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We present a Volume Integral formulation for the solution of large scale eddy-current problems coupled 
with low-rank approximation techniques. Two alternative approaches are introduced to map the problem 
unknowns into a subset of grid elements forming a base of global or mixed (global and local) cycles, 
respectively, and guarantee the well-posedness of the problem both in simply and multiply connected 
domains. The paper shows that the adoption of mixed cycles is computationally more efficient than 
global ones. In particular, integral formulations based on global cycles cannot be safely coupled with low-
rank approximation techniques, which, however, are crucial to increase the size of the largest solvable 
problem, like the ones involving conducting structures in magnetic confinement fusion devices. The aim 
of this paper is to demonstrate how such bottleneck can be overcome by considering local and global 
cycles differently, on the basis of the cohomology theory. An improved, efficient, and robust algorithm 
for computing a base of global cycles is described in detail. In particular, the presented algorithm is able 
to almost minimize the cohomology basis length, i.e. the number of mesh edges forming such a basis, in 
order to allow an efficient solution of large scale problems. Furthermore, a novel and general method to 
handle global and local cycles together, in the context of low-rank approximated matrices, is shown to be 
efficient for the solution of large scale eddy-current problems in multiply connected domains. Along the 
manuscript, pseudo-codes are given, which clarify the proposed methods and help to implement them 
by Volume Integral Equation practitioners.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Integral formulations have shown to be suitable alternatives 
to usual Finite Element Methods (FEM) for the solution of eddy-
current problems involving complex 3D conducting structures, es-
pecially when embedded in large non-conducting regions [1–3]. An 
example is represented by magnetic confinement fusion (MCF) de-
vices, where large metallic structures can include a lot of small and 
tailored components (e.g. the ports for diagnostics, heating and 
current drive and vacuum systems, the insulations gaps, the di-
vertor plates, etc.). The study of this kind of devices requires both 
high solution accuracy and high computational efficiency (in terms 
of solution time and memory) of the formulation, in order to solve 
large scale problems on standard workstations [4].

✩ The review of this paper was arranged by Prof. N.S. Scott.
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In this regard, we compare two Volume Integral approaches, 
which rely on a discrete reformulation of Maxwell’s equations over 
a pair of interlocked grids [5,6] and start from a common discrete 
equation referred as Electric Field Integral Equation (EFIE). Despite 
both approaches give the same numerical results, the different 
techniques adopted to impose the solenoidality condition of the 
current density field lead to a different mapping of the problem 
unknowns on a basis of grid cycles. The former, called L-approach 
in this paper, strictly relies on a circuit interpretation of the eddy-
current problem, as typical of Partial Element Equivalent Circuit 
(PEEC) methods [7–10]. The problem is solved by the direct appli-
cation of the loop current method of circuit theory, without the 
introduction of any vector potential, hence the well-posedness is 
guaranteed both in simply and multiply connected domains. The 
latter, called C-approach, solves the eddy-current problem by the 
common definition of the electric vector potential [11]. The well-
posedness of the problem in multiply connected domains is ad-
dressed with cohomology theory [12], resulting into a topological 
pre-processing, required by the formulation, to identify a basis of 
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the first cohomology group generators of the conductor’s boundary 
[13].

The aim of the paper is to investigate which approach performs 
better in the solution of large scale problems, with a particular fo-
cus on MCF devices. The coupling of volume integral formulations 
with low-rank approximation techniques has already demonstrated 
to be an efficient computational method to increase the size of 
the largest solvable problem on standard workstations [4,14,15]. 
However, the integral approach has to be carefully formulated in 
order to obtain an efficient, but at the same time accurate, approx-
imation of the dense matrices arising from the chosen approach. 
As regards the C-approach, starting from the algorithm described 
in [16], a new robust algorithm is proposed for the computation 
of the first group cohomology basis of the conductor’s boundary, 
which ideally matches with the adopted low-rank approximation 
method. The obtained optimal cohomology basis allows for reduc-
ing the computational costs of system assembling and solution, 
without losing the physical properties introduced by the cohomol-
ogy generators. Moreover, we also propose a clustering technique 
which allows for efficiently applying low-rank compression tech-
niques in the C-approach.

The algorithm is implemented on the basis of graph theory and 
of the duality between the interlocked grids. Hence, without los-
ing any formality, it can be easily followed by those unfamiliar 
with homology and cohomology theories [12]. The algorithm is 
robust and efficient, since it requires algebraic operations with in-
teger numbers only, avoiding any loss of numerical precision aris-
ing from the use of floating point arithmetic. Moreover, in contrast 
with previous approaches such as [17], it computes an optimal ba-
sis, in the sense that, first, it almost minimizes the basis length, 
i.e. the number of mesh edges which form such a basis, allowing 
a significant speed-up in the system assembling, which otherwise 
could represent a bottleneck in the problem solution. Moreover, 
the computed basis provides a full rank system to be solved, with 
a time consumption of a few seconds for the basis computation in 
meshes of tens of thousands of elements, which is essentially neg-
ligible if compared to the time required by the system assembly 
and solution.

On the contrary, the adoption of a global basis in the L-
approach does not allow an efficient and correct coupling with 
low-rank approximation techniques, thus limiting the applicability 
of the L-approach to large scale problems.

The paper is organized as follows. In Section 2, the equations 
of the eddy-current problem are derived for the two presented 
approaches. In Section 3 and Section 4, the two approaches are ex-
plained in detail. Section 5 rigorously describes the implemented 
algorithm for computing an optimal basis of the first cohomol-
ogy group, while Section 6 deals with the coupling with low-rank 
approximation techniques. Numerical results are presented in Sec-
tion 7 as regards the numerical accuracy and the computational 
performances of the approaches, and in Section 8 regarding the 
computational costs of the cohomology basis computation. Finally, 
in Section 9, conclusions are drawn.

