
Computer Physics Communications 184 (2013) 2257–2266
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Physics inspired algorithms for (co)homology computations of
three-dimensional combinatorial manifolds with boundary
Paweł Dłotko a,b, Ruben Specogna c,∗

a Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6395, USA
b Jagiellonian University, Institute of Computer Science, Lojasiewicza 4, 30348 Kraków, Poland
c Università di Udine, Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica, Via delle Scienze 206, 33100 Udine, Italy

a r t i c l e i n f o

Article history:
Received 5 December 2012
Received in revised form
3 May 2013
Accepted 8 May 2013
Available online 18 May 2013

Keywords:
Physics inspired algorithms
Algebraic topology
(co)homology
First De Rham cohomology group
generators

Discrete Hodge decomposition
Computational physics
Magneto-quasistatics
Eddy-currents

a b s t r a c t

The issue of computing (co)homology generators of a cell complex is gaining a pivotal role in various
branches of science. While this issue may be rigorously solved in polynomial time, it is still overly
demanding for large scale problems. Drawing inspiration from low-frequency electrodynamics, this paper
presents a physics inspired algorithm for first cohomology group computations on three-dimensional
complexes. The algorithm is general and exhibits orders ofmagnitude speed upwith respect to competing
ones, allowing to handle problems not addressable before. In particular, when generators are employed
in the physical modeling of magneto-quasistatic problems, this algorithm solves one of the most long-
lasting problems in low-frequency computational electromagnetics. In this case, the effectiveness of the
algorithm and its ease of implementation may be even improved by introducing the novel concept of lazy
cohomology generators.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The availability of unprecedented computing power and effi-
cient numerical methods produced a dramatic increase in applica-
tions of computational (co)homology [1–4] (i.e. the computation
of generators of the (co)homology group). (Co)homology, in fact,
has been already shown to be essential in unexpected areas of sci-
ence, ranging from computer aided design (CAD) for feature detec-
tion [5], parametrization and mesh generation [6], shape analysis
and pattern recognition [7], to sensors networks [8] and robot mo-
tion planning [9], medicine and biology [10] and quantum chem-
istry [11]. Focusing on physics, (co)homology generators have been
used for example to detect the chaotic behavior in sampled experi-
mental data [12–14], in quantum information theory [15] and elec-
tromagnetism [16–23].

The problem addressed in this paper is the computation of
the first cohomology group generators for three-dimensional
combinatorial manifolds with boundary, being the computation
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of the zeroth and second absolute (co)homology groups already
satisfactorily solved in the literature, see for example [22].

Integer cohomology generators – unlike the real and complex
ones – may be rigorously computed in polynomial time by finding
the Smith normal form (SNF) [4] of the coboundary matrix. How-
ever, this approach is computationally not attractive because the
best implementation of the SNF exhibits a hyper-cubical complex-
ity [24]. To briefly survey the techniques already introduced in
the literature for 1st cohomology group computations, it is con-
venient to partition them into three classes. First, combinatorial
methods [21,25,26] use sparse matrix data structures and vari-
ous reductions of the input cell complex M to speed up the SNF
computation to a point that may be used for practical problems.
Second, homology-based methods [27,28,17,20] start by comput-
ing a homology generator that is ‘‘dual’’ to the cohomology gen-
erator that one aims to compute (this duality will be explained in
Section 3). The idea behind this technique has been first introduced
by Kotiuga [27,28,17] for the computation of cuts (i.e. generators
of the 2nd cohomology group H2(M, ∂M)) starting from a 1st ho-
mology basisH1(M̃) on the dual complex M̃. In [20], a dual version
of the Kotiuga’s algorithm – called Generalized Spanning Tree Tech-
nique (GSTT) – has been presented to compute the 1st cohomology
group basis H1(M) ∼= H2(M̃, ∂M̃) starting from a 1st homology
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group basis H1(M). Recently, a third class of physics inspired meth-
ods to compute cohomology generators has been introduced. As
opposed to any other method, this class of algorithms constructs
the cohomology generators starting from a set of electric currents.
The Thinned Current Technique [29] (TCT) – the first physics in-
spired algorithm – presents some attractive features as the orders
of magnitude reduction of the computational time and the simple
implementation. Nonetheless, its main limitation is that when the
complex M is not skeletonizable – i.e. it cannot be homotopically
retracted to a graph – this algorithm cannot be used and another
technique, as [21], has to be employed instead. For a comprehen-
sive survey on other algorithms proposed in the literature (most of
them patently incorrect) please refer to [23].

To introduce a novel physics inspired algorithm for the first co-
homology group computations, let us focus on the interplay be-
tween (co)homology, discrete Hodge decomposition [30,16,18,17,
31] and physical modeling that appears when considering prob-
lems whose definition of potentials is not straightforward. One
of the most studied examples where this happens occurs in low-
frequency electrodynamics. Electromagnetic phenomena are gov-
erned by Maxwell’s laws [32] and material constitutive relations.
For slowly time-varying fields, whose change in magnetic field en-
ergy is dominant and electromagnetic wave propagation can be ig-
nored, it is typical to brake the symmetry of Maxwell’s laws by
neglecting the displacement current in the Ampère–Maxwell’s
equation [32]. Using this magneto-quasistatic (MQS) approxima-
tion, the magnetic field is irrotational in the insulators thanks to
Ampère’s law. The fact that the insulating region is in most cases
not simply connected prevents it to be exact. The consequence is
that amagnetic scalar potential cannot be introduced naïvely in the
insulating regions. Yet, using a scalar potential is tempting since
formulations based on it are computationally much more efficient
than the ones using the classical magnetic vector potential.

How to define a magnetic scalar potential in non simply con-
nected domains has drawn a considerable effort in the computa-
tional electromagnetics community in the last twenty-five years.
A connection of this issue with (co)homology theory has been ad-
vocated many years ago by Kotiuga [16], that solved this problem
by introducing the cuts1 together with an algorithm to compute
them [27,28,17]. Despite most scientists keep using other heuris-
tic and sometimes patently incorrect definition of potentials and
related algorithms (see references and counter-examples in [23]),
it is getting accepted that the first cohomology group generators
over integers of the cell complex modeling the insulating region
are needed to make the problem well defined [20,23]. Introduc-
tory material on this subject comprising an informal introduction
to algebraic topology, how to model physical variables as cochains
with complex coefficients and how to rephrase Maxwell’s laws in
algebraic form, can be found in [20,23,29].

