick cut from such a thin cut seems to be highly non-triv-
ial in general case, see Example 8.
25 Moreover these algorithms require the homology groups to be computed first.
Example 8. When a thin cut is self-intersecting, see Fig. 12 for a
two-dimensional example, the coefficient of the chain associated
with a face (or an edge in the two-dimensional example) can be an
integer greater then 1. As the reader can verify, grow a thick cut on
one side of the thin cut in this case is highly non-trivial.
7.2.2. Kotiuga’s algorithm
In the classical approach by Kotiuga[20,21,25,24] the following

algorithm is used:

(1) Compute the H1ðBDa Þ basis on dual complex.
(2) With Finite Element Method (FEM) solve a variational prob-

lem for each generator of H1ðBDa Þ, based on the results of
previous step.

(3) The cuts are retrieved by computing the level set of regular
value of functions obtained in the step 2.

The presented algorithm, although is known to be the most gen-
eral, suffers from a serious drawback. The computations of H1ðBDaÞ
are very time consuming. Kotiuga uses a reduction algorithm based
on the spanning tree technique [24] to decrease the size of the
complex.

The efficiency of the reduction results strongly dependent on
the choice of the tree, but in [24] the construction of an efficient
tree is not addressed. A ‘‘minimal diameter tree” is proposed in
[22]. Even if using this kind of tree, the size of the complex after
reduction is big and hardly computable using pure Smith normal
form computations. This can be clearly seen from Fig. 6.6 in [24],
in which the remaining simplices are 4008 faces and 2888 edges
considering a mesh of only 48,463 tetrahedra.

Using a random generated maximal spanning tree, the sizes of
the resulting matrices, which need to be diagonalized to Smith nor-
mal form, are still really big for real-sized examples. As an exam-
ple, the sizes of the matrices obtained after the reduction in the
benchmarks presented in Section 9, are shown in Table 1.

Computing directly cohomology generators H1ðKDaÞ in an effi-
cient way is not possible at present due to the lack of reduction
procedures and software designed for cohomology computations.

In our case, the H1ðKDa Þ computations are used instead. The
algorithm [47], combined with a simple reduction algorithm de-
scribed in [12] and the recent and powerful coreduction algorithm
[48], in most of the cases ensures that no Smith diagonalization has
to be done at all. What is left after the reductions are, in most prac-
tical cases, pure homology generators. This is why in this paper the
homology generators are computed and used to generate the loop



Table 1
Sizes of matrices after reduction based on spanning tree.

Benchmark # Tetrahedra in K # Remaining edges �
# remaining faces

Coil above a plate 160,576 1668 � 4131
Trefoil knot 199,208 6191 � 14,931
Chain 88,134 2955 � 7117
Borromean rings 254,718 10,964 � 26,428
Inductor 306,085 11,484 � 27,708
Two turn coil 183,051 7225 � 17,391
Folded torus 214,980 7230 � 17,284

27 When dealing with integral formulations, only the conductive region is meshed.
As a consequence, the technique to deal with non-simply-connected conductive
regions necessarily has to be strongly different. It is possible to demonstrate that the
boundary of thick cuts lying on the conductive regions are the thick cuts suitable for
integral formulations.

28 Of course belted tree is not a tree, since it contains cycles. The cycles contained in
the belted tree are just the computed homology generators.
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fields and the thick cuts. The details of the algorithm are presented
in the following section (see Figs. 13–19).

8. Automatic computation of thick cuts based on belted tree

The main steps of the algorithm proposed in this paper are pre-
sented below:

(1) Find a nice26 basis for H1ðKDa Þ (see Section 8.1).
(2) Starting from the homology generators, find a belted tree

(see Section 8.2 for its definition and construction).
(3) From the belted tree iteratively construct a loop field Ti

0 for
each ith generator of H1ðKDa Þ (see Section 8.3).

(4) Solve a non-physical Poisson problem for each ith loop field
(see Section 8.4).

(5) Extract the thick cut edges starting from the solution of the
non-physical Poisson problems (see Section 8.5).