2. Volume Integral formulation

Let � ⊂ R3 be a conducting domain with electric resistivity 
ρ(r), with r ∈ �. Assuming a magneto quasi-static (MQS) approxi-
mation of the electromagnetic fields, the following set of equations 
holds for every point r ∈ �:

∇ × e = − iωb (1)

∇ × h = j (2)

∇ · b = 0 (3)
2

∇ · j = 0 (4)

e = ρj, (5)

where ω is the angular frequency, j is the eddy-current density, 
h and b are the magnetic field and the magnetic flux density, re-
spectively. Taking into account the solenoidality condition of the 
magnetic flux density (3), Faraday’s law (1) is rewritten as

∇ × e + iω∇ × a = −iω∇ × a0, (6)

where a and a0 are the magnetic vector potential due to the eddy-
currents and the external currents, respectively. The previous equa-
tion can be rewritten, introducing the electric scalar potential φ, as 
follows:

e + iωa + ∇φ = −iωa0. (7)

We recall that a and φ can be expressed as functions of the current 
density j by the following integral expressions [18]:

a (r) = μ0

∫
�

g
(
r, r′) j

(
r′)dr′ (8)

φ (r) = − 1

iωε0

∫
�

g
(
r, r′)∇′ · j

(
r′)dr′ (9)

− 1

iωε0

∫
∂�

g
(
r, r′) j (r′) · n

(
r′)dr′,

where r′ ∈ � is the source point, g = (4π
∣∣r − r′∣∣)−1 is the free-

space Green’s function (i.e. the fundamental solution of Maxwell’s 
equations in vacuum [19,9]), n is the unit vector normal to the 
domain boundary in r′ , and ∇′· indicates that the divergence op-
erator is applied on the source point r′ . By using (8) and (9) in (7), 
the integral equation, usually referred as Electric Field Integral Equa-
tion (EFIE), is obtained, which relates the total electric field and 
the scattered electric field (i.e. the term jωa + ∇φ) to the eddy-
current field j. Moreover, (4) implies that no charge accumulations 
can appear in the conducting domain �, thus the MQS-EFIE (7)
becomes

e + iωa = −iωa0. (10)

The above equation is the common starting point for the so-
lution of eddy-current problems by the two integral formulations 
presented in this work.

In both approaches, the discretization of the electromagnetic 
fields is carried out over a pair of interlocked grids, through the 
natural association of physical variables to the grid elements [5,6]. 
However, different approaches can be followed to apply condition 
(4), resulting into different algebraic systems of discrete equations.

Let K be a volumetric grid of the domain �, consisting of Nn

nodes, Ne edges, N f faces and Nv volumes. Let us define with ni , 
ei , f i , vi the generic i-th node, edge, face and volume of K, re-
spectively. The sparse matrices G, C and D store the topological in-
cidences between the pairs edges-nodes, faces-edges and volumes-
faces of K, respectively, providing a discrete form of the gradient, 
curl, and divergence operators in K [5]. A dual grid K̃ = D(K), 
where D is the duality operator [5], is constructed by taking the 
barycentric subdivision of K, which results into Ñn = Nv dual 
nodes, Ñe = N f dual edges and Ñ f = Ne dual faces. Similarly to 
primal grid elements, ñ j , ẽ j , f̃ j correspond to the j-th node, edge, 
and face of K̃, respectively.

The following relations hold between incidence matrices of the 
interlocked grids:
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G̃ = −DT (11)

C̃ = CT . (12)

According to Tonti’s scheme for Maxwell’s equations [5], the 
current density field j is expanded by means of face basis func-
tions:

j(r) =
N f∑
j=1

w j(r)I j, (13)

where w j is the vector basis function associated to f j and I j

is the current across such face. When the grid consists of stan-
dard elements, like tetrahedra or hexahedra, one may use standard 
Whitney face basis functions [20], like in [1]. Alternatively, the ge-
ometric basis functions proposed in [21] are suitable for general 
polyhedral elements. By using (13), (5) and (8) inside (10), one 
gets

N f∑
j=1

I j

⎡
⎣ρ(r)w j (r) + iωμ0

∫
�

g
(
r, r′)w j

(
r′)dr′

⎤
⎦= −iωa0 (r) .

(14)

A Galerkin testing of the previous equation yields the following 
system of linear equations, that enforces the discrete form of the 
MQS-EFIE on the dual edges of K̃ :
⎧⎪⎨
⎪⎩

(R + iωM) I = ZI = −iωÃ0 (a)

DI = −G̃T I = 0 (b)

I j = 0, ∀ f j ∈ ∂K, (c)

(15)

where the vector I stores the unknown currents Ii , i ∈ {1, ..., N f }, 
and the generic i-th entry of Ã0 is given by

Ã0i =
∫
�

a0 · wid�. (16)

Eq. (15b) expresses the discrete counterpart of the solenoidality 
condition (4), while (15c) represents the restriction of such condi-
tion to the domain boundary ∂�, given that j(r) ·n(r) = 0, ∀r ∈ ∂�. 
Furthermore, the resistance matrix R and the inductance matrix M
are introduced. The former expresses the discrete counterpart of 
the constitutive relation (5), while the latter takes into account the 
mutual magnetic couplings. A generic (i, j) entry of the local ma-
trices is computed as follows [22,13]:

Rij =
∫
�i

ρ(r)wi (r) · w j (r)dr (17)

Mij = μ0

∫
�i

∫
� j

wi (r) · w j
(
r′) g
(
r, r′)dr′dr, (18)

where r ∈ �i , r′ ∈ � j and �i ⊂ � is the support of wi , i.e.:

�i =
Nv⋃

k=1,vk� f i

vk. (19)

Different approaches can be developed in order to solve (15a)
together with conditions (15b) and (15c). According to the chosen 
approach, the unknown currents I are mapped from the primal 
faces of K to a different set of topological elements, consisting 
of closed loops (i.e. cycles) of edges belonging to the primal grid 
3

K or the dual grid K̃. In this regard, a different topological pre-
processing is required to guarantee the uniqueness of the solution, 
in particular when the domain � is not simply-connected.

In the following sections, we develop an eddy-current formu-
lation that directly solves (15a) in terms of loop currents and a 
second one which relies on the electric vector potential. For both 
approaches a circuit interpretation exists, given that electro-motive 
forces are associated to dual edges. Indeed, as commonly done in 
PEEC formulations [7,8,23], (15a) stores the electro-motive forces 
balance on each dual edge of K̃ , where R and M take into account 
the resistive and inductive voltage drops respectively, while capac-
itive effects are neglected because of the MQS approximation.

For the sake of simplicity, in introducing the two approaches, 
we assume that the computational domain � consists of a single 
component (conductive region), the extension to multi-component 
domain problems (e.g. two disjoint conducting spheres) being 
straightforward.

3. Loop current approach

The loop current approach, from now on L-approach, consists 
in the solution of the electric circuit representing the eddy-current 
problem on K by means of the loop current method of circuit the-
ory [24]. In this method, one constructs and solves a system of 
equations in which all the unknowns are loop currents, which may 
be defined as the currents that flow in a cycle basis of the dual 
edge-dual node graph of K̃, i.e. a maximal set of independent cy-
cles. Kirchhoff’s voltage laws (KVL) are enforced on such a set of 
independent loops.

Let’s consider the connected dual graph G̃ ⊂ K̃ corresponding 
to the Ñe edges and the Ñn nodes of K̃. The boundary condition 
(15c) is simply enforced by removing the dual graph edges asso-
ciated to the boundary faces of K (hence, from now on, Ñe will 
correspond to the number of faces f j ∈ K \ ∂K). We remind that 
the rank of matrix G̃ is Ñn − 1,1 hence to derive a set of inde-
pendent equations one dual node has to be “grounded”, i.e. the 
corresponding column in G̃ is removed. Given an arbitrary tree-
cotree decomposition of G̃ , let G̃reo be the reordered incidence 
matrix of G̃ , obtained by a row-swapping of G̃, such that

G̃reo =
[

G̃t

G̃c

]
, (20)

where G̃t is the (Ñn − 1) × (Ñn − 1) submatrix of G̃, having as rows 
only the ones corresponding to a tree of G̃ , while G̃c is the (Ñe −
Ñn + 1) × (Ñn − 1) submatrix of the corresponding cotree. Since 
matrix G̃t is non-singular, it can be symbolically inverted obtaining 
the new incidence matrix [25]

G̃′ = G̃reoG̃−1
t =

[
1
F̃

]
, (21)

where F̃ is a (Ñe − Ñn + 1) × (Ñn − 1) matrix, named fundamental 
cutset matrix, which stores the incidences between the cotree edges 
and a set of independent cutset of G̃ . Using (21) and by reordering 
the vector I in the same manner as G̃reo , (15b) holds also for G̃′
[25]:

G̃′ T
[

It

Ic

]
= G̃−T

t G̃T
reo

[
It

Ic

]
= 0. (22)

1 If the domain is formed by Nc disjoint subdomains, i.e. � =⋃Nc
k=1 �k , rank of G̃

would be Ñn − Nc .
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Fig. 1. Example of dual graph tree-cotree decomposition. (a) and (b) show the tree 
and cotree edges of G̃ , once removed the edges ẽ j = D( f j) : f j ∈ ∂K, respectively. 
In (c) one of the independent cycle is shown (green), built up by the relative cotree 
edge (in red) and other tree edges (in blue). (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Then, it is straightforward to prove that the unknown currents as-
sociated to the tree edges of G̃ are linearly dependent from the 
ones belonging to the cotree edges with
[

It

Ic

]
=
[−F̃T

1

]
Ic = L̃Ic . (23)

In the end, by pre-multiplying (15a) by L̃T —which corresponds 
to the enforcement of the KVL on the dual cycle basis—and by us-
ing (23), a new algebraic form of the MQS-EFIE is obtained(

L̃T ZL̃
)

Ic = −iωL̃T Ã0. (24)

Matrix L̃ maps the current vector I into a new vector of lin-
early independent unknowns, which are the loop currents Ici , 
i ∈ {1, ..., Ñe − Ñn + 1}, associated to the cotree edges of G̃ . Each 
cotree edge closes an independent cycle z̃i formed by itself and 
the edges of the tree (like the one in Fig. 1c). This is in analogy 
with the loop current method of circuit theory, where the Kirch-
hoff’s voltage equations are written for a set of independent loops 
of the circuit graph.