The quest for an algorithm for first cohomology group
computation that is both general and exhibits a linear average
complexity is still open. This is surprising since the research on
this issue has been pushed forward by many leading software
houses having at least part of the core business in solving
MQS problems. The fact that this issue has been considered
unsolved for so many years indicates that computing cohomology
generators quickly (and correctly) is not straightforward. Also the

1 The use of cuts (in place of the 1st cohomology group generators) is considered
nowadays obsolete, since they are required to be embedded submanifolds (i.e.
they have to be surfaces that do not self-intersect). Kotiuga proposed a very nice
technique to construct them by means of the solution of non-physical Poisson
problems. Each cut is then constructed as a level set of the solution of these
problems. As the reader can guess, solving a Poisson problem for each generator
is extremely time consuming and – at least at the present state – can be hardly
justified in practice.
implementation complexity may affect negatively the technology
transfer. Developing a simple and fast algorithm would enable
to embed it in the next-generation of electromagnetic Computer-
Aided Engineering (CAE) softwares.

This article fills this gap by exploiting a novel physics inspired
approach to compute cohomology generators suitable for physical
modeling called the Dłotko–Specogna (DS) algorithm. Moreover,
the novel concept of lazy cohomology generators is introduced
to speed up and simplify the implementation when cohomology
generators are employed, for example, in computational physics.

The paper is structured as follows. Section 2 is a mild introduc-
tion to (co)homology theory that may be skipped by readers fa-
miliar with this topic. In Section 3 the role of (co)homology theory
in low-frequency electrodynamics is recalled. TheDłotko–Specogna
(DS) algorithm and the novel concept of lazy cohomology genera-
tors are introduced in Section 4. In Section 5 some numerical ex-
periments are presented to compare the novel algorithm to other
state-of-the-art algorithms in terms of efficiency and robustness.
Finally, in Section 6, the conclusions are drawn.

2. Mild introduction to algebraic topology

In this section, a mild introduction to algebraic topology is
provided. For a rigorous one, please consult [33]. Let us consider
a discretization K of a given three-dimensional space as a
cell complex (more precisely, a regular CW-complex [33]). For
simplicity, one may think about a simplicial complex. K is a
combinatorial manifold if the link of every vertex is a sphere or a
disk. The link of a vertex v ∈ K consists of all elements s ∈ K
such that s ∩ v = ∅ and there exist t ∈ K such that v, s ∈ t .

Homology and its dual cohomology theory are mathematical
tools to describe ‘‘holes’’ of a given space in a rigorous way. As an
example, let us consider the two-dimensional simplicial complex
K of the annulus represented in the Fig. 1. The zero-dimensional
holes are defined as the connected components of K . In the
example, K is formed by a single connected component. Clearly,
there is one (one-dimensional) hole in the annulus. This hole may
be surrounded with a one-dimensional oriented cycle, as in Fig. 1
upper left. This kind of cycle represents a generator of the first
homology group of the annulus.

The concept of holes may be generalized to higher dimensions.
In the example, there are no holes of dimensions two and higher.
Yet, two-dimensional holes for three-dimensional complexes are
voids as the ones thatmay be encircled by a ball contained inK (i.e.
cavities of the complex). In this case, the collection of oriented two-
dimensional cells on the surface of the ball represents a second
homology generator of the complex. The number of i-dimensional
holes is often referred to as the ith Betti number βi(K).

In homology theory some cycles are considered equivalent. If
two i-dimensional cycles (with appropriate orientation) form the
boundary of a set made of (i + 1)-dimensional elements, then
we say that they are in the same homology (equivalence) class,
or simply that they are equal. Two cycles in the same homology
class are represented in Fig. 1 lower left. If some cycle alone is a
boundary, then we say that it is homologically trivial.

More formally, a i-dimensional chain (i-chain) c of a complexK
is a formal sum of elements of K of dimension i with coefficients
(in this paper we consider integer or complex coefficients). The
group of i-chains of a complexK are denoted as Ci(K). Every chain
is uniquely determined by its coefficients on all i-dimensional el-
ements of K . The chain c is a cycle if its boundary ∂c vanishes. c
is homologically nontrivial if it is not a boundary of a higher dimen-
sional chain. The groupof i-dimensional cycles is denoted by Zi(K).
The group of i-dimensional boundaries is denoted by Bi(K). Since
every boundary is a cycle, onemay define the ith homology group as
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Fig. 1. On the left (upper and lower), representatives of homology generators of the
annulus. On the right (upper and lower), representatives of cohomology generators
of the annulus.

the quotientHi(K) = Zi(K)/Bi(K). ByHi(K, Z) andHi(K, C)we
denote the integer and complex homology groups, respectively.

Homology has a dual theory called cohomology. The elements
dual to the i-dimensional chains (i-chains) are called i-dimensional
cochains (i-cochains) and they are functions from the i-chains to
integers/complex numbers. The value of the i-cochain c∗ on a given
i-chain c is determined by the value of c∗ on the i-dimensional
cells (i-cells) of K . Therefore, in this paper, we compute some i-
cochains by providing their values on all i-cells of K . The cocycles
and coboundariesmay be also introduced analogously as in the case
of homology.

In the case of complexes embedded in a tree-dimensional space,
a straightforward duality between homology and cohomology
generators exists. Let us fix the c1, . . . , cn representatives of a
homology basis. For a cocycle c∗

i we may define the discrete
analogous of integration of c∗

i on a cycle c by using a dot product
⟨c∗

i , c⟩ between the vectors representing the coefficients of c∗

i and
c.We say that c∗

i is a cohomology generator dual to ci if ⟨c∗

i , cj⟩ = δij
(formore details consult [34]). A possible cohomology generator in
the considered example may be visualized in Fig. 1 upper right.

As in the case of homology, in cohomology two cocycles c∗ and
c∗

′

are considered equal if there exists a (i − 1)-cochain s such
that c∗ and c∗

′

are common coboundary of elements of s, see Fig. 1
bottom right for an example.

More formally, a cochain with integer/complex coefficients is
a map from the group of chains to integers/complex numbers.
A cochain c∗ is a cocycle if its coboundary δc∗ vanishes. δ is the
coboundary operator [33] defined with the Generalized Stokes
Theorem ⟨δc∗, c⟩ = ⟨c∗, ∂c⟩. c∗ is cohomologically nontrivial if it is
not a coboundary. The group of i-dimensional cocycles of the com-
plex K is denoted by Z i(K), whereas the group of i-dimensional
coboundaries is denoted as Bi(K). The ith cohomology group is
the quotient H i(K) = Z i(K)/Bi(K). By H i(K, Z) and H i(K, C)
we denote integer and complex cohomology groups, respectively.
By a (co)homology basis we mean a set of linearly independent
(co)homology generators that span the (co)homology group.

One may also consider the so-called relative (co)homology
group of a complex K modulo a sub-complex K0 ⊂ K in which
K0 is forgotten. Formally, to define a relative (co)homology, one
needs to take the quotient group C∗(K)/C∗(K0) in the case of ho-
mology or C∗(K)/C∗(K0) in the case of cohomology and compute
its (co)homology (∗ represents any integer number). The relative
(co)homology groups are denoted by Hi(K, K0) and H i(K, K0).
The details may be found in [33] or, more informally, in [34,22].