8.1. Computation of H1ðKDa Þ

The generators of the H1ðKDaÞ are obtained automatically by
using [49] software. To use [49] software, the input mesh has to
be presented in the form of an abstract simplicial complex, see
Appendix A for the algorithm. Then, suitable reduction methods
are performed [12,47,48] on the abstract simplicial complex in or-
der to make the structure as small as possible before running the
algebraic computations. Once the homology computations are
completed, the homology generators are retrieved. For further de-
tails on computing homology groups and homology generators
consult [12].

The homology generators obtained by the [49] software are
very compact and they had never produced intersecting or self-
intersecting H1ðKDa Þ generators in the tested benchmarks. Those
intersections and self-intersections cannot be excluded from the
theoretical point of view, but in practice they are extremely rare
when using the [49] software. However, if one obtains such a gen-
erator, the intersections and self-intersection usually can be re-
moved by local manipulations, such as adding a boundary to
some of the generators. In case when local manipulations cannot
solve the problem, the homology computation should be restarted
with a different reduction algorithm and/or a permutation of indi-
ces of the complex. Of course there is no absolute guarantee to get
nice generators, but there is extremely low probability not to get
them after perturbing the input.

8.2. Construction of a belted tree

Definition 13. A belted tree is a sub-graph of S1ðKÞ for which the
only closed cycles are the H1ðKDa Þ generators (called belts).
26 We refer as nice H1ðKDa Þ generators, the generators that do not intersect and do
not have self-intersections.
The belted tree was introduced in the different context of inte-
gral formulations in [23] and for example in [9], without proposing
an algorithm to automatically construct it. As far as we are aware
of, the automatic construction of a belted tree was addressed only
in [38,39], within the different context of integral formulations.27

As far as we know, our algorithm is the first attempt of automatic
construction of belted tree in the context of general eddy-current
formulations.

From the previous step of the algorithm, the set of nice H1ðKDa Þ
generators is obtained. Next, a set fEigb1

i¼1 of different edges Ei, one
per each generator i ¼ 1; . . . ; b1, is chosen. The edges from the set
fEigb1

i¼1 are called belt fasteners. Starting from the set of homology
generator’s edges H1ðKDa Þ minus all the belt fasteners fEigb1

i¼1, a
maximal possible tree is built. To construct the tree one may use
the simple algorithm, that adds an edge to the tree if and only if
it does not close a loop. If there are no more such edges in the
whole non-conducting region sub-complex KDa of a simplicial
complex, the algorithm terminates. Once a tree is constructed, all
the belt fastener edges fEigb1

i¼1 are put back into a tree. The tree to-
gether with the belt fasteners form the belted tree28 as defined
above.

8.3. Construction of the loop fields based on the belted tree

To solve the non-physical problem, the loop fields fTi
0g

b1
i¼1 need

to be constructed. To do so, the following algorithm is used, sepa-
rately for each belted fastener edge E 2 fEigb1

i¼1. First the algorithm
is presented, then the demonstration that the output of the algo-
rithm is indeed a loop field will follow.

An iterative technique based on tree–cotree decomposition 29 is
used. This technique is described for example in [37], where the
belted tree is constructed ‘‘by hand”.

The aim is to have zero sum around each trivial cycle. It will be
demonstrated, that it is enough to enforce ðCaTi

0Þf ¼ 0; 8f 2 Da.
To do so, the following algorithm is used, separately for each

belt fastener edge E 2 fEigb1
i¼1:

(1) Impose 1 on the edge E. For all other belted tree edges,
impose 0.

(2) Put all triangles in the simplicial complex KDa to the list L.
(3) While L is not empty do
29 A si
used by
generat
179.
(a) Take a triangle T from the list L.
(b) If triangle T has already all three edges imposed, check

if the circulation is zero and remove it from the list L.
(c) If triangle T has already two edges imposed, then

impose the third one in order to get ðCaTi
0ÞT ¼ 0. Then

remove triangle T from the list L.
The strong point of the presented algorithm, that is demon-
strated in the following, is that cohomology generators (loop fields)
are obtained.

