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Innovative Numerical Methods for Nonlinear MEMS:
the Non-Incremental FEM vs. the Discrete Geometric

Approach

P. Bettini, E. Brusa, M. Munteanu, R. Specogna and F. Trevisan 1

Abstract: Electrostatic microactuator is a paradigm of MEMS. Cantilever and
double clamped microbeams are often used in microswitches, microresonators and
varactors. An efficient numerical prediction of their mechanical behaviour is af-
fected by the nonlinearity of the electromechanical coupling. Sometimes an addi-
tional nonlinearity is due to the large displacement or to the axial-flexural coupling
exhibited in bending. To overcome the computational limits of the available numer-
ical methods two new formulations are here proposed and compared. Modifying
the classical beam element in the Finite Element Method to allow the implemen-
tation of a Non incremental sequential approach is firstly proposed. The so-called
Discrete Geometric Approach (DGA), already successfully used in the numerical
analysis of electromagnetic problems, is then applied. These two methods are here
formulated, for the first time, in the case of strongly nonlinear electromechanical
coupling. Numerical investigations are performed to find the pull-in of microbeam
actuators experimentally tested. The non incremental approach is implemented
by discretizing both the structure and the dielectric region by means of the FEM,
then by meshing the electric domain by the Boundary Element Method (BEM). A
preliminary experimental validation is finally presented in the case of planar micro-
cantilever actuators.
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1 Introduction

A key feature of microsystem design is the efficient use of electromechanical cou-
pling for actuation, sensing and energy harvesting purposes [Senturia (2001); Re-
beiz (2003)]. Scale laws demonstrate that the strongest actions can be reached by
applying the electric field to flexible microstructures [De Bona and Enikov (2006)].
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Cantilever and double clamped microbeam actuators are therefore widely used in
MEMS. They are deflected by the electric field in microswitches, microresonators
and variable capacitors (varactors). Unfortunately, these devices suffer the break-
down and pull-in phenomena, which lead to the collapse of the structure [Senturia
(2001); Rebeiz (2003)]. Their prediction is never simple, since electrostatic force
exhibits an intrinsic nonlinearity, which depends on voltage, charge and mechanical
displacement. The equilibrium equations couple electrical and mechanical degrees
of freedom, in static and dynamic domains. This problem is nonlinear and often
requires a numerical solution. The literature developed analytical and numerical ap-
proaches [Senturia (2001); Rebeiz (2003)]. Numerical solutions are mainly based
on the Finite Element Method (FEM) and Boundary Element Method (BEM). In
practice, the analytical approaches are effective only in case of very simple ge-
ometries, while the numerical methods need for iterative solutions in the presence
of nonlinearity [Gyimesi and Ostergaard (1999)]. Quite often a deep mesh refine-
ment and morphing operations are required [Adey, Lahrmann, and Le mölmann
(1995)]. Moreover, a so-called geometrical nonlinearity of the structure is some-
times present. This effect is well known in mechanical structures. Usually it ap-
pears in case of large displacements and deformations. This was already dealt with
by Sen Yun Lee [Lee, Lin, Lee, Lu, and Liu (2008)] in case of analytical modelling
of beams, by using shifting functions to increase the performance of the solution,
and by Wen [Wen and Hon (2007)] in case of geometrical nonlinearity of plates,
by using meshless approaches. In presence of electromechanical coupling these
methods look unsuitable to include the nonlinearity of the electromechanical ac-
tion, superimposed to the mechanical nonlinearity. In particular, analytical methods
demonstrated to be ineffective to predict the pull-in phenomeon of these geomet-
rically nonlinear microsystems. More interesting appears the BEM formulation
described in [Springhetti, Novati, and Margonari (2006)], at least from the point of
view of the numerical approach, although it applies in that case to plates and shells.
Nevertheless, a complete formulation for nonlinear coupled problems is still to be
developed. In microbeam actuators geometrical nonlinerity is caused either by the
large displacement in bending, in case of microcantilever, or by the beam stretch-
ing in flexural behaviour, in case of double clamped configuration [Abdel-Raman,
Younis, and Nayfeh (2003)]. The mechanical stiffness in both these cases changes
and depends on the deformed shape of the structure [Munteanu, De Bona, Col-
lenz, and Brusa (2004); Somà, Collenz, De Bona, and Gugliotta (2004)]. Several
computational strategies were proposed. A full coupled FEM modelling including
both the microstructure and the dielectric material is applied and the solution is
found iteratively by means of Newton Raphson’s technique. At each step the Ja-
cobian matrix is computed and the problem is locally linearized [Adey, Lahrmann,
and Le mölmann (1995); De Bona and Enikov (2006)]. Computational time in
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this case is large, particularly if 3D models are implemented. A so-called sequen-
tial solution is proposed to decrease the computational time [De Bona and Enikov
(2006)]. An iterative procedure solves separately the electric and the mechanical
problems, discretized either both by FEM or by FEM (mechanical) and BEM (elec-
trical). For a given deformed shape of the structure the electric potential and the
electromechanical forces are computed and imposed to the microsystem. The me-
chanical problem is then solved, displacements and rotations are computed. The
two separated solutions are faster, but the number of iterations to predict the ac-
tual equilibrium condition may be large. Some improvements were investigated in
[Somà, Collenz, De Bona, and Gugliotta (2004)]. Voltage and force increments
were compared. A so-called direct solution was proposed in [Gyimesi and Oster-
gaard (1999)] and implemented in the ANSYS code. Electromechanical forces are
computed first, for each foreseen deformed shape of the microsystem, and stored.
The code simply inputs the computed forces in the nonlinear mechanical solution
process. This strategy appears approximated, when pull-in voltage and displace-
ment are computed. Only the structure is discretized by finite elements, while the
dielectric region is described by lumped parameter models. In fact, the sequential
approach, with FEM and BEM meshing and voltage increments, looks the most ef-
fective in 2D modelling [Somà, Collenz, De Bona, and Gugliotta (2004); De Bona
and Enikov (2006)]. Nevertheless, the computational time is high, when all the
above mentioned nonlinearities are active. The goal of this paper is investigating
innovative approaches to predict accurately the behaviour of microbeam actuators,
by simplifying the computational procedure and increasing the performance.