The dual complex K̃ [4] and [20, Section 3] is obtained from
K by using the barycentric subdivision. Let us define the dual cell
complex K̃ = D(K) in the following way:

(1) For every polyhedron t ∈ K , the dual node ñ = D(t) is defined
as the barycenter of t .

(2) For every 2-cell f ∈ K that is a common face of polyhedra
t1, t2 ∈ K , the dual edge ẽ = D(f ) is defined as the sum of
a segment of line joining the barycenter of f with D(t1) and a
segment of line joining the barycenter of f with D(t2).

(3) For every edge e ∈ K let f1, . . . , fn ∈ K be the 2-cells
incidental to e. The dual face f̃ = D(e) is then defined as a (set-
theoretical) sum

n
i=1 conv[B(e),D(fi)], where B(e) denotes

the barycenter of the edge e and conv[·] the convex hull.
(4) For every node n ∈ K let e1, . . . , en ∈ K be the edges

incidental to n. The dual volume t̃ = D(n) is the volume
bounded by D(e1), . . . ,D(en).

3. (Co)homology and low-frequency electrodynamics

Let us cover the topologically trivial computational domain
by a conformal polyhedral mesh K which is a regular CW-
complex [33]. As it is going to be explained in Section 4.3, the re-
quirement of dealing with a homologically trivial complex does
not limit the generality of the technique described in this paper.
Two sub-complexes Kc and Ka of K are introduced that contain
mesh elements belonging to the conducting and insulating regions,
respectively. Let us define the potentials in Ka for the harmonic
analysis of a MQS problem formulated by using a magnetic scalar
potential, as the T − Ω formulation [20,23,29]. The algebraic Am-
père’s law is enforced on every 2-cell with δF = I, where I ∈ C2

(K, C) is the complex-valued electric current 2-cochain and F ∈

C1(K, C) is the magneto-motive force (m.m.f.) complex-valued 1-
cochain. Let us denote by Fa the restriction of F toKa. Since the cur-
rent is zero for all 2-cells belonging to Ka, Fa is a 1-cocycle in Ka
(Fa ∈ Z1(Ka, C)). From the definition of the cohomology group ba-
sis, the 1-cocycle Fa may be expressed as a linear combination of a
basis of the 1st cohomology group H1(Ka, C) plus a 1-coboundary
B1(Ka, C). The 1-coboundary B1(Ka, C) is provided by taking the
0-coboundary of a complex-valued 0-cochain Ωa whose coeffi-
cients represent the magnetic scalar potential sampled on mesh
nodes. Since Ka is embedded in R3, the (co)homology groups are
torsion free [4] and the basis of H1(Ka, C) may be obtained from
a basis of H1(Ka, Z) where the elements of Z are treated as ele-
ments of C [33]. Then, the nonlocal (i.e. applied not locally on each
2-cell as δF = I, but on an arbitrary 2-chain) algebraic Ampère’s
law [20,23] ⟨Fa, cj⟩ = ⟨I, sj⟩ (see Fig. 2) implicitly holds for any 1-
cycle cj ∈ Z1(Ka, Z), with cj = ∂sj, by setting

Fa = δΩa +

β1(Ka)
j=1

ij hj, (1)

where ⟨·, ·⟩ denotes the dot product, {hj
}
β1(Ka)
j=1 are the represen-

tatives of the 1st cohomology group H1(Ka, Z) generators and
β1(Ka) is the 1st Betti number of Ka. Fig. 3a shows an example
of cohomology generator for the torus. Instead of representing the
edges belonging to the support of h1, the figure shows the support
of the dual 2-chainD(h1) on the complex dual toKa. When it is not
confusing, by cohomology generators we refer to both the coho-
mology classes and their representatives. Physically, the {ij}

β1(Ka)
j=1
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may be interpreted as a set of independent currents [20,23] flowing
in the branches of the conductors Kc . Fig. 2 shows the indepen-
dent current flowing in a solid 2-dimensional torus. For a n-fold
2-dimensional solid torus, there are n independent currents.

Let us fix the generators {hj
}
β1(Ka)
j=1 of H1(Ka, Z). There exists a

set of cycles {ci}
β1(Ka)
i=1 being a H1(Ka, Z) basis such that ⟨hj, ci⟩ =

δij holds [33,34]. Since K is homologically trivial, there exist 2-
chains {si}

β1(Ka)
i=1 ∈ C2(K, Z) whose boundaries are the {ci}

β1(Ka)
i=1 .

Their restrictions {σi}
β1(Ka)
i=1 to Kc form a H2(Kc, Kc ∩ Ka, Z)

basis [29], see Fig. 2, on the right. The independent currents are
exactly the currents linked in nonlocal algebraic Ampère’s law [20]
by the 1-cycles {ci}

β1(Ka)
i=1 in such a way that the j-th independent

current may be defined with ⟨F, cj⟩ = ij = ⟨I, sj⟩ = ⟨I, σj⟩. Then,
the currents linked by any other cycle in Z1(Ka, Z) may be
obtained by linear combinations of the independent currents. In
the end, the induced currents may be obtained as described in [23]
by solving a linear system obtained by enforcing the discrete
magnetic Gauss’s law, the Faraday’s law and discrete counterparts
of the constitutive laws together with (1).

We note that, the trace bi of the cohomology generator hi on
Ka ∩Kc is a cohomology generator of H1(Ka ∩Kc, Z), see Fig. 3b.
By using the Generalized Stokes Theorem, ⟨hi, cj⟩ = δij = ⟨δhi, sj⟩.
Since hi is a 1-cocycle in Ka, we get

⟨δhi, σj⟩ = ⟨ti, σj⟩ = δij, (2)

where the 2-cocycles ti are defined as ti = δhi. Given that hi is zero
in the interior ofKc , the support of the 2-cocycle ti is a set of 2-cells
in the interior ofKc that have at least one edge in bi, see Fig. 3c. The
current 2-cocycle I may be expressed in all K by summing up the
contributions Fc = T + δΩc of the restriction of F to Kc − Ka and
(1) as I = δF = δ(T + δΩ +

β1(Ka)
j=1 ij hj), where T is the electric

vector potential. Considering that tj = δhj, we get

I = δT +

β1(Ka)
j=1

ij tj. (3)

We may therefore imagine the independent currents ij as currents
that flow in the support of the 2-cocycles tj.

The dual of ti is a 1-chainD(ti)on the complexD(Kc), see Fig. 4a.
Also the dual of bi is a 1-chain D(bi) on the complex D(Kc), see
Fig. 4b. Both {D(ti)}β1(Ka)

i=1 and {D(bi)}
β1(Ka)
i=1 are representatives of

the same H1(D(Kc),D(∂K)) basis.