Let us consider the values imposed, by the above algorithm, on
the edges of KDa as a cochain C. For any cycle c 2 Z1ðKDa Þ let us
milar technique based on a maximal spanning tree instead of a belted tree is
Kotiuga as a reduction method while computing the first cohomology group

ors on the dual complex, see points (1)–(4) in Algorithm 6.2, [24], pp. 178–
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denote the evaluation of a cochain C on a cycle c by a standard sca-
lar product notation hC; ci (for a description and properties of the
scalar product see [16]). One can easily see that this evaluation is
just the sum with incidence of the discrete field C around cycle c.
The generalized Stokes Theorem hdC; di ¼ hC; @di for C 2 C1ðKDa Þ
and d 2 C2ðKDa Þ (see for example [17]) will be used further in this
demonstration. Due to the point 3 of the algorithm, hC; @Ti ¼ 0
holds for each oriented 2-simplex T. The set of all oriented 2-sim-
plices form a basis of C2ðKDa Þ. It follows that 0 ¼ hC; @Ki ¼ hdC;Ki
for every K 2 C2ðKDa Þ, what proofs that C is a cocycle.

To demonstrate that C is not a coboundary, suppose by contrary
that it is a coboundary of a cochain

P
ani

ni 2 C0ðKDaÞ, thus
dð
P

ani
niÞ ¼ C. Let us consider a cycle B 2 Z1ðKDa Þwhich is an active

belt30 from point (1) of the algorithm and let us denote by E the belt
fastener. Let @E ¼ n�m for n;m nodes. From the above algorithm it
follows hC;Bi ¼ hC; Ei ¼ 1. The edge E appears only in the coboundary
of nodes n and m. Since hC; Ei ¼ 1 it follows, that the values an and am

of a cochain
P

ani
ni satisfy an � am ¼ 1. Let n; k1; . . . ; kl;m denotes the

nodes of a cycle B in the right order (each two neighbor nodes are
joined by the edge which is non-zero in a cycle B). Since the edge
in B joining n and k1 is imposed to zero in a cocycle C, the values of
coefficients an and ak1 in a cochain

P
ani

ni are equal. The same argu-
ment works for each edge in B joining nodes ki and kiþ1 and the edge
joining nodes kl and m. This provides that the values of am and an are
equal integer numbers. But this contradicts the equality an � am ¼ 1.
It follows that the cocycle C is not a coboundary.

The above reasoning implies that C 2 H1ðKDa Þ is a non-zero
cohomology class. One can proof that the set of all loop fields ob-
tained from the algorithm form a cohomology basis by using Uni-
versal Coefficients Theorem (see for example [16]). The authors
decided to omit this proof, since it is long, theoretical and do not
give any new light on the practical aspects of the problem.

To ensure the properties after the definition of a loop field, let us
show that (a) the evaluation of C on each homologically trivial 1-
cycle is 0, (b) the evaluations of C on the cycles in the same homol-
ogy classes are equal, and (c) the evaluation of C on active belt is
equal 1. (c) Follows easily from point 1 of the algorithm. A cycle
d 2 Z1ðKDa Þ is homologically trivial, if there exist a chain
b 2 C2ðKDa Þ such that @b ¼ d. This provides hC; di ¼
hC; @bi ¼ hdC; bi ¼ 0, due to the fact that C is cocycle. This proofs
(a). For two cycles ½d1� ¼ ½d2� 2 H1ðKDa Þ in the same homology
class, there exist b 2 C2ðKDa Þ such that d1 ¼ d2 þ @b. It follows that
hC; d1i ¼ hC; d2 þ @bi ¼ hC; d2i þ hC; @bi ¼ hC; d2i, since hC; @bi ¼ 0,
which proofs (b). This demonstrates that the set of cochains ob-
tained by the above algorithm is a loop field.