2 The proposed approaches

Two methodologies are herewith investigated to improve the efficiency of the se-
quential approach, in the applications where both the electromechanical and geo-
metrical nonlinearities are present. A first one utilizes a special beam finite element
[Barraco and Munteanu (2002a,b)], which allows to implement a non incremental
sequential solution, even in presence of geometrical nonlinearity. This element
does not apply a smoothing technique like in [Cui, Liu, Li, Zhao, Nguyen, and
Sun (2008)], but selects a special set of nodal coordinates, instead of the classical
displacements. In general, the prediction of the flexural behaviour of a microbeam
is usually based on a second order differential problem, which assumes a linear
differential relation between strain and displacement [Timoshenko (1968)]. This
assumption fails when a geometrical nonlinearity occurs. In this case an itera-
tive solution is implemented to predict the effects of the mechanical nonlinearity,
while the sequential approach allows dealing with the nonlinear electromechani-
cal coupling. In practice, a loop is required to find the instantaneous equilibrium
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for each given distribution of the eletromechanical force, when the sequential ap-
proach performs the corresponding step of the mechanical solution. The non in-
cremental approach simplifies this operation by introducing a formulation of the
theory of the beam which allows to avoid the implementation of the iterative part
of the algorithm, even in presence of geometrically nonlinear structure. In prac-
tice, a special beam element is introduced whose nodal degrees of freedom (DoFs)
include elongation and section rotation, instead of the flexural displacement. This
formulation makes linear the problem, from the point of view of the geometrical
nonlinearity [Barraco and Munteanu (2002a,b)]. It looks particularly effective in
case of dynamic analysis, where an integration of the equations of motion over
time is required. This can be implemented by means of the Newmark modified
method, which interacts only with the sequential procedure tested in the static so-
lution herewith described [Munteanu and Brusa (2005)]. A second approach is
based on the possibility to simplify the discretization technique by means of a new
formulation, which allows describing the coupled problem by means of algebraic
equations instead of differential ones. This is referred to as Discrete Geometric Ap-
proach (DGA) [Tonti (1975); Bossavit (1998); Tonti (2001)]. It is tested in the case
of planar electrostatic microactuators, by implementing the sequential algorithm.
The DGA method was successfully applied in electrostatics [Bettini and Trevisan
(2003)] and in plane elasticity problems [Cosmi (2001)] as well. Recently, a di-
rect comparison between DGA and FEM in electrostatics has been presented in
[Heshmatzadeh and Bridges (2007)]. The good results obtained candidate DGA
to be applied to MEMS design [Bettini, Brusa, Munteanu, Specogna, and Trevisan
(2008)]. Both the proposed approaches are validated by comparing the numerical
results to those obtained by the FEM classic formulation and to some experimental
evidences.

3 The non-incremental FEM approach

The microcantilever actuator shall be used as paradigm to describe the non incre-
mental stategy. It is a microbeam with length l and thickness t, which is elec-
trostatically deflected by the voltage, V0, applied between the structure itself and
the ground electrode, through the gap, g. In case of dynamic behaviour voltage is
variable over time. The problem is three dimensional, but is assumed to be plane.
No fringing effect of the electric field is considered, at least at this level, along the
width, which is assumed to be unitary. An half-plane domain is assumed to solve
the electrostatic problem. In presence of suitable bending moment and gap, the tip
displacement may be sufficiently large that the assumption of small displacement
of the classic theory of the beam [Timoshenko (1968)] becomes inapplicable. In
practice, the beam achieves a final equilibrium configuration so far from the initial
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layout (Fig.1) that usually an incremental integration of the equilibrium equation
is required. In this case the local gap of the transversal section A-A depends on
the corresponding mechanical displacement. Loads are non-conservative, since
the electric force distribution acts perpendicularly to the surface of the conductive
beam. Therefore it changes direction and amplitude, depending on the deformed
shape of the structure. Electromechanical forces are nonlinearly dependent on both
the applied voltage and the gap distribution along the length of the deflected mi-
crobeam.

X

Y

A

A’

s

s

A’

A

1

3

2

n

M

R

X

Y

A

A’

s

s

A’

A

1

3

2

n

M

R 1

3

2

n

M

R

Figure 1: Description of the geometrically nonlinear behaviour of a cantilever mi-
crobeam electrostatically actuated. Reference frames for the FEM model are also
shown.