A topological preprocessing is required for the computation of 
F̃. Such operation can be achieved by actually inverting G̃t as in 
(21) or, more efficiently, by computing the reduced row echelon 
form (RREF) of G̃reo , since (G̃′)T = R R E F (G̃T

reo). Nevertheless, the 
resulting matrices in both approaches are affected by matrix fill-in 
(i.e. loops consisting of a big number of edges are generated), thus 
the number of non-zeros of F̃ may increase if compared with the 
sparse matrix G̃t . A technique used to reduce the fill-in of sparse 
matrices is nested dissection which, in this work, has been imple-
mented through the METIS library [26]. The ndmetis program [27]
performs a reordering of the G̃ dual edges such that, once F̃ is 
computed, the length (i.e. the number of edges) of each cycle is 
reduced (Fig. 2).

The described formulation can be easily implemented, as shown 
in Algorithm 1, without caring about the topological properties of 
the domain. Indeed, since this approach does not rely on a vector 
potential, (24) is well-posed and admits a unique solution both in 
simply-connected and multiply connected domains.
4

Fig. 2. Non-zero entries (nz) in a 13034 × 6599 G̃′ matrix computed without any G̃
reordering (a) or using ndmetis (b).

Algorithm 1 L-approach.
Input: K (primal grid of �), ω;
Output: Eddy-current vector in �;

1: Compute topological matrices G,C,D;
2: Swap G̃ rows using nested-dissection algorithm (e.g. using METIS library);
3: Construct a tree T of G̃ , and the corresponding cotree C , such that every ẽ j =

D( f j) with f j ∈ ∂K will be in T ;
4: Reorder G̃reo as in (20);
5: Get F̃ from R R E F (G̃T

reo);
6: Compute matrices R and M;
7: Assemble and solve system (24);
8: Get all the currents as I = L̃Ic ;
9: Reconstruct eddy-current vector j (13);

10: Return: j(r), r ∈ �;

4. Vector potential approach

The vector potential approach, from now on C-approach, relies 
on the use of the electric vector potential [1,11,13].

Indeed, since j is a solenoidal field, it can be expressed as the 
curl of a vector potential in a simply-connected domain. Therefore 
the vector of currents I is written as

I = CT, (25)

where the degrees of freedom (DoFs) where the vector T stores the 
integral of the electric vector potential on primal grid edges.

More in general, if � is a multiply connected domain, I is rede-
fined as

I = CT + Wi, (26)

where i is the vector of independent currents [13,17,28], and the 
columns of W store the representatives of generators of the sec-
ond relative cohomology group H2(K, ∂K) [12,29] (see Fig. 3a). The 
second relative cohomology group, by its very definition, spans 
solenoidal fields tangent to ∂K that are not curl of some vector 
field. As an example, W for a solid toric conductor is formed by 
a single column whose entries, if interpreted as electric current 
DoFs, form a unit current that flows on a dual 1-cycle2 around the 
torus (see Fig. 3a). More in general, W has a number of columns 
equal to β1(K), where β1(K) is the number of 1-dimensional holes 

2 By definition, a p-cycle is a linear combination of p-cells of K (where p =
0, 1, 2, 3 denotes a node, edge, face or volume), called p-chain, which boundary is 
zero. It is straightforward to extend such definition to dual p-cycles on K̃.
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Fig. 3. Example of cohomology generators for a solid torus K. (a) The support
[16] of a representative t1 of the H2(K, ∂K) generator. It can be thought as a 
thinned unit current that flows around the torus. In this example, t1 is obtained 
as t1 = Cc1, where c1 is represented in Fig. 3b. (b) The support of two representa-
tives of H1(∂K) generators. The thick red edge belongs to both supports of c1 and 
c2. They correspond to the poloidal and toroidal currents that flow on ∂K. (c) di , 
with i ∈ {1, 2}, is the cycle made of dual edges which are dual to ci in ∂K. d1 is 
homologically trivial in R3\K, whereas d2 is trivial in K. (d) t2 = Cc2 is trivial in 
H2(K, ∂K).

in K (1st Betti number).3 Indeed, a basis of H2(K, ∂K) contains 
β1(K) independent 2-cycles, i.e. rank(W) = β1(K). The indepen-
dent currents i are additional unknowns of the eddy-current prob-
lem in the case of multiply connected domain.

The formulation requires an algorithm for the automatic com-
putation of W. For efficiency, it is preferable to construct W by 
working on ∂K only, because there are less geometric elements to 
process in ∂K than in the whole K. In this regard, W is usually 
computed as

W = CH, (27)

where the columns of H store some of the representatives of 
generators of the first cohomology group of the boundary H1(∂K)

[12,13], and consequently, the currents in (26) become

I = C (T + Hi) . (28)

Then, by using (28) in (15a) and pre-multiplying by [C CH]T , 
the MQS-EFIE is re-written as[

K KH
HT K HT KH

][
T
i

]
= −iω

[
CT Ã0

HT CT Ã0

]
, (29)

where

K = CT (R + iωM) C. (30)

The first and the second rows in (29) enforce the discrete Faraday’s 
law on local and global cycles, respectively.

Concerning the boundary condition (15c), we set to zero the 
entries of the vector T related to edges on ∂K. To reduce the un-
knowns and to impose a tree-cotree gauge [11], we also set to zero 
the entries of the vector T on a suitable tree of K \ ∂K. Once H is 
constructed (which is the topic of Section 5), the above described 
approach can be easily implemented following Algorithm 2.