When the belted tree is constructed starting from nice H1ðKDa Þ
generators, the triangle T with non-zero ðCaTi

0ÞT value at point 3b of
the algorithm should never happen. From the presented reasoning
it is clear, that when the above algorithm terminates, it returns a
valid loop field. It does not terminate only in case of knotted con-
ductors, but one can overcome this problems as described in Sec-
tion 8.3.1.

At this stage, the loop fields fTi
0g

b1
i¼1 are found. As described in

Section 5, the loop fields are enough to solve eddy-current prob-
lems with the T–X formulation. If one aims to construct a set of
thick cuts, a similar technique to the one proposed by Kotiuga
can be used, namely the non-physical Poisson problems described
in the following have to be solved.

8.3.1. Knotted conductors
When dealing with knotted conductors, the algorithm described

in Section 8.3 does not terminate, being impossible to impose all
30 By active belt is denoted the belt in which the belt fastener is imposed to 1 by the
algorithm.
edges in Da. Anyway, it is still possible to produce a valid loop field
also in this case by using a modified version of the algorithm pre-
sented in Section 8.3.

The aim of dealing with knotted conductors is to have a gen-
eral algorithm which produces a valid loop field no matter if a
knotted or not knotted conductor is provided as input. Moreover,
some applications of knotted conductors come up naturally
in the context of force-free magnetic fields, see for example
[51,52].

When the algorithm to find a loop field from a belted tree stops,
one has to select a random cotree edge Er which has not already a
value imposed. Adding the selected cotree edge to the edges
belonging to the belted tree will create some new cycles.

The edges of H1ðKDa Þ basis plus the edges of the cycle closed by
a cotree edge which does not contain any belt fastener are consid-
ered. Since the belted tree is formed by the cycles which are the ba-
sis of H1ðKDaÞ, it is possible to find a combination of these basis
cycles which belongs to the same homology class as the cycle con-
sisting of the new cotree edge Er and some belted tree edges with-
out belt fasteners.

To find the coefficients for the considered edges, one needs usu-
ally to solve a linear system of equations, where the unknowns are
the coefficients of triangles (the equations are obtained by comput-
ing boundaries of those triangles) as well as coefficients on consid-
ered edges in the belted tree. All other edges are supposed to have
zero coefficients.

The solution of this system will point out the trivial cycle in a
belted tree closed by a cotree edge. From the coefficients obtained
by solving this linear system of equations, one may retrieve the va-
lue to impose on the random cotree edge Er . Once the cotree edge is
imposed, the algorithm continue cycling from the step 3. It should
be noted, however, that the system of equation have to be solved
rigorously over the integers, which is costly from computational
point of view.

8.4. The non-physical Poisson problem

The variables and their association with geometric entities for
the non-physical Poisson problem are

	 U the array containing DoFs associated with e 2 Da.
	 V the array containing DoFs associated with n 2 Da.
	 I the array containing DoFs associated with fB 2 Da.

The variable associated with edge e is expressed by

ðUÞe ¼ ðT
i
0Þe þ ðGVÞe: ð18Þ

By substituting Eq. (18) and the constitutive relation I ¼ SU in the
continuity balance law GT I ¼ 0 one obtains

GT SGV ¼ �GT STi
0: ð19Þ

The constitutive matrix S can be constructed in the same way as
matrix l in Section 4.2, by swapping the material permeability l
with 1.

If more loop fields are present, one solution of the non-phys-
ical problem is needed for each ith loop field. In this case the
stiffness matrices of these problems are the same, only the
right-hand side of the linear system of equations has to be
recomputed.

8.5. Thick cut extraction

Once the non-physical Poisson problem is solved, the DoFs ðUÞe
associated with each edge e 2 Da are calculated using Eq. (18).
Based on this DoFs, a global nodal variable ðZÞn; 8n 2 Da, has to
be computed. To do so the following algorithm is used:



Fig. 13. Coil above a plate benchmark. (a) Geometry; (b) cut surface; (c) current density.

Fig. 14. Chain benchmark. (a) Geometry; (b) cut surface; (c) current density.

Fig. 15. Two turn coil benchmark. (a) Geometry; (b) cut surface; (c) current density.