3.1 Formulation of the non-incremental FE analysis

To analyse the deformed shape of a microbeam in presence of geometrical nonlin-
earity a curved configuration has to be considered. The set of differential equations
describing the static equilibrium of a curved beam can be written according to [Bar-
raco and Munteanu (2002a); Timoshenko (1968)] as:

dR
ds +p = 0

dM
ds +n×R+m = 0.

(1)

Equations (1) are written in the local reference frame and s is the curvilinear co-
ordinate of the beam centreline (Fig.1). Unit vector n is orthogonal to the selected
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cross-section of the beam, referred to as A-A. Capital letters identify the resultant
force R and bending moment M, acting on the beam cross-section. Vectors p and
m correspond to the distributed forces and moments, acting along the axes of the
microbeam. The expressions of all the above mentioned vectors are:

R =

⎡
⎣ N

T2

T3

⎤
⎦ M =

⎡
⎣ Mt

M2

M3

⎤
⎦ , (2)

p =

⎡
⎣ p1

p2

p3

⎤
⎦ m =

⎡
⎣ m1

m2

m3

⎤
⎦ . (3)

Subscripts 1, 2, 3 identify the local reference frame. In particular, axis referred
to as 1 is orthogonal to the cross section A-A, while axes 2 and 3 are the central
principal axes of the cross section. N is the axial effort applied along axis 1, while
T2 and T3 are the shear actions along axes 2 and 3, respectively. Mt is the torsional
moment about axis 1, while M2 and M3 are the two bending moments, about 2 and
3 respectively.

If the Timoshenko’s beam model is used to describe the mechanical behaviour of
this system [Timoshenko (1968)], the cohesion forces R and M are linked to the
strains by the Hooke’s laws, written in the local reference frame of the cross section:

R = D0ε M = D(χ −χ0) = DΔχ . (4)

Bold letters are used to identify matrices and vectors, which include all the compo-
nents of the strain and the curvatures. In particular, χ0 is the initial curvature of the
undeformed shape of the beam. Strain and curvature vectors are:

ε =

⎡
⎣ ε0

ϑ2

ϑ3

⎤
⎦ χ =

⎡
⎣ χt

χ2

χ3

⎤
⎦ , (5)

where ε0 is the axial deformation, measured at the beam centreline, while ϑ2 and
ϑ3 are the small shear angles between the plane orthogonal to the centreline and the
two principal axes of the cross-section. Curvatures χt , χ2 and χ3 are related to the
torsional and the two flexural curvatures, respectively. They describe the relative
rotation in bending between two cross sections, being at an infinitesimal distance
ds. Matrices D0 and D are respectively:
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D0 =

⎡
⎣ EA 0 0

0 GA2 0
0 0 GA3

⎤
⎦ , (6)

D =

⎡
⎣ GIt 0 0

0 EI2 0
0 0 EI3

⎤
⎦ . (7)

A2 and A3 are the effective areas used to evaluate shear effects on the cross sec-
tion, while It , I2 and I3 are the second order geometrical moments about the cor-
responding axes of the cross section. G and E are the transversal (tangential) and
longitudinal (Young) elastic moduli.

If Eq.(4) is replaced in Eq.(1):⎧⎪⎨
⎪⎩

d(D0ε)
ds + χ × (D0ε)+p = 0

d(DΔχ)
ds + χ × (DΔχ)+n× (D0ε)+m = 0.

(8)

This set of six equations allows finding the six unknown generalized displacements,
i.e. three translations and three rotations.

In case of a two dimensional problem, as it is studied in present analysis, Eq.(8)
becomes simpler:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d(D0ε)
ds +

[
−GA2ϑ2χ3

EAε0χ3

]
+p = 0

d
ds

[
EI3

(
dθ
ds − dθ0

ds

)]
+GA2ϑ2 +m3 = 0.

(9)

Only three equations are included. There are two translational equilibrium con-
ditions and one moment equilibrium equation. The actual curvature χ3 and the
curvature increment Δχ can be expressed as function of the rotation angle θ of the
cross-section as:

χ3 = dθ
ds Δχ = dθ

ds − dθ0
ds , (10)

where θ0 is the slope of the undeformed shape of the beam.
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The difference between the rotations referred to as ϑ and θ , respectively, can be
appreciated in Fig.2. Vertical direction in Fig.2 is assumed to correspond to the
undeformed shape of the microbeam. The actual rotation of the beam cross section
corresponds to θ . The latter can be interpreted as superposition of a pure rotation ϕ ,
imposed by the bending moment, and of the opposite rotation ϑ , which is applied
by the shear force, referred to as T [Timoshenko (1968)]. When the deformed shape
of the beam is considered, an initial rotation θ0 is already present and included in
(10) to compute the actual values of curvature.

Figure 2: Description of the relevant angles in the beam model according to Timo-
shenko.

Nonlinear equations (8) and (9) are written for the deformed beam configuration.
They are still valid even for large displacements. This allows an easier solution of
the problem, because the incremental procedure is no more required to deal with
the geometrical nonlinearity.