As previously stated, H is constructed by processing the geo-
metric elements belonging to ∂K only. Nevertheless, there is also 

3 A 1-dimensional hole in K is represented by any set of points r ∈R3 \K, which 
can be surrounded by a 1-cycle of K.
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Algorithm 2 C-approach.
Input: K (primal grid of �), H, ω;
Output: Eddy-current vector in �;

1: Compute topological matrices G,C,D;
2: Construct a tree T of G , and the corresponding cotree C , such that every ei ∈

∂K will be in T ;
3: Compute matrices R and M;
4: if rank(H) = 0 then
5: Assemble and solve system (29) for cotree edges only;
6: Get current fluxes as I = CT, where Ti = 0 if ei ∈ T , i ∈ {1, ..., Ne};
7: else
8: Assemble and solve system (29) for cotree edges and the basis H1(∂K);
9: Get currents as I = C(T + Hi), where Ti = 0 if ei ∈ T , i ∈ {1, ..., Ne};

10: end if
11: Reconstruct eddy-current vector j (13);
12: Return: j(r), r ∈ �;

a downside to this approach. The major difficulty here is that the 
H1(∂K) cohomology group produces twice the number of gen-
erators of a H2(K, ∂K) basis, since a basis of H1(∂K) is formed 
by β1(∂K) = 2β1(K) 1-cycles, where β1(∂K) is the number of 1-
dimensional holes in ∂K.4 For example, when dealing with the 
solid torus, two possible representatives of boundary generators of 
H1 are depicted in Fig. 3b. The thick red edge belongs to both sup-
ports of c1 and c2. They correspond to the poloidal and toroidal 
currents that flow on ∂K. It is always possible to find a basis of 
H1(∂K) generators such that half generators have the dual cycle 
in ∂K (i.e. a cycle formed by dual edges [12] in ∂K) that is the 
boundary of a 2-chain, i.e. a surface, which lies in R3\K.

Such kind of dual cycles, like d1 in Fig. 3c, are said to be 
homologically trivial in the insulator R3\K [12]. They produce a 
H2(K, ∂K) basis when pre-multiplied by C, see Fig. 3a and [16]. 
We will refer to these cycles as relevant generators of the first 
cohomology group H1(∂K). The remaining dual cycles, like d2 in 
Fig. 3c, are the boundary of a 2-chain which lies in K (homolog-
ically trivial in the conductor mesh). They must be discarded to 
obtain a full rank system (29), since they do not produce a repre-
sentative of a H2(K, ∂K) basis, like the one in Fig. 3d.

A first approach, proposed in [17], suggests to still use all rep-
resentatives of the H1(∂K) basis to produce W by pre-multiplying 
the representatives H by C. The obtained W is called a lazy co-
homology basis and the obtained system is singular, but generally 
iterative and direct solver manage to solve such systems.

On the contrary, if one wants to obtain a full rank system, there 
are essentially two techniques. One may try to add to the basis W
one lazy cohomology generator at a time, but only if the generator 
is independent with respect to the generators already added previ-
ously in the basis. This is the approach followed in [30]. However, 
checking independency is costly, as it requires to solve one linear 
system with integer coefficients for each generator. Moreover, since 
real coefficients are used to this aim in practice, see [30], there is 
also a loss of robustness, since—because of the finite precision of 
floating point representation of real numbers—a threshold has to 
be added for checking independency. Thus, the computational ef-
fort of this approach is huge, especially if the number of generators 
is large.

Another, much more efficient, technique to find the required 
change of cohomology basis to obtain W has been introduced in 
[16,28], and is the approach followed in this work. In the next 
section, we will discuss in detail how to efficiently compute a 
lazy cohomology basis and how to retrieve, from such a basis, 
only the first group relevant generators which produce a basis of 
H2(K, ∂K).

4 A 1-dimensional hole in ∂K is represented by any set of points r ∈ R3 \ ∂K
which can be surrounded by a 1-cycle of ∂K.
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Fig. 4. Construction of a dual BFS tree T̃ b (in dashed green lines) and a maximal 
spanning primal tree T b (in solid thick magenta lines) on the boundary of a torus. 
The basepoint, from which T̃ b is rooted, is indicated by the red circle. A 2D rep-
resentation of the torus is employed: the horizontal arrows indicate the toroidal 
direction, while the vertical arrows indicate the poloidal one; edges on the left and 
the right sides are identical, as well as the edges on the top and bottom sides. The 
edges highlighted in yellow populate the set R, i.e. they do not belong to any of 
the above trees.

5. Computation of an optimal H 1(∂K) cohomology basis

The computation of a H1(∂K) basis has been discussed in sev-
eral works and a general and fast method, described in [28], has 
been developed for the computation of the lazy first cohomology 
group generators. In this section, the algorithm described in [28] is 
reviewed and new steps are introduced in order to compute only 
the relevant generators of the first cohomology group H1 of the 
boundary ∂K. Indeed, the presented procedure allows for comput-
ing a matrix H which, once pre-multiplied by C, gives only β1(K)

2-cycles which are representatives of a H2(K, ∂K) basis. On the 
contrary to the use of lazy generators as representatives of W, 
by using such a basis the obtained system (29) is full rank, with 
non-negligible computational advantages in the system solution. 
The presented algorithm is robust and is not affected by numer-
ical precision, since all the arithmetic operations are performed 
with integer coefficients. Moreover, as will be demonstrated in 
the last section of the paper, thanks to the easy parallelization 
of the procedure, the required computation time is very small. A 
pseudo-code of the complete algorithm, described in the following 
paragraphs, is reported in Algorithm 3.