4. Dłotko–Specogna (DS) algorithm and lazy cohomology
generators

Usually, cohomology generators are found first [27,28,17,20,
21,23] and the current distribution inside Kc is a result of the
MQS simulation. In principle, taking inspiration from physics,
one may do it the other way around. Thanks to (2), the j-th 1-
cocycle hj may be computed by imposing a unity current in σj

and a zero current in the other sigmas, where the {σi}
β1(Ka)
i=1 are

H2(Kc, Kc ∩ Ka, Z) generators. So, let us suppose that a set
of current 2-cocycles {t1, . . . , tβ1(Ka)} is constructed such that
⟨ti, σj⟩ = δij for every representative σj of the H2(Kc, Kc ∩ Ka, Z)

generators. This is clearly equivalent to fix a basis of H1(Ka), since
it fixes the evaluation of the cohomology generators on the dual
homology H1(Ka) basis provided by the 1-cycles {∂σi}

β1(Ka)
i=1 . In

fact, thanks to (2), ⟨hi, cj⟩ = δij = ⟨hi, ∂σj⟩ = ⟨ti, σj⟩. Therefore,
finding the cohomology basis is just a matter of solving β1(Ka)
linear systems δ hi

= ti in the complex K and restricting the
output cocycle to Ka (it is clear, in fact, that the restriction of a
cocycle is a cocycle). Surprisingly, these systems may be solved in
Fig. 2. On the left, the independent current flowing in a torus. On the right, the
1-cycle cj ∈ Z1(Ka) and a 2-chain sj such that cj = ∂sj .

most cases by back-substitutions only with the Extended Spanning
Tree Technique (ESTT) [35,29], without using any integer linear
solver and even a sparse matrix data structure.

The core of this physics inspired approach to cohomology
computation is how to obtain such currents {t1, . . . , tβ1(Ka)}.
The key observation is that the cohomology classes of the 1-
cocycles {hi

}
β1(Ka)
i=1 do not depend on how the unity currents are

distributed inside Kc . Moreover, if each unity current flows in
a ring whose sections are ‘‘single 2-cells’’, then the 2-cocycle
condition together with the constraint ⟨ti, σj⟩ = δij for every
representativeσj ofH2(Kc, Kc∩Ka, Z) generatorsmay be trivially
imposed by assigning a unity current (with the appropriate sign
that depends on incidence) to those 2-cells. The resulting 2-
cocycles {t1, . . . , tβ1(Ka)} are called thinned currents [29].

In TCT algorithm [29], a physically-based method to construct
thinned currents is employed. A thinning is applied on Kc in such
a way that the conductors become a ‘‘single 3-cell thick’’. The
thinned conductors may be viewed on the dual complex as a graph
representing the skeleton ofKc . By computing independent cycles
on that graph, by orienting them and by considering the 2-cells
that are dual to the dual 1-cells in the graph, the thinned currents
are found. This approach presents two problems: on one hand, this
approach does not work for conductors that do not homotopically
retract to a graph, on the other hand finding the skeleton is time
consuming since all elements of Kc have to be processed.

The DS algorithm, introduced for the first time in the present
paper, solves all of these problems, resulting in a general and
extremely fast algorithm. The DS algorithm may be summarized
as follows:

(1) Find the n combinatorial 2-manifolds that represent the
connected components C1, . . . , Cn of Kc ∩ Ka. This part
requires O(card(K)) time.

(2) Compute the 1st cohomology H1(Ci, Z) generators c1, . . . , c2g
for each Ci, where g is the genus of Ci. This may be performed
in linear time worst-case complexity O(card(∂Kc) g) with the
graph-theoretic algorithm presented in [36] (see Appendix A
for a short presentation). An example of H1(Ci) generators for
a solid 2-torus is presented in Fig. 5a.

(3) For every connected component Ci, find the thinned currents
t1, . . . , t2g corresponding to c1, . . . , c2g in O(card(∂Kc) g)
time with the following algorithm. The value of the cochain
t on a cell E is ⟨t, E⟩, whereas κ(A, B) denotes the incidence
between cells A and B, see [33]. Initially, set ⟨ti, T ⟩ = 0 for all
2-cells T ∈ Kc .
for each 1-cell E with nonzero coefficient cE in ci
for each 2-cell T ∈ Kc with E in the boundary
⟨ti, T ⟩+ = cEκ(T , E);

For an example, see Fig. 5b–c. In Appendix B, it is proved that
the ti obtained in this way are cocycles for every i.
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D(h1)

b1 t1

a b c

Fig. 3. (a) The 2-chain D(h1) on the complex dual to Ka is the dual w.r.t. the cohomology generator h1 . (b) b1 is the trace on Kc ∩ Ka of h1 . (c) The 2-cocycle t1 = δh1 .
(4) For every connected component Ci, solve in K the integer
systems δ hj

= tj, j ∈ {1, . . . , 2g}. This may be performed
without solving any system by the application of a vectorialized
version of the ESTT algorithm [35,29]. Vectorialized means
that the ESTT algorithm is applied to all t1, . . . , t2g thinned
currents at the same time. Algorithmically this may be easily
achieved by changing a real number to a vector of 2g real
numbers in the ESTT algorithm, in such a way that the
algorithm may be easily parallelized.

(5) For every connected component Ci, store the restrictions
of h1, . . . ,h2g to Ka. Computationally, the restrictions are
performed by setting the coefficient of every edge in the
interior of Kc to zero in every cochains h1, . . . ,h2g . The
computational effort required is O(card(K) g).

We would like to point out that in our implementation we process
all connected components of the boundary in parallel. This detail
is omitted in the pseudocode above for the sake of clarity in the
presentation.

The ESTT algorithm terminates always since the ti are 2-
cocycles for every i, as shown in Appendix B. For a proof that
the ESTT always terminates given a 2-cocycle as input please
consult [35]. If the genus g is bounded by a constant, as it
happens always in practical problems, the worst case complexity
of the DS algorithm is cubical w.r.t the number of 1-cells of the
complex. Yet, the average complexity of the DS algorithm has
been linear O(card(K)) in all tested problems, provided BFS or
minimal diameter trees are used in the ESTT algorithm [35]. This
is because, even if it is very hard to prove it, in practice there is
no need to introduce any symbolic variable in the ESTT algorithm
to guarantee its termination [35]. So the typical complexity
is linear and the algorithm is also purely graph-theoretic, so
straightforward to implement.