To find the expression of all the relevant matrices to be implemented into the FEM,
the Virtual Work theorem is used [Timoshenko (1968)]:

δΠ = EA
∫

l δε0 ε0 ds + GA2
∫

l δϑ ϑ ds+

E I3
∫

l δΔχ3 Δχ3 ds − ∫
l δuT pds+

−∫
l δθ m3 ds

= 0.

(11)

The total potential energy of the system δΠ is obtained as sum of all the contribu-
tions. They include the effects of the axial effort, of the shear and of the bending
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moment, for a given length of the beam l. A term comes from the distributed force
p, being u the displacement vector of the current point along the beam centreline.
If the beam compliance is large, the contributions of N and T2 may be neglected.
This assumption leads to the so-called Bernoulli beam model and equation (11) can
be written as:

δΠ = EI3
∫

l δΔχ3Δχ3 ds+

−∫
l δuT pds−∫

l δθ m3 ds = 0.
(12)

The finite element used to predict the static behaviour of the system has only one
degree of freedom per node, i.e. rotation θ . All external loads, forces and moments,
concentrated or distributed along the beam, are replaced by the equivalent nodal
moments. According the theory of variations, Eq.(12) of the rotational equilibrium
is described as what follows:

d
ds

[
EI3

(
dθ
ds

− dθ0

ds

)]
+T2 +m3 = 0, (13)

where T2 is now computed as function of the external load and is known.

Figure 3: The special beam finite element with three nodes used to implement the
non incremental formulation

A special iso-parametric beam finite element (referred to as SFET [Barraco and
Munteanu (2002a,b)]) is used. It includes only one degree of freedom per node,
namely the rotation θ . The shape function N of the finite element correlates the
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rotation of each point of the beam, θ (s), to the nodal rotations of the finite element
θe:

θ (s) = N(s)θe, (14)

where (Fig.3):

N(s) =

⎡
⎢⎢⎢⎣

s2

2h2 − s
2h

− s2

h2 +1

s2

2h2 + s
2h

⎤
⎥⎥⎥⎦

T

θe =

⎡
⎢⎢⎢⎣

θi−1

θi

θi+1

⎤
⎥⎥⎥⎦ . (15)

Curvature χ3 is computed by means of the above defined shape functions as:

χ3(s) = dθ
ds =

(
s

h2 − 1
2h

)
θi−1

− 2s
h2 θi +

(
s

h2 + 1
2h

)
θi+1

= Bθe.

(16)

The finite element assembly shall include a number of n nodes, thus the first varia-
tion of the total potential energy becomes:

δΠ = δθs
T

n
∑

i=1

(
EI3

∫
l BT Bds

)
θs+

−δθs
T

n
∑

i=1

(
EI3

∫
l BT χ30 ds

)
+

−δθs
T (Ce +C) = 0.

(17)

Ce is the vector of the equivalent nodal moments, which replace the distributed ex-
ternal forces p and concentrated forces, where present. Vector C contains the nodal
moments replacing the distributed moments m3. Concentrated moments will be
added directly to vector C. An additional term was introduced to take into account
for the possibility of an initial curvature of the microbeam due to microfabrica-
tion. This contribution corresponds to the second integral written, where appears
the initial curvature χ30. The nodal rotation vector, for the whole beam is θs. The
displacements of two sequential nodes, along the microbeam, are:

ui+1 = ui +
h∫

0

[
1−cosθ

sinθ

]
ds

≈ ui +Hi,i+1 (θs) .

(18)
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The linear displacements are u = [u,v]T . The vector Hi,i+1 is obtained as result of a
numerical integration, by using the shape function of Eq. (14). Displacements can
be computed by repeating several times the recursive equation (18):

ui = u0 +Hi (θs) . (19)

Subscript 0 indicates the beam end, being the origin of the curvilinear coordinate s.
In present case u0 = 0, therefore displacements and their first variation are:

ui = Hi (θs)

δui = δHi (θs) = ∂Hi
∂θs

δθs.
(20)

Hi is a 2×1 array, while ∂Hi
∂θs

is a 2xn matrix, where n is the number of nodes.

The contribution of the distributed force p(s), see Eq. (11), for any virtual displace-
ment, can be written as:

l∫
0

δuT p ds ≈
n

∑
i=1

AiδHi
T pi

= δθs
T

n

∑
i=1

Ai

(
∂Hi

∂θs

)T

pi.

(21)

where Ai are known coefficients and correspond to the weights of the numerical
integration. Distributed force p is replaced by the equivalent nodal moment vector
Ce (Eq.17):

Ce =
n

∑
i=1

Ai

(
∂Hi

∂θs

)T

pi. (22)

Distributed moments m3 are replaced by the concentrated nodal moment Ce:

C =
nel

∑
i=1

h∫
−h

m3Ni
T ds. (23)

Symbol Σ reminds that the standard FEM assembly procedure is applied to nel

elements [Barraco and Munteanu (2002a,b)].