5.1. Lazy cohomology generators algorithm

Let Kb be the boundary ∂K of the primal grid K, composed 
by Nb

f faces, Nb
e edges and Nb

n nodes. A barycentric subdivision 
of Kb yields to the dual grid K̃b = D(Kb), consisting of Ñb

f = Nb
n

faces, Ñb
e = Nb

e edges and Ñb
n = Nb

f nodes.5 Gb ⊂ Kb denotes the 
primal graph of Nb

e edges and Nb
n nodes, while G̃b ⊂ K̃b is the 

corresponding interlocked dual graph of Ñb
e edges and Ñb

n nodes.
We construct a spanning dual tree T̃ b on G̃b , using a Breadth-

First-Search (BFS) algorithm or, equivalently, by Dijkstra algorithm 
[31] weighting all the dual edges with a unitary value (line 7 of 
Algorithm 3). Since the tree is rooted from an arbitrary dual node 
ñ∗ = D( f ∗) with f ∗ ∈ Kb , called basepoint (see Fig. 4), let define 
the distance dist(ñi, T̃ b) of a node ñi ∈ T̃ b as the number of con-
secutive dual edges which connect ñi with the root node ñ∗ . Then, 
a maximal spanning tree T b is constructed on Gb \ D(T̃ b) (e.g. us-
ing Kruskal algorithm, as at line 8 of Algorithm 3), i.e. neglecting 
all the primal edges corresponding to the dual edges of T̃ b , and 
weighing any remaining edge as:

5 From now on the duality operator will be applied to the boundary Kb only.
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Fig. 5. Cohomology H1(∂K) and homology H1(∂K) generators of the torus com-
puted with the basepoint of Fig. 4. (a) The cohomology generators can be inter-
preted on the dual complex as cycles. These cycles are made by dual edges that are 
dual to primal edges in the support of each cohomology generator. The correspond-
ing primal edges, which incidences are actually stored in H, are shown in (b). The 
representatives of the homology basis are reported in (c). (d) shows the dual cycles 
of the cohomology generators obtained with a different basepoint.

pi = dist(ñi,1, T̃ b) + dist(ñi,2, T̃ b), ∀ei ∈ Gb : D(ei) /∈ T̃ b, (31)

where ñi,1 and ñi,2 are the dual nodes incident with the dual 
edge ẽi = D(ei). Once a pair of interlocked trees respecting the 
properties above has been constructed, the set R of the primal 
edges which do not belong to anyone of them will be populated 
by 2β1(K) elements (see Fig. 4), i.e.:

R =
{

ei ∈ Kb : ei /∈ T b ∧ D(ei) /∈ T̃ b
}

, with card(R) = 2β1(K).

(32)

As reported in lines 10-15 of Algorithm 3, for each edge eh ∈R, 
h ∈ {1, ..., 2β1(K)}, we construct the unique dual 1-cycle D(hh) ∈
T̃ b ∪ D(eh), see Fig. 5a. The set of such cycles represents the short-
est basis of the first cohomology group H1 of Kb with the base-
point ñ∗ . For each cohomology generator hh , its incidences with 
the edge set of K are stored in the columns of H. Fig. 5b shows 
(thick solid lines) the representatives of H1(∂K) on the corre-
sponding primal grid edges, whose incidences are actually stored 
in H.

Similarly, the shortest basis of the first homology group H1 of 
Kb , with the basepoint ñ∗ , can be formed by closing, for each edge 
eh ∈ R, h ∈ {1, ..., 2β1(K)}, the unique 1-cycle hh ∈ T b ∪ eh , see 
Fig. 5c.

Nevertheless, the assembling time of matrix blocks in (29) in-
volving H can represent a bottleneck for the presented formulation 
when applied to large scale problems, as will discussed in the next 
section concerning the low-rank approximation of system (29). For 
this reason, we are interested in reducing as much as possible the 
cohomology generators length (i.e. the number of edges of each cy-
cle). Consequently, a minimal length lazy cohomology basis H1 of Kb , 
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Table 1
Left. Signature of h1 and h2 cohomology generators of Fig. 5a with 
respect to the homology basis represented by h1, h2 generators in 
Fig. 5c. Right: Signature of cohomology generators g1 and g2 of 
Fig. 5d with respect to the homology basis represented by h1 , h2

generators.

h1 h2

h1 1 0
h2 0 1

h1 h2

g1 1 1
g2 1 0

indicated with L, is computed by iteratively replicating the proce-
dure described above, but changing from one iteration to the other 
the starting basepoint ñ∗ , as explicated by the for-cycle from line 
6 to line 25 of Algorithm 3. For every basepoint, once the relative 
basis H1(∂K) has been computed, we store only a triplet of val-
ues for every generator hh ∈ H1(∂K), h ∈ {1, ..., 2β1(K)}, which are 
classified in the structure M in lines 16-23 of Algorithm 3:

• the length of hh;
• its coordinates, i.e. the index of the basepoint used for con-

structing T̃ b and the local index h of the generator in H1(∂K);
• the intersection, i.e. the dot product 

〈
hh,hk

〉
of hh with any 

cycle hk belonging to a fixed homology basis H1 of Kb , h ∈
{1, .., 2β1(K)}, k ∈ {1, .., 2β1(K)}.

It is worth noting that, storing only a triplet M of values for each 
basepoint avoids to store all the possible cohomology generators 
H1(∂K) before selecting only the ones with minimal length, thus 
reducing the computer memory requirements of the procedure. 
Furthermore, since each cohomology basis starts from a different 
basepoint, this iterative procedure can be easily parallelized on dif-
ferent CPU threads, gaining a significant speed-up with respect to 
a serial computation.

Then, as shown in the Algorithm 3 from line 26 to line 37, all 
the generators are sorted in ascending length order and starting 
from the shortest, each generator is added to the minimal length 
cohomology generator basis L only if it is linearly independent 
from the others already stored in L.