4.1. Lazy cohomology generators or H1(Ka, Z) basis

The 1-cocycles obtained by the DS algorithm are not a basis
of H1(Ka, Z), since the number of obtained generators is twice
the cardinality of its basis. Still, the cocycles obtained from
the DS algorithm span H1(Ka, Z) but some of them are linear
combinations of the others, see Appendix C for the proof. To show
this informally, let us consider the c1, . . . , c2n generators of the
H1(Kc ∩Ka) basis obtained by the DS algorithm at point (1). Then,
as demonstrated in [37], any of them may be expressed as ci =n

h=1 αhah +
n

k=1 βkbk, where {D(bk)}nk=1 is a basis of H1(D(Ka))

whereas {D(ak)}nk=1 is a basis of H1(D(Kc),D(∂K)). If one
produces the thinned currents {ti}2ni=1 from boundary generators
{ci}2ni=1, one would get ti =

n
h=1 αhtha , where {tha}

n
h=1 are the

thinned currents producedwith {ah}nh=1 boundary generators. This
is because {D(bk)}nk=1 are trivial in H1(D(Kc),D(K)) and adding
them does not change the homology class of D(ti) and therefore
also the cohomology class of ti. It is clear that by running the ESTT
a b

D (t1) D (b1)

Fig. 4. (a) The 1-chain D(t1) on the complex dual to Kc , is the dual of t1 . (b) The 1-
chainD(b1) on the complex dual toKc ∩Ka , is the dual of b1 .D(t1)may be thought
as obtained by submerging D(b1) inside D(Kc).

algorithm on the thinned currents obtained from ci, one obtains
always 1-cocycles in the class hi

=
n

h=1 αhhh
a , with δhh

a = tha .
{hi

a}
n
i=1 are cohomology H1(Ka) generators. Therefore, the DS

algorithm automatically ignores the components of boundary
cocycles that are trivial in Kc and the produced 1-cocycles
span H1(Ka, Z). What outlined a moment ago motivates the
introduction of the novel concept of lazy cohomology generators.

Definition 1. A set of 1-cocycles that generate H1(Ka, Z) are
defined as lazy cohomology generators.

To obtain aH1(Ka, Z) cohomology basis with the DS algorithm,
not all boundary generators H1(Ci, Z) have to be used. The
required ones, i.e. the ones such that their duals generate
H1(D(Kc),D(∂K)), may be found by a change of basis obtained by
computing some linking numbers and the SNF of a small matrix, as
already well documented in [37] (see Appendix D for details about
the idea and its implementation). Nonetheless, due to conceptual
and implementation difficulties, one welcomes the possibility to
bypass this additional step. This is investigated in what follows.

4.2. Lazy cohomology generators in physical modeling

Apart the DS algorithm, the other fundamental contribution
of this paper is to show that avoiding the change of basis of the
H1(Ci, Z) boundary generators is not only possible but even more
convenient in most applications. This is realized by employing
directly the lazy cohomology generators in the physical modeling,
something that has been never considered in the literature. Lazy
cohomology generators are employed in a MQS formulation, for
example the T − Ω [19,20,23], as if they were a set of standard
H1(Ka, Z) generators (i.e. the fact that they are lazy generators and
not standard ones is completely transparent to the user). Namely,
a nonlocal Faraday’s equation [20,23] is written on the support
of the j-th lazy cohomology generator as ⟨Ũ, ∂ h̃j⟩ = −iω ⟨Φ̃, h̃j⟩,
where Ũ is the electro-motive force (e.m.f.) 1-cochain on the dual
complex, Φ̃ is themagnetic flux 2-cochain on the dual complex and
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a b c

c1
t1 t2

c2

Fig. 5. (a) The two cohomology generators for a solid 2-torus intersecting in the thicker edge. (b–c) The support of the thinned currents t1 and t2 corresponding to c1 and
c2 , respectively.
D (h1)

D (h2)

a

b c

Fig. 6. The two 2-cycles on the dual complex D(h1) and D(h2) that are the dual to the lazy cohomology generators h1 and h2 obtained by the thinned currents t1 and t2 in
Fig. 5b–c. (a) h1 is nontrivial in H1(Ka, Z), whereas (b) h2 is trivial in H1(Ka, Z). (c) The trace on Kc ∩ Ka of h2 .
h̃j = D(hj), D being the dual map [4] that maps elements of the
original complex to elements of the dual complex.

If one interpolates the lazy cohomology generators with
Whitney forms [38,18], one gets a set of lazy generators for the 1st
de Rham cohomology group [39,31]. This way, the lazy generators
produced by the DS algorithm may be also used as nonlocal basis
functions suitable for edge element formulations based on the
magnetic scalar potential arising from Finite Elements, as the t-ω
or h-φ formulations [40,18,41].

What remains to be explained is why one may safely use lazy
generators in the physical modeling. Lazy cohomology generators
span a H1(Ka, Z) basis, but some of the lazy cohomology
generators may be a linear combination of generators already
considered or even cohomologically trivial. To understandwhy this
should not be deemed as a problem, let us start by noticing that
the system of equations to solve before adding nonlocal Faraday’s
equations is already overdetermined [20,23]. In fact, adding an
arbitrary 1-coboundary δW to the electric vector potential T does
not alter the current I, since I = δT = δ(T + δW), where W is
an arbitrary 0-cochain.2Therefore, the (local) algebraic Faraday’s
laws [20,23] ⟨Ũ, ∂ f̃ ⟩ = −iω ⟨Φ̃, f̃ ⟩ enforced on every dual face f̃ in
Kc are linearly dependent. Even though a full-rank systemmay be
obtained by a tree-cotree gauging (i.e. by setting the electric vector
potential on a tree of 1-cells in the interior of Kc to zero [42,43]
and by eliminating the corresponding local Faraday’s equations),
it is widely known that with iterative linear solvers (as the ones
that have to be used for huge problems) it is much more efficient
to use ungauged [42,43] formulations. What is important from the
modeling point of view is that even if the vector potential is not
unique, its curl – i.e. the current density – is [42].