Fig. 16. Borromean rings benchmark. (a) Geometry; (b) cut surface; (c) current density.
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(1) Take a node n in the KDa . Impose a 0 value to this node
ðZÞn ¼ 0 and put it into a stack S.

(2) While the stack S is non-empty do

(a) Remove the node n from the top of the stack.
(b) For each edge e such that n belongs to e do
(c) If the other node p in the boundary of edge e does not
have the nodal value ðZÞp already defined, compute it
with ðZÞp ¼ ðZÞn þ Gðe; pÞðUÞe.

(d) Put p into the stack S.



Fig. 19. Trefoil knot benchmark. This result was obtained by means of the modified version of the algorithm described in Section 8.3.1. (a) Geometry; (b) cut surface; (c)
current density.

Fig. 17. Inductor benchmark. (a) Geometry; (b) cut surface; (c) current density.

Fig. 18. Folded torus benchmark (inspired by Fig. B in [29]). (a) Geometry; (b) cut surface; (c) current density.
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The thick cut edges are the edges in which an integer jump in
potential is present.31

9. Numerical results

In this section some of the tested benchmark problems are pre-
sented. For each benchmark the geometry is shown on the left. On
the middle, the resulting thick cut surfaces on B, automatically
generated by means of our algorithm, are drawn. On the right,
the current density computed by means of the T–X geometric for-
mulation using [42] is shown.

10. Conclusions

A T–X geometric formulation that yields to a symmetric linear
system of equations is presented using tools from algebraic topol-
ogy, namely homology and cohomology theories. In the paper, this
31 The same procedure was used by Kotiuga in [24] in a different context of
extracting thin cut surface.
is motivated by the fact that these theories help to gain insight
about the so-called thick cuts and the non-local equations. From
the pedagogical point of view, the DGA framework results more
attractive with respect to classical Finite Element Method (FEM),
since the Maxwell’s laws are explicitly enforced by means of the
coboundary operator.

The algorithms proposed in the literature to automatically com-
pute the cuts are first reviewed. It is shown that most of them,
however, construct the thin cuts and not the thick cuts. The algo-
rithm based on the construction of the 2nd relative homology
group does not work in practice. In fact the obtained thin cut is of-
ten self-intersecting and consequently it is extremely difficult to
find an algorithm to produce a thick cut from the obtained thin
cut. Homotopy-based methods are not attractive, since homotopy
groups are not computable. The algorithm based on the computa-
tion of the 1st cohomology generators results to be the most gen-
eral, while, due to the lack of efficient reduction procedures, it is
very time-consuming.

In this paper an original algorithm to directly compute the
loop fields and the thick cuts is proposed. It is based on the con-



Fig. 20. Two relative homology generators of H2ðKDa ; @KDa Þ.

Fig. 21. Examples of cut surfaces.
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struction of the so-called belted tree. The belted tree is con-
structed using a fast computation of the homology generators
by means of innovative reduction algorithms. The advantages
and limitations of the proposed algorithm are discussed. The pre-
sented algorithm was tested on a number of real-sized three-
dimensional finite element meshes, showing its utility for practi-
cal applications.
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Appendix A

The algorithm which takes as input the file produced by the
Netgen mesh generator (see [10]) and returns the simplicial com-
plex is presented. The first step is to decide on the data structures
needed in such an algorithm. A node (zero-dimensional simplex) is
represented by an integer number. The number is equal to the
number given to this node by the Netgen generator. An edge
(one-dimensional simplex) is represented by the pair of nodes
which are the endpoints of the given edge. Also triangles (two-
dimensional simplices) and tetrahedrons (three-dimensional sim-
plices) are represented by the nodes involved in it. In each pre-
sented data structure, all the integers are assumed to be ordered
in increasing way. By taking this assumption, the orientation of
all simplices in the abstract simplicial complex is fixed.