The independence of the generators can be checked by the as-
sembly of a 2β1(K) × 2β1(K) matrix N. Its rows store the dot 
product of the chosen cohomology generator with a fixed homol-
ogy basis. The collection of all these products for one cohomology 
generator h is called signature of h. The homology basis can be 
computed, for example, with the first selected basepoint (see lines 
12-14 of Algorithm 3). As an example, the signature of h1 and h2

cohomology generators shown in Fig. 5a, with respect to the ho-
mology basis represented by h1, h2 generators in Fig. 5c, is shown 
in Table 1-left. Since the two bases are computed with the same 
basepoint, the matrix collecting all the signatures is the identity 
matrix. If the cohomology generators g1 and g2 are obtained from 
a different basepoint, as shown in Fig. 5d, one gets the signatures in 
Table 1-right. As can be guess from Fig. 5a and Fig. 5d, cohomology 
generators h1 and g2 are equivalent (i.e. in the same cohomology 
class) because their signatures are the same.

Thus, a generator is added to L only if its addition increases 
the rank of N (lines 31-33 of Algorithm 3). The computation of the 
minimal length (lazy) cohomology basis H1(∂K) can be stopped as 
soon as rank(N) = 2β1(K), as shown in lines 34-36 of Algorithm 3.

Finally, the incidences H of the minimal generators can be re-
computed using the coordinates previously stored, as shown in 
lines 38-43 of Algorithm 3. It is worth noting that, in this case, 
the generators independency check is robust and really fast, be-
cause of the small size of the integer coefficient matrix N, yet it 
does not require to fix any floating point precision.

In the case of very fine meshes characterized by high val-
ues of β1(K), finding the minimal length basis H1(∂K) can be a 
7

Algorithm 3 Computing relevant minimal length cohomology gen-
erators H1(∂K).

Input: Gb , G̃b , a set B of Nb chosen basepoints ñ∗;
Output: H;

1: L = ∅ - lazy minimal length basis of H1 in ∂K;
2: R = ∅ - relevant minimal length basis of H1 in ∂K;
3: H = ∅;
4: i = 1 - global index of cohomology generators;
5: b = 1 - basepoint index;
6: for every basepoint ñ∗

b ∈ B do

7: construct a spanning dual tree T̃ b on G̃b , rooted in ñ∗
b ,

with BFS or Dijkstra algorithm;
8: construct a maximal spanning primal tree T b

on Gb \ D(T̃ b), with Kruskal algorithm;
9: Compute R as in (32);

10: for every edge e j ∈ R , j ∈ {1, ..., 2β1(K)} do
11: construct cohomology vector h j ∈ H1(∂K) basis;
12: if b = 1 then
13: construct homology vector h j ∈ H1(∂K) basis;
14: end if
15: end for
16: for j = 1 to 2β1(K) do
17: M[i].dist = length of D(h j);
18: M[i].coord = (b, j);
19: for k = 1 to 2β1(K) do
20: M[i].intersect[k] = 〈h j ,hk

〉
;

21: end for
22: i = i + 1;
23: end for
24: b = b + 1;
25: end for
26: Sort M elements in ascending order according to the dist parameter;
27: G = ∅ - vector of triplets as M , corresponding to the objective minimal length 

basis;
28: for i = 1 to 2β1(K)Nb do
29: construct N matrix storing G[k].intersect ,

with k ∈ {1, ..., card(G)};
30: construct N′ matrix storing G[k].intersect ∪

M[i].intersect , with k ∈ {1, ..., card(G)};
31: if rank(N′) > rank(N) then
32: G = G ∪ M[i];
33: end if
34: if card(G) = 2β1(K) then
35: break;
36: end if
37: end for
38: for k = 1 to 2β1(K) do
39: (b, j) = G[k].coord;
40: hk = recompute the j-th generator rooted

in the b-th basepoint;
41: L = L ∪ hk ;
42: Store hk in H(:, k);
43: end for
44: Hlazy = H
45: for i = 1 to 2β1(K) do
46: for j = 1 to 2β1(K) do
47: construct pushed generator ĥ j ;
48: F(i, j) = linking_number( D(hi), D(ĥ j) )
49: end for
50: end for
51: H = Hlazy null(F) — R is the set of columns of H;
52: return H;

time consuming operation. Nevertheless, as will be shown in the 
numerical results section, limiting the number of basepoints can 
significantly speed up the basis computation, with a negligible dif-
ference in the algebraic operations with H, without affecting the 
solution accuracy of (29). A set of, e.g., 5β1(K) basepoints, can be 
chosen as randomly distributed faces of ∂K or as evenly spaced 
faces of ∂K. Both approaches yield to an optimal cohomology basis 
H1(∂K), very similar to the minimal one, which otherwise should 
be computed considering all the possible basepoints in ∂K. In the 
last section of the paper, we will show some numerical results 
concerning the sensitivity of the basis length on the number of 
basepoints.
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Fig. 6. First group cohomology generators h1 (blue arrows) and h2 (red arrows) of 
the boundary of a torus (β1(K) = 1). The dual cycles D(h1) and D(h2) are repre-
sented with dashed lines.