2 Defining Fc = Tc + δΩc in Kc does not help to obtain a full-rank system,
since magnetic Gauss’s laws in Kc are a consequence of the Faraday’s laws. One
may even avoid to define Ωc (and enforce Gauss’s laws in Kc ) obtaining the h-φ
formulation [40,18] in place of the t-ω.
Coming back to the main issue, let us show why the lazy
cohomology generators work with some examples. Consider Kc
as a solid 2-torus, see Fig. 5a. Let us assume that c1 and c2 in
Fig. 5a are the representatives of the H1(Kc ∩ Ka, Z) generators.
Then, by starting from the corresponding thinned currents t1 and
t2 in Fig. 5b–c, a lazy generator h1 cohomologous to the standard
H1(Ka, Z) generator is obtained (see Fig. 6a) together with a lazy
generator h2 that is trivial in H1(Ka, Z) (see Fig. 6b). Since the
solution in terms of induced currents does not depend on the
representatives of the fixed cohomology basis, one may use any
representative of the given basis. In this case, one gets the same
solution if the cohomologically trivial lazy generator h2 is replaced
by any trivial generator whose support does not touch Ka ∩ Kc
and ∂K . Then, since the trivial lazy generator may be expressed
by a 1-coboundary δW in K , I = δF = δ(T + δΩ + i1h1

+

i2h2) = δ(T + δΩ + i1h1
+ i2δW) = δ(T + i1h1). Therefore,

we can conclude that adding some generator trivial in H1(Ka, Z)
does not alter the solution in term of induced currents for the
same reasonswhy ungauged formulationswork.We note also that,
given an arbitrary 1-cycle c ∈ Z1(Ka), the dot product of the trivial
lazy generator with c is zero. Therefore, trivial generators verify
trivially the nonlocal algebraic Ampère’s law and the current ij does
not represent the current linked by the dual homology generator.
Instead, the value of the ij current relative to a trivial generator is
not unique and it is determined by the solution of the system of
equations. This is not surprising, since the ij current in this case
does not have a physical meaning.

Let us now see the other possible case, namely when lazy
generators are dependent but nontrivial in H1(Ka, Z). To this
aim, let us assume for example that ĉ1 = c1 and ĉ2 = c1 + c2 in
Fig. 5a are the representatives ofH1(Kc ∩Ka, Z) generators. Then,
by starting from the corresponding thinned currents, a standard
H1(Ka, Z) generator ĥ1 is obtained together with another lazy
generator ĥ2 in the same class. Then, I = δF = δ(T + δΩ + î1ĥ1

+

î2ĥ2) = δ(T + (î1 + î2)h1), where we used the standard generator
h1 in place of the two lazy generators in the same class since again
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a b

c d

Fig. 7. (a) An example of ĉ2 generator. (b) The thinned current t̂2 corresponding to
ĉ2 . (c) The boundary of the lazy cohomology generator ĥ2 corresponding to t̂2 is not
in the same H1(Ka ∩ Kc) cohomology class as ĉ2 . (d) D(ĥ2).

we use the property that the solution does not depend on the
particular representative chosen of a given cohomology class. Since
in the standard case I = δ(T + i1h1) and we implicitly get from
Ampère’s law i1 = î1 + î2, the two solutions in term of induced
currents are again the same.

It is important to remark that the DS algorithm has nothing
to do with techniques similar to the ones described in [41] that
‘‘grow a surface on the dual complex of Ka’’ starting from the
representatives of the H1(Kc ∩ Ka, Z) cohomology generators.
Such techniques are patently incorrect, since it is obvious that
starting from a mixed surface generator as ĉ2 is impossible to
extended it as a 1-cocycle in Ka. In fact, given for example a mixed
generator as ĉ2 in Fig. 7a, there exist 1-cycles c ∈ Z1(Ka ∩Kc) that
are homologically trivial in Ka such that their dot product ⟨ĉ2, c⟩
is nonzero. This yields to an inconsistency, since the fact that the
hi are 1-cocycles in Ka implies that ⟨hi, c⟩ = 0 for all c ∈ B1(Ka).

It is therefore important to understand why the DS algorithm
does no suffer from this severe limitation. The intuitive explanation
is that the trace of a lazy generator on Kc ∩ Ka obtained by
the DS algorithm is not in the same cohomology class as the
H1(Kc ∩ Ka, Z) generator that produced it in general. In fact, the
boundary ofD(h1) is required to beD(t1) (plus, in some caseswhen
Kc touches ∂K , some part in D(∂K)) and not D(c1). Moreover,
the 1-cochains hi are constructed by using K = Ka ∪ Kc and
they are restricted to Ka only in the last stage of the algorithm.
For example, the trivial lazy generator h2 on Fig. 6b exhibits a
trace on Kc ∩ Ka that is trivial in H1(Kc ∩ Ka, Z), see Fig. 6c,
whereas it has been produced with the H1(Kc ∩ Ka, Z) generator
c2 in Fig. 5a. Concerning the other example, the generator ĥ2 (see
Fig. 7d), produced starting by ĉ2 = c1 + c2 in Fig. 7a, has a trace
on Kc ∩ Ka that is cohomologous to c1, see Fig. 7c. Therefore, as
previously indicated, the DS algorithm automatically ignores the
components of boundary cocycles that are trivial in Kc .

To conclude, we verified both theoretically and with numerical
experiments that the use of linearly dependent cocycles in the
physical modeling does not introduce either any inconsistency in
the formulation of the boundary value problem or any penalties
in the computational time employed by the simulation due, for
example, to a hypothetical increase of the condition number of the
linear system matrix or to the use of twice as many cohomology
generators as needed.
4.3. Extension of the DS algorithm for homologically nontrivial K

The DS algorithm may be used also in applications were
K = Kc ∪ Ka is topologically nontrivial. This covers also the
situations where only the homologically nontrivial complex Ka
is available (in this case we assume that Kc is void). In the
development of the DS algorithm, we assumed (as typically
performed inMQS problems) that K = Kc ∪ Ka is a topologically
trivial cell complex. This assumption is required because the ESTT
algorithm [35] works only for homologically trivial complexes.
To use the DS algorithm on an arbitrary three-dimensional
combinatorial manifold with boundary K = Kc ∪ Ka one needs
to construct the complement C of K with respect to a box or
sphere containingK . Onemay employ an efficientmesh generator
as TetGen (http://www.tetgen.org/) to produce the mesh3 of
the complement C with respect to a box containing K . The
complement C is treated as a conducting region along with Kc in
the DS algorithm. From Theorem 2 in [29], the first cohomology
groups of Ka ⊂ K ∪ C may be obtained in the following way:
(1) Take every connected component C of Kc ∪ C.
(2) With DS algorithm compute the lazy generators of the

complement of C in K ∪ C.
(3) Restrict the cocycles obtained in (2) to Ka.
This way, the algorithm presented in this paper may be used
for an arbitrary three-dimensional combinatorial manifolds with
boundary.

5. Numerical experiments

The DS algorithm has been integrated into the research
software CDICE [45] implemented in Fortran 90. Three competing
algorithms presented in [20,21,29] are considered. Two computers
are used to the computations: a six years old Intel Core 2DuoT7700
2.4 GHz laptop with 4 GB of RAM and 64 GB of RAM and Intel
Xenon E7-8830 2.13 GHz processors computer. As the mesh size
increases, standard cohomology computations end up in failures
due to having exceeded the memory limit of the laptop. When the
laptop runs out of memory, the large computer is used. The DS
algorithm has been executed on the laptop up to five millions of
tetrahedra without encountering any problem, which shows that
it is quite economical in terms of memory usage.