Consequently, when one restricts the increasing orientation of a
simplex to one of its faces, the increasing orientation of the face is
obtained. This implies, that in the Definition 8 the orientation of
any simplex in the definition of boundary operator will be the
same as the fixed orientation of the simplex. It follows, that one
does not have to worry about the coefficients coming from the ori-
entation of the simplices, the sign is determined by factor ð�1Þi

from the equation in Definition 8.
This explanation gives rise to the following formal definition:

NODES = list of int;
EDGES = list of [int,int];
TRIANGLES = list of [int,int,int];
TETRAHEDRONS = list of [int,int,int,int];

The input set of tetrahedra is obtained from a file generated by
the software Netgen. Having defined the basic data structures, the
abstract simplicial complex is defined as a structure consisting of
all the elements defined above:

ABSTRACT SIMPLICIAL COMPLEX

¼ fNODES;EDGES;TRIANGLES;TETRAHEDRONSg

The algorithm to construct the simplicial complex of the non-con-
ductive region of a mesh is now presented.

ComplexGenerator(TETRAHEDRONS tets)

NODES vert; EDGES ed; TRIANGLES tri; TETRAHEDRONS

tet;
vert=ed=tri=tet=empty;
For each tetrahedron T = [v1, v2, v3, v4] from tets do

for each singleton [a] in T do

if [a] not exist in vert list then

Put node [a] into vert list;
for each doubleton [a,b] in T where a<b do

if [a,b] not exist in ed then
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Put edge [a,b] into ed list;
for each triple [a,b,c] in T where a<b<c do

if [a,b,c] not exist in tri then

Put triangle [a,b,c] into tri list;
Put T into tet list;

Appendix B

B.1. Relative homology groups

In Section 2, the definition of the so-called absolute homology
group was presented. Also the 2nd relative homology groups is use-
ful in computational electromagnetism. Given a sub-complex32 A

of K, the 2nd relative homology group H2ðK;AÞ is defined[14] as
H2ðK;AÞ ¼ Z2ðK;AÞ=B2ðK;AÞ, where Z2ðK;AÞ denotes the group
of relative cycles and B2ðK;AÞ denotes the group of relative bound-
aries. z 2 C2ðKÞ is a relative cycle modulo Aðz 2 Z2ðK;AÞÞ if
@z 2 C1ðAÞ. The t 2 C2ðKÞ is the relative boundary modulo
Aðz 2 B2ðK;AÞÞ if t ¼ @ðxÞ þ y for some x 2 C3ðKÞ; y 2 C2ðAÞ.

Example 9. Consider the oriented simplicial complex KDa of
Example 5a. In Fig. 20a and Fig. 20b two different generators s1 and
s2 of H2ðKDa ; @KDaÞ (in the same relative homology class) are
shown. Such generators are by definition surfaces having all
boundaries @s1 and @s2 on @KDa , but that cannot be considered
boundaries of any volume entirely contained in KDa .
B.2. Thin cuts

From the Poincré–Lefschetz duality theorem, one have [15]

H1ðKDaÞ ffi H2ðKDa ; @KDa Þ: ð20Þ

This well known duality was used by Kotiuga for the first formal
definition of (thin) cuts [8]:

Definition 14. A thin cut is defined as a 2-chain belonging to an
orientable and non-self-intersecting generator of H2ðKDa ; @KDa Þ.

Kotiuga proofed the existence of a set of non-self-intersecting
orientable generators of H2ðKDa ; @KDa Þ [19]. It is easy to show
by Example 10c that in general it is impossible to avoid intersec-
tions of different cuts.

Example 10. (a) In Fig. 21a and b two valid set of thin cuts for a
complex obtained as the complement of a double torus with
respect to a surrounding box are shown. Since cuts on the Fig. 21a
are homology generators, then by taking a linear combinations of
them and adding a boundary one can obtain the cuts in Fig. 21b.
This is valid also the other way around. As a different example,
considering the complex as the complement of two linked tori with
respect to a surrounding box (see Fig. 21c), it is easy to see that in
general it is not possible to avoid intersections between different
cut surfaces.33 Moreover in such cases the cut surfaces are non-
simply-connected.
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