A similar approach is used to replace the nodal concentrated forces by nodal mo-
ments. For instance, the force acting at node i is replaced by:

Ce =
(

∂Hi

∂θs

)T

Fi. (24)

Concentrated nodal moment Ci, acting at node i, is added directly to the i-th term
of the loads array C, defined in (23).
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3.2 Solution Algorithm

The static analysis of the electromechanical problem of the microcantilever beam
can be now performed. It is possible either solving the nonlinear equation (9) or
(12), by means of the finite differences method (FDM), or by the finite element
method (FEM). In the latter case, the first variation of the total potential energy is
used [Barraco and Munteanu (2002a,b)]. Since the microcantilever has a free end,
for each iteration, axial and shear efforts are easily evaluated, directly starting from
the external load. In this case it is easy applying the Timoshenko’s beam model
instead of the Euler-Bernoulli’s one.

Although rotation angle θ may be large, shear angle ϑ is usually small (Fig.2).
Therefore according to Eq.(13) it follows:

d
ds

[
EI3

(
dθ
ds

− dθ0

ds

)]
+

(T2 +m3)(1+ε0)
2 = 0.

(25)

The first variation of total potential energy (11) is:

δΠ = 1
EA

∫
l δNNds + 1

GA2

∫
l δT2 T2 ds+

+EI3
∫

l δΔχ3 Δχ3 ds − ∫
l δuT pds+

− ∫
l δθ m3ds = 0,

(26)

where actions N and T2 are known at each iteration and depend on the nodal un-
knowns rotations θs.

Equation (18) becomes:

ui+1

= ui +
h∫

0

([
cos (θ +ϑ )
sin(θ +ϑ )

]
(1+ε0)−

[
1
0

])
ds

= ui +Hi,i+1 (θs) ,

(27)

where ε0 = N
EA and ϑ = T2

GA2
.

Having only one degree of freedom per node is an advantage of this approach and
it applies to both Euler-Bernoulli’s and Timoshenko’s beam models. The compu-
tational time required to solve the coupled problem is fairly short. The discretized
equilibrium equations are:

K(θs) θs = F, (28)
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where K is the secant stiffness matrix and F is the vector of the generalized forces.

This method demonstrates to be very accurate. Convergence is assured and fast.
Equations describing the static deformation of the beam are exact and written for
the actual deformation. These features motivate to refer this approach as non in-
cremental. One load step is usually sufficient to reach the final load value. To
solve the nonlinear system (28), the iterative Newton-Raphson method is used, and
few iterations are required to reach the convergence [De Bona and Enikov (2006)].
In case of electromechanical nonlinear coupling a sequential algorithm can be im-
plemented in connection with the structural solution just described. Since the se-
quential procedure applies even to the next approach, it will be described in the
following section.

4 Discrete geometric approach for the coupled problem

A sketch of the 2D domain geometry is shown in Fig. 4 for the electrical-mechanical
coupled problem. The domain of interest has been partitioned into the mechanical
DM and the electrical DE domains. In DM ∪DE , we will introduce a pair of in-
terlocked cell complexes based on triangles, [Bossavit and Kettunen (2000); Tonti
(1988)].

Σ0Σ1

Σ
h

Σ2

DM

DE

h

L

g

Figure 4: Sketch of the 2D electrical (DE ) and mechanical (DM) domains (not on
scale). The boundary Σ1 and Σ0 of the conducting domain is shown in addition. Σ∞
is the truncation of the infinity domain of the electrostatic problem. Finally, on Σ2

the Neumann boundary condition is imposed.

Without loosing generality, we focus on a triangular element t, Fig. 5. The primal
complex consists of the nodes n1, n2, n3 of t, and of the additional nodes n4, n5,
n6 forming the center of mass of the edges of t. The primal edges are obtained by
splitting in two halves each of the edges of t. In order to assure a second order
convergence in terms of electric field E and electric flux density D in DE , or in
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terms of strain εx, εy, γ and stress σx, σy, τ components in DM, we will construct
a dual cell complex starting from special points in each of the edges of t, [Tonti
(2002)]; these points coincide with the pair of points for the entire edge of t of a
Gauss integration formula of second degree.

We denote with (xi,yi), with i = 1, . . . ,6 the Cartesian global coordinates of node
ni. We introduce in t a local affine reference frame (ξ , η) as shown in Fig. 5.

x

y

ξ

η

n1(0,0)

n2(0,1)

n3(0,1)

n4(1/2,0)

n5(1/2,1/2)

n6(0,1/2)

g2(m,0)

g3(1-m,0)g1(0,m)

g6(0,1-m)

g4(1-m,m)

g5(m,1-m)

g7

g8

g9

g0

Figure 5: Global cartesian coordinate system (x,y) and local affine coordinate sys-
tem (ξ , η) for the triangle t. Special Gauss points gi, i = 1, . . .,6 on the edges of
the triangle are shown. Finally g0 denotes the center of mass of t.

The relation between the local coordinates (ξ ,η) of a point in t and the correspond-
ing global coordinates (x,y), is[

x
y

]
=

[
x1

y1

]
+T

[
ξ
η

]
, (29)

where the transformation matrix T is defined as

T =
[

x2 −x1 x3 −x1

y2 −y1 y3 −y1

]
. (30)

Along each of the edges of t we denote with gh,gk the pair of Gauss points. For
example, with reference to the edge from n1 to n2, we write g1 = (m,0), g2 =
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(1− m,0), with m = 1
2 − 1

2
√

3
. The center of mass of t is denoted with g0. The

center of mass of the edges between the pair of points (g1, g2), (g3, g4), (g5, g6) are
denoted with g7, g8, g9, respectively.