Table 1 reports the time required (in seconds) for cohomology
computation by the various algorithms for the benchmark
problems described in [29] (not depicted here to save space). The
timings obtained on the large computer are given in brackets.
The Table presents also the time that DS algorithm requires for
computing a standard cohomology basis (see Appendix D for
implementation details).

The algorithm is going to be exploited to solve MQS problems
arising in fusion engineering and design, in engineering and
optimization of electromagnetic devices and the analysis of
features of magnetic fields generated by current-carrying thick
knots, see Fig. 8. We remark that the concept of lazy (co)homology
generators is not limited to MQS problems, but they may be
profitably used in many other problems arising in computational
physics.

6. Conclusions

The DS algorithm introduced in this paper, even though
is general and straightforward to implement and parallelize,
outperforms all competing state-of-the-art algorithms for first

3 Producing such a mesh is extremely fast, since the mesh does not need to
be refined. In other words, the so called initial mesh (that is produced from the
boundary mesh ∂C without adding any interior point [44]) is enough for this
application.

http://www.tetgen.org/
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Table 1
Time required (in seconds) for cohomology computation with various algorithms.

Benchmark β1(Ka) Tetrahedra H1(Ka, Z) [20,34] H1(Ka, Z) [21] TCT [29] DS lazy DS H1(Ka, Z)

Trefoil knot 1 199,208 24 23 0.6 0.3 1.1
Spiral 1 1,842,070 (424) (612) 10.1 1.7 4.1
Micro-inductor 1 2,197,192 (59,359) (>70,000) 24.5 2.4 4.2
Micro-transformer 2 2,582,830 (>70,000) (>70,000) 32.8 3.6 7.6
Micro-coaxial line 6 4,861,655 (612,828) (6128) 86.1 10.6 26.8
Toroidal shell 2 2,769,200 (1503) (>70,000) (>70,000) 3.4 3.9
Fig. 8. On the left, a complicated thick knot and the first cohomology group generator of its complement. For clarity, the dual faces in the support of h̃j = D(hj) are shown.
On the right, the current density obtained by the MQS solver.
cohomology group computations. The time required for computing
cohomology generators with the DS algorithm is so limited that it
allows to removewhat has been considered for more than twenty-
five years as the main simulation bottleneck for low-frequency
electrodynamics problems. Therefore, we expect that the DS al-
gorithmwill be embedded in the next-generation electromagnetic
CAE softwares and that lazy cohomology generators will be seen as
a major step forward in all physical problems requiring cohomol-
ogy generators.
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Appendix A. Cohomology generators of 2-manifolds

In this section, the algorithm to compute H1(Kc ∩ Ka)
generators presented in [36] is recalled. For simplicity, we consider
2-manifolds without boundary only (in which case Kc ∩ Ka =

∂Kc . Therefore, later in this section we write ∂Kc instead of
Kc ∩ Ka). In [36] it is described how to compute H1(Kc ∩ Ka)
for Kc ∩ Ka being a combinatorial 2-manifold with nonempty
boundary.

By the primal skeleton of ∂Kc we mean the graph consisting of
all the vertices and edges in ∂Kc . By the dual skeleton of ∂Kc we
mean a graph whose vertices are the 2-cells in ∂Kc and an edge is
put between two vertices iff. the corresponding faces in ∂Kc share
an edge in ∂Kc . Wewant to point out that edges of both the primal
and dual skeletons correspond to edges of ∂Kc .

Let us fix a spanning tree T of the primal skeleton. Let us also
fix a spanning tree T ′ of dual skeleton.We assume, that T and T ′ do
not share edges of ∂Kc . In [36,46] it is shown that the number of
edges in ∂Kc that are neither in T not in T ′ is the first Betti number
of ∂Kc . Moreover, the H1(∂Kc) generators are the cycles closed in
T by those edges, whereas the H1(∂Kc) generators are the cycles
closed in T ′ by those edges.
Fig. A.1. Upper left, the standard triangulation of a torus. Opposite sides are
identified. Upper right, tree on primal (solid bold), and dual (dotted bold)
skeleton. With double bold, the two edges not belonging to one of the trees are
depicted. Lower left, a cohomology generator closed by the first edge. Lower right,
cohomology generator closed by the second edge.

The idea of the procedure is presented in Fig. A.1.
In order to obtain the coefficients of the cocycle, a simple

procedure that orients the cycle is used. Let v andw be the vertices
of the edge that close the cycle. With a BFS strategy [47], a distance
function on the tree (or dual tree) from v is built as long asw is not
reached. Then, a path in the tree from w to v is found by following
the decreasing values of the defined function. In thiswaywe obtain
a cycle in the graph. The obvious details on how to orient the cycle
are left to the reader.
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Appendix B. Proof that the thinned currents produced by the
DS algorithm are cocycles

In this section, we show that the output t of the algorithm to
obtain thinned currents from H1(Kc ∩Ka) generators (that is part
of DS algorithm) is indeed a 2-cocycle. We need it to be a cocycle,
since this is a necessary and sufficient condition for the ESTT
algorithm termination [35] due to the fact that K is topologically
trivial. Let c be the 1-cochain from which t has been constructed
in DS algorithm. To show that t is a cocycle, first we need to
remind one of the Massey’s equations [33] that is a property of
any regular CW-complex. Let T be a 3-dimensional cell having 1-
dimensional cell E in boundary. Then there exist exactly two 2-
dimensional cells T1 and T2 in boundary of T both having E in their
boundary. Moreover, the incidence indices satisfy the following
equation (Theorem IX.7.2 in [33]):

κ(K , T1)κ(T1, E) + κ(K , T2)κ(T2, E) = 0.

In order to show that t is a cocycle, we have to show that δt = 0.
This is equivalent to showing that for every 3-dimensional cell W ,
⟨δt,W ⟩ = 0. From the DS algorithm, we know that only the 2-
simplices T ∈ Kc that have at least one edge e ∈ (Kc ∩ Ka) such
that ⟨c, e⟩ ≠ 0 may be nonzero in t. Therefore, ⟨δt,W ⟩ may be
nonzero only for 3-dimensional cells in Kc that have at least one
edge E ∈ (Kc ∩ Ka) such that ⟨c, E⟩ ≠ 0.

At the beginning, let us consider the case whenW has a unique
edge in the boundary. The other caseswill immediately follow from
this one. Let us assume that W has only one edge E in (Kc ∩ Ka)
such that ⟨c, E⟩ ≠ 0. Then, exactly the two 2-cells T1 and T2 from
the Massey’s equation will be nonzero in the cochain t. From the
DS algorithm, we have ⟨t, T1⟩ = ⟨c, E⟩κ(T1, E) and ⟨t, T2⟩ = ⟨c, E⟩

κ(T2, E), respectively. From the Massey’s equation, we know that
κ(W , T1)κ(T1, E) + κ(W , T2)κ(T2, E) = 0. After multiplying this
equation by ⟨c, E⟩ we get

κ(W , T1)κ(T1, E)⟨c, E⟩ + κ(W , T2)κ(T2, E)⟨c, E⟩ = 0.

Therefore,

0 = κ(W , T1)(κ(T1, E)⟨c, E⟩) + κ(W , T2)(κ(T2, E)⟨c, E⟩)

= κ(W , T1)⟨t, T1⟩ + κ(W , T2)⟨t, T2⟩ = ⟨δt,W ⟩

that proves that ⟨δt,W ⟩ = 0.
Now, let us assume thatW has the edges E1, . . . , El ∈ (Kc∩Ka)

such that for each i ∈ {1, . . . , l}, ⟨c, Ei⟩ ≠ 0. Each Ei contribute
in ⟨δt,W ⟩ with two 2-cells T1 and T2 exactly as described in
above. Therefore, its total contribution of Ei to ⟨δt,W ⟩ is zero.
Consequently, the total contribution of all edges E1, . . . , El to
⟨δt,W ⟩ is again zero. That proves that t is indeed a 2-cocycle.

Appendix C. Proof that the output of the DS algorithm are lazy
cohomology generators

Let us show that the 1-cocycles obtained by the DS algorithm
span H1(Ka, Z). For this aim, the Mayer–Vietoris sequence for
homology is needed [48]:

H1(K, Z) → H1(Kc ∩ Ka, Z)
i∗c ,i∗a
−→H1(Kc, Z) ⊕ H1(Ka, Z)

→ H2(K, Z).

Since K is topologically trivial, Hi(K, Z) are trivial. Therefore,
(i∗c , i

∗
a) : H1(Kc ∩ Ka, Z) → H1(Kc, Z) ⊕ H1(Ka, Z) is an isomor-

phism induced by inclusions ic : Kc ∩ Ka ↩→ Kc and ia : Kc ∩

Ka ↩→ Ka. Therefore, having the generators of H1(Kc ∩ Ka, Z),
one may choose a subset of them that generates either H1(Kc, Z)
or H1(Ka, Z).

Let us now take a basis ofH1(Kc∩Ka, Z). Depending ifKc∩Ka
is a combinatorial 2-manifold with boundary or not, we will use
Poincare (H1(Kc ∩ Ka, Z) ≃ H1(D(Kc ∩ Ka), Z)) or Lefschetz
(H1(Kc ∩ Ka, Z) ≃ H1(D(Kc ∩ Ka), ∂D(Kc ∩ Ka), Z)) duality.
For a given 1-cocycle representing H1(Kc ∩Ka) basis, a dual cycle
is constructed as in Fig. 4a.

Let uswork on a fixed connected component ofKc . For the sake
of brevity, by writing Kc and Kc ∩ Ka we mean just the fixed
connected component of Kc or Kc ∩ Ka.4

ForKc ∩Ka, let us consider all the cocycles t1, . . . , t2g , where g
is the genus ofKc ∩Ka. Our aim is to show that each ti is a thinned
current as described in [29]. From the point (3) of the DS algorithm,
we have that the 2-cells nonzero in ti are the cells that have a face
in the corresponding H1(Ka ∩ Kc, Z) generator. Let us now shift
the cycle dual to the given cohomology generator of Kc ∩ Ka (see
Fig. 4b) to the interior of Kc , see Fig. 4c.

More formally, let us take c1, . . . , c2n representing H1(D(Kc ∩

Ka)) generators on the boundary which are dual to our H1(Kc ∩

Ka) generators. Let us shift them in the interior of Kc by
constructing s(c1), . . . , s(c2n) as in Fig. 4a. It is clear, that ci
and s(ci) are in the same homology class. Therefore, from the
Mayer–Vietoris theorem, we know that we can pick a subset
{s(cl1), . . . , s(cln)} ⊂ {s(c1), . . . , s(c2n)} which are a H1(Kc) basis.

From the Appendix B, every ti is a cocycle. It is clear the
{s(cl1), . . . , s(cln)} are cycles dual to the cocycles {tl1 , . . . , tln}.
Therefore, {tl1 , . . . , tln} are thinned currents of Kc . Consequently,
thanks to Theorem 2 in [29], the output of the ESTT algorithm
executed on {tl1 , . . . , tln} is a H1(Ka) basis. Of course, since the
ESTT algorithm being part of DS algorithm is run not just on
{tl1 , . . . , tln}, but on {t1, . . . , t2n} thinned currents, at the output
we get a set of lazy cohomology generators instead of a H1(Ka)
basis.

Appendix D. Finding cocycles in Kc ∩ Ka that extend to a
cohomology basis of Ka

A technique to partition the homology generators of a
combinatorial 2-manifold into two classes – the ones that bound
in Kc , and the ones that bound in Ka – is proposed in [37].
This algorithm is based on the computation of linking numbers
between all possible pairs of generators and subsequent SNF
computation of a small integer matrix containing the computed
linking numbers. Linking numbers are defined for disjoint 1-cycles
only, so a pre-processing has been applied in [37] on surface
generators to perturb them in such a way no intersections are
present between any pair of generators. For this purpose, the
submerged cycles and shifted surface cycles have been found. This
is not completely trivial to do algorithmically and cycles have to be
‘‘straightened’’ before [37]. The complexity of the linking number
computation is quadratic with the number of edges inKc ∩Ka and
a computationally costly interval arithmetic [49] package has to
be used to rigorously compute linking numbers without the risk of
errors due to the finite precision of real numbers [49,50], especially
on coarse meshes.

In this paper, to find the change of basis to find cohomology
generators nontrivial inKa weuse the same idea presented in [37],
but finding linking numbers between paths on the dual complex.
This approach, contrarily to [37], does not require any extra
computations since the surface cycles are obtained by considering
the dual 1-cells that are dual to 1-cells in the support of the
cohomology generators, while the submerged cycles are defined

4 In this proof, to keep the notation as simple as possible, we assume that
Ka is connected. In such case, for each connected component of Kc there is
a corresponding connected component of Kc ∩ Ka . In the case when Ka is
not connected, in the following the reader should consider all the connected
components of Kc ∩ Ka incidental to the considered connected component of Kc .
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simply as the dual 1-cells that are dual to 2-cells in the support
of thinned currents. We want to remark that for this purpose the
2-cells belonging to the support of thinned currents have to be in
order. They may be easily ordered in linear time and the technical
details are left to the reader.

About the practical implementation, the algorithm presented
in [50] is used to compute linking numbers and the interval
arithmetic library for Fortran 90 presented in [51] is employed for
interval arithmetic computations.
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