In the 2D model, a dual surface s̃hk has a unitary thickness in the out of plane
direction and its trace is a line segment from node gh(ξh,ηh) to node gk(ξk,ηk).
The components (s̃x, s̃y) of the area vector1 s̃hk of s̃hk are defined as[

s̃x

s̃y

]
=

[
0 −1
1 0

]
T

[
ξk −ξh

ηk −ηh

]
. (31)

Next, we introduce a dual volume ṽi, in a one to one correspondence with ni. Its
boundary is a collection of s̃hk facing ni and it is oriented by the outer normal2.

4.1 Electrostatics

A synthetic tool that gives relevance to the geometrical aspects of the discrete ge-
ometric approach, and allows to derive the algebraic equations of electrostatics, is
the Tonti’s diagram [Tonti (1975)].

On the right side of the diagram (Fig. 6) a vertical pillar is drawn, where each
DoF-array3 is associated with the corresponding geometric element of the dual
cell complex (from nodes ñ to volumes ṽ, from bottom to top). On the left side
of the diagram, a vertical pillar is drawn as well, where each DoF-array4 is as-
sociated with the corresponding geometric element of the primal complex (from
nodes n to volumes v, from top to bottom). The dashed circles represent categories
of variables not used in this specific problem. Along a vertical pillar, we move
from the variables on one level to the variables on the successive level –for exam-
ple from potentials V on nodes n to voltages U on edges e– of the primal or of
the dual complex, using the incidence matrices. This process allows us to form,
at each level, algebraic balance relations between variables of the same category
–configuration or source– yielding the physical laws in discrete form: Faraday’s
law CU = 0 which is identically satisfied by introducing a potential V such that
−GV = U and Gauss’ law D̃Ψ = Q. The discrete counterpart of the constitutive
relation is a square matrix Mε , represented as horizontal link from left to right,
which maps the array U associated with primal edges e to the array Ψ associated
with dual faces f̃ , being in a one-to-one correspondence each other; it can be con-
structed in different ways as described in [Tonti (1975); Tarhasaari, Kettunen, and

1 The area vector has amplitude equal to the area of s̃hk and it is normal to s̃hk with a specified
orientation.

2 For example, (refer to Fig. 5) for n5, ṽ5 is bounded by s̃48, s̃80, s̃09 and s̃59.
3 These DoF-arrays are called source variables.
4 These DoF-arrays are called configuration variables.
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Bossavit (1999); Clemens, Wilke, Benderskaya, De Gersem, Koch, and Weiland
(2004); Steinmetz, Helias, Wimmer, Fichte, and Clemens (2006); Bettini and Tre-
visan (2003); Bellina, Bettini, Tonti, and Trevisan (2002); Marrone (2007); Code-
casa, Specogna, and Trevisan (2007); Clemens and Weiland (2001); Specogna and
Trevisan (2005); Trevisan (2005)], under the hypothesis of element-wise uniform
fields and element-wise homogeneous permittivity of the media.
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Faraday's law

Gauss' law

Ψ

Figure 6: Tonti’s diagram for electrostatics. The incidence matrices D, G̃ and
C̃ are reported for completeness, even though they are not explicitly used in this
formulation.

We can now derive the set of equations governing the electrostatic problem. For
each t ∈ DE , the DGA for electrostatics can be cast in terms of the electric potential
V (associated with a primal node n) together with the electric flux Ψ (associated
with a dual face s̃) and the electric charge Q (associated with a dual volume ṽ). We
assume here that no free charge is present in DE , and then Q = 0 for each ṽi.

In the local coordinate system (ξ , η), V is approximated with a second order poly-
nomial

V(ξ ,η) =
[
1 ξ η ξ 2 ξη η2] [a1 . . .a6]

T , (32)

where the coefficients a = [a1 . . .a6]
T can be computed in terms of the electric
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voltages V = [V1 . . .V6]
T at the six primal nodes of t; in this way we obtain

a = CV, (33)

where C is the resulting 6×6 matrix. Then, V can be expressed as

V(ξ ,η) =
[
1 ξ η ξ 2 ξη η2] CV. (34)

From (34), the components of E along (x,y) are[
Ex

Ey

]
= −

[
∂xV
∂yV

]
= −J

[
∂ξV
∂ηV

]
= −(T−1)T NCV,

(35)

where J is the Jacobian matrix of the mapping from (ξ ,η) to (x,y) coordinates,
and the matrix N is defined as

N =
[

0 1 0 2ξ η 0
0 0 1 0 ξ 2η

]
. (36)

Denoting with Ψhk =
∫

s̃hk
D ·ds the electric flux of D through s̃hk, we get

Ψhk =
[

s̃x s̃y
][

Dx

Dy

]
, (37)

where Dx and Dy are the components of D evaluated in the center of mass of s̃hk. By
substituting in (37), (31) for the components of s̃hk, using the constitutive relation
D = εE, with ε the uniform permittivity of t, and evaluating the components of E
according to (35), we obtain

Ψhk = −s̃hkε(T−1)T NCV, (38)

where ε is a constant for homogeneous, isotropic and linear dielectric material
inside each primal cell, or it is a tensor in the general case.

Next, for element t we may write the local contribution to Gauss’ Law as

D̃Ψ = 0, (39)

where D̃ is the matrix of incidence numbers between the outer orientation of ṽi and
the outer orientation of s̃hk.

Finally, assembling the contribution from (39) for each t, the final system becomes

KEV = 0, (40)
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where KE is the resulting stiffness matrix for the electrostatic problem. The bound-
ary conditions must be assigned to close the problem in DE , by prescribing V1 = V
for the potential on Σ1, V0 = 0 for the potential on Σ0 ∪Σ∞, and zero electric flux
on Σ2.

From the solution of (40), the components of the electrostatic force acting on ni

laying on Σ1 can be evaluated as[
Fx

Fy

]
=

1
2

Qi

[
Eax

Eay

]
, (41)

where Qi is the surface charge lying on the conducting boundary Σ1 in the neigh-
borhood of node ni and Eax, Eay are the components of the average electrical field
acting on ni.

4.2 Elastostatics

For each t ∈ DM, the DGA for elastostatics can be cast in terms of the components
Ux and Uy of the displacement vector (associated with a primal node n), together
with the surface force vector F (associated with a dual face s̃). Again, we approxi-
mate Ux, Uy as

[Ux Uy] =
[
1 ξ η ξ 2 ξη η2

]
C [Ux Uy] , (42)

where Ux, Uy are the arrays of the displacement components in the primal nodes.
From (42), the displacement gradient components along the axes of the global co-
ordinate system (x,y) are

[Hx Hy] =

[
∂xUx ∂xUy

∂yUx ∂yUy

]
=

[
B1

B2

]
[Ux Uy] , (43)

where[
B1

B2

]
= (T−1)T NC. (44)

Then, the strain components can be written as⎡
⎣ εx

εy

γ

⎤
⎦ =

⎡
⎣ B1 0

0 B2

B1 B2

⎤
⎦[

Ux

Uy

]
= B

[
Ux

Uy

]
, (45)

where the symmetric part of the displacement gradient matrix is obtained thanks to
the structure of B.
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Using Hook’s Law between stress and strain components and (45), we obtain

⎡
⎣ σx

σy

τ

⎤
⎦ = P

⎡
⎣ εx

εy

γ

⎤
⎦ = P B

[
Ux

Uy

]
(46)

where σx, σy, τ are the stress components acting on s̃hk and P, in the case of 2D
plain stress, for isotropic homogeneous material, is given by

P =
E

(1+ν)(1−2ν)

⎡
⎣ 1−ν ν 0

ν 1−ν 0
0 0 1−2ν

2

⎤
⎦ . (47)

Next, the surface force array Fhk = [Fx Fy]
T on s̃hk is

Fhk =
[

s̃x 0 s̃y

0 s̃y s̃x

]⎡
⎢⎢⎣

σx

σy

τ

⎤
⎥⎥⎦ = S̃

⎡
⎢⎢⎣

σx

σy

τ

⎤
⎥⎥⎦ , (48)

where σx, σy and τ are evaluated in the center of mass of s̃hk. Then, for element
t we may write the local equilibrium equations, in the absence of volume forces,
yielding

D̃
[

Fx Fy
]
= 0, (49)

where Fx, Fy are respectively the array of the Fx, Fy components of the resulting
surface force. Each balance equation (49) is associated with dual volumes and is in
a one-to-one correspondence with a primal node ni.

Finally, assembling the contribution from (49) for each t, the final system becomes

KMU = F, (50)

where U =
[

UT
x UT

y

]T
, and F is the array of the mechanical loads with non null

entries on the nodes ni ∈ Σ1 only, calculated according to (41); KM is the resulting
stiffness matrix for the elastostatic problem. In addition, the constraints Ux = 0,
Uy = 0 are imposed for ni ∈ DM ∩Σ2.

The Tonti’s diagram [Tonti (1975)] for elastostatics is shown in Fig. 7; the dashed
circles represent categories of variables not used in this specific problem.
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Figure 7: Tonti’s diagram for elastostatics.

4.3 Solution Algorithm

An efficient, fast and robust relaxation algorithm has been developed to analyze
the electromechanical non linear problem presented hereafter. The two domains
DM and DE mutually influence each other only at the interface, so that an iterative
sequential analysis of the two fields can be suitably performed. A sequential field
coupling (SFC) approach with voltage increments is adopted (see Fig. 8). The total
potential difference is split into n increments: for each intermediate voltage value Vi

the coupled analysis is performed by means of the usual SFC method. The applied
potential difference is increased only after equilibrium configuration is achieved.

5 Numerical results and comparisons

To evaluate the actual effectiveness of the new proposed approaches, a compari-
son has been performed among several nonlinear solutions. They were obtained
by means of the non incremental algorithm, based on the special beam element
SFET, by the discrete geometric approach DGA and by a commercial FEM code
(ANSYS). The tested problem is fully 3D, mainly because of the distribution of the
electrostatic loads on the microbeam. Nevertheless, the comparison is based on 2D
analyses to investigate their effectiveness with respect to the complete 3D models.
The aim is to investigate the possibility of building a fast and reliable 2D model
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Figure 8: Flowchart of the sequential field coupling DGA approach implemented
with voltage increments. The internal loop (indexed with k) describes the incre-
ments of loads ΔF, while the outer loop (indexed with i) describes the increments
ΔV applied to the voltage.
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suitable to approximate, with enough accuracy, the actual 3D behaviour of several
specimens experimentally tested. A challenging aspect of the proposed approach
is the development of a compact model, useful to predict the dynamic behaviour
of the electromechanical coupled microsystem, where both electromechanical and
geometrical nonlinearities are present simultaneously.

Practical cases used to perform the experimental validation are Epitaxial Polysil-
icon cantilever microbeams (Young modulus E = 150÷166GPa, Poisson coeffi-
cient ν=0.23). Several cases have been considered as shown in table 1 for different
values of microbeam length (L), gap (g), thickness (h) and depth (d).

As far as Table 1 shows the accuracy of the profiling system in case of in-plane
bending test allows characterizing the dimensions of the microbeam actuators with
a very good resolution along the optical axis, while it is far less on the target plane.
Therefore all the dimensions measured in the target plane suffer a certain inaccu-
racy in measuring, which was resumed in Table 1 [Ballestra, Brusa, Munteanu, and
Somà (2008); Brusa, Della Gaspera, and Munteanu (2008)].

Table 1: Polysilicon cantilever microbeams. Different values of length (L), gap (g),
thickness (h), depth (d) have been considered.

case L [μm] g [μm] h [μm] d [μm]

1 101±0.1 5.0±0.3 1.8±0.02 15

2 101±0.1 10.0±0.3 1.8±0.02 15

3 101±0.1 20.1±0.3 1.8±0.02 15

4 205±0.2 10.0±0.3 1.9±0.02 15

5 205±0.2 20.0±0.3 1.9±0.02 15

6 805±0.5 39.6±0.3 2.7±0.04 15

7 805±0.5 200.0±0.5 2.7±0.04 15

8 805±0.5 400.0±0.5 2.7±0.04 15

It is important to notice that the behaviour is geometrically nonlinear, thus requir-
ing to implement the iterative solution to solve the nonlinear mechanical problem,
corresponding to the large displacement condition. This leads to the maximum
computational time, when static solution to compute the pull-in is performed.
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5.1 Validation

Figure 9, 10, 11 compare the experimental tip displacement, as a function of the ap-
plied voltage, with numerical predictions for test cases 2, 4, and 6 of table 1 respec-
tively. A quite good agreement is shown among the numerical results calculated by
non incremental FEM model, by DGA and by a commercial FEM code (ANSYS)
for given values of the Young modulus (E). The experimental measures lie between
the curves calculated with the lower (E=150GPa) and upper (E=166GPa) bounds
assumed for Epitaxial Polysilicon cantilever microbeams. The pull-in voltage and
displacement are both quite accurately predicted.

The non incremental approach, which was initially developed in MATLAB envi-
ronment, takes approximately 1/3 the time spent by a sequential solution, imple-
menting the classic beam element, to compute the displacement at pull-in. The non-
linear dynamic response in presence of large vibration is only possible by means of
this non incremental approach, since the double nonlinear model (geometrical and
electromechanical) in dynamic domain cannot be solved by the currently available
commercial codes [Munteanu and Brusa (2005)]. Although a complete validation
in dynamic behavior prediction will be possible only when both commercial se-
quential approach and DGA will add the suitable subroutines, the computational
time, the required mesh refinement and the numerical convergence of both non
incremental and DGA methods look to be promising. Other direct comparisons
of the performance in terms of efficiency and computational time with the other
methods are currently unpractical since models have been developed in different
environments (ANSYS, Matlab, Fortran).

6 Conclusions

This paper deals with the application of the FE sequential and non-incremental
method and of the Discrete Geometric Approach to the numerical prediction of the
nonlinear behaviour of electrostatic microactuators. Planar static solution demon-
strates that the performance of DGA is very competitive and assures the same level
of accuracy of available methods like FEM coupled-field solution, sequential non
incremental FEM and FEM-BEM hybrid method. Sequential non incremental FEM
modelling is faster than the commonly used sequential approach implemented in
commercial codes. Up to now a dynamic analysis in presence of large displace-
ment and geometrical nonlinearity looks only possible by means of this approach.
At present, the validation has been mainly based on the static solution, because
of the larger information available from the different methods. Numerical results
agree very well, even with the experimental ones. Validation was used to define
the limits of application of the 2D models. These are mainly due to the actual
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Figure 9: Comparison of experimental tip displacement with numerical predictions.
Test case 2: L = 101μm, h = 1.8μm, d = 15μm, g = 10μm).
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Figure 10: Comparison of experimental tip displacement with numerical predic-
tions. Test case 4: L = 205μm, h = 1.9μm, d = 15μm, g = 10μm).
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Figure 11: Comparison of experimental tip displacement with numerical predic-
tions. Test case 6: L = 805μm, h = 2.7μm, d = 15μm, g = 39.6μm).

distribution of the electrostatic forces, affected by fringing of the electric field. It
appeared remarkable that experimental results are fitted by the 2D models, if an ef-
fective value of the microbeam thickness is calibrated on the actual response, thus
making 2D methods suitable candidates for a compact modelling operation of the
microelectrostatic actuators.
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