5.2. From lazy to relevant cohomology generators

We now introduce a further step to Algorithm 3. Although the 
lazy cohomology generators algorithm is able to compute a min-
imal length cohomology basis H1(∂K), using such a basis system 
(29) is not full rank. We remark that only half of the represen-
tatives H computed by the lazy cohomology generators algorithm, 
once pre multiplied by C (see (27)), give the correct representatives 
W of the second relative cohomology basis H2(K, ∂K). Only a sub-
set R ⊂ L, composed by β1(K) elements, contains the relevant first 
cohomology group generators and this justifies the name lazy first 
cohomology group usually used for L. Our approach for retrieving 
the relevant only first group cohomology generators relies in the 
computation of the linking numbers (lines 44-51 of Algorithm 3) 
between each couple of 1-cycles in K̃ that are dual of the gener-
ators in L (Fig. 6). Fig. 6 clarifies the necessity of a cohomology 
basis in the case of a torus. Indeed, (25) applied to the green faces 
would give a zero net current, since the entries of T are fixed to 
be zero for all the edges belonging to ∂K [11]. Its flux is restored 
by the independent current associated to h1 (blue arrows), while 
h2 (red arrows) represents a not-relevant generator, since it does 
not contribute to the flux of such faces (no incidences between h2

edges and such kind of faces). The theoretical background of the 
approach is given in [32].

For the sake of clarity, we denote with Hlazy the incidence ma-
trix H computed using the presented algorithm so far, i.e. up to 
line 43 of Algorithm 3. Let be F the 2β1(K) ×2β1(K) matrix whose 
(i, j) entry is defined as

Fij = linking_number(D(hi), D(ĥ j)), (33)

where hi , i ∈ {1, ..., 2β1(K)} is the i-th generator in L and ĥ j is the 
j-th generator “pushed” from ∂K inside K. The “pushing” of gen-
erators is easily achievable, thanks to the duality between primal 
and dual grids, pre-multiplying the generators matrix Hlazy by the 
incidence matrix C, such that

Ĥ = CHlazy = C̃T Hlazy =
[

ĥ1 · · · ĥ j · · · ĥ2β1(K)
]
, (34)

where Ĥ stores the incidences of the pushed cohomology gener-
ators with the face set of K. It can be easily seen that, while 
D(h j) ∈ K̃b holds, on the contrary D(ĥ j) is a 1-cycle entirely be-
longing to K̃ \ ∂K̃. However, only half of the representatives of 
Ĥ are also representatives of W. In particular, the dual generators 
D(ĥ j) pushed from those dual generators h j that are boundary of 
a surface in the insulator R3 \ K (d1 in Fig. 3), still link at least 
one dual cycle D(hi), i ∈ {1, ..., 2β1(K)}, as for example ĥ1 (dashed 
blue cycle) in Fig. 7.

On the contrary, every remaining dual cycle (i.e. those that 
are boundary of a surface in the conductor mesh K, like d2 in 
8

Fig. 7. Dual cycles D(h) (solid lines) of the cohomology generators of the torus in 
Fig. 6 and dual cycles D(ĥ) (dashed lines) of the corresponding “pushed” genera-
tors from ∂K to K. Once pushed, ĥ1 (dashed blue) still links h2 (solid red), thus 
F(2, 1) �= 0. On the contrary, the pushing of ĥ2 (dashed red) cancels out the linking 
with h1 (solid blue), thus F(1, 2) = 0. F(1, 1) = F(2, 2) = 0 by definition of linking 
number. Thus, for a solid torus only the toroidal generator, like the blue solid one 
or equivalently d1 in Fig. 3c, is the boundary of a surface which lies in the insulator 
R3 \K and it is stored in H. On the contrary, the red generator, or d2 in Fig. 3c, it is 
the boundary of a surface which entirely belong to K, thus it is not a representative 
of H.

Fig. 3), once pushed into K̃, does not link any dual cycle D(hi), 
i ∈ {1, ..., 2β1(K)}, see for example ĥ2 (dashed red cycle) in Fig. 7, 
and must be discarded. On the basis of above comments, the re-
trieving of relevant generators belonging to R is performed by 
computing the integer null space of matrix F. Thus, H is computed 
by a linear combination of the columns of Hlazy , such that:

H = Hlazy null(F), (35)

where now rank(H) = β1(K).
An accurate computation of the linking number between two 

cycles requires the use of interval arithmetic [33]. For generators 
retrieving purposes, we simply need to evaluate if one pushed 
generator ĥ j still links at least one of the not-pushed generators 
hi . Consequently, the linking number computation can be imple-
mented in floating point arithmetic, then rounding the result of 
(33) to an integer coefficient. In this regard, a shorter length lazy 
cohomology basis helps in reducing the time required for the link-
ing number evaluation, hence justifies the computation of a min-
imal (or close to minimal) length basis. On the other side, the 
remaining operations, i.e. the computation of the null space and 
the generators retrieving by using (35), are performed with inte-
ger coefficients only, which again reinforces the robustness of the 
algorithm, that is a crucial point when large scale devices are con-
sidered.

5.3. C-approach vs L-approach

Clearly, the C-approach may be interpreted as an optimized im-
plementation of the L-approach. It has been already emphasized 
that the L-approach corresponds to loop analysis of circuit the-
ory. The C-approach considers differently local versus global cycles, 
where global cycles arise only when the topology of the conduc-
tor is not trivial, to obtain something similar to the mesh analysis
of network theory [24].

The C-approach performs better than the L-approach in various 
respects. First, as regards the topological pre-processing required 
by the two formulations, the RREF required by L-approach has a 
cubical complexity, i.e. O (N3), where N is the number of mesh 
edges. Thus, the computation time for the pre-processing required 
by the L-approach rapidly increases with problem dimensions. On 
the other side, all the operations involved to compute a relevant 
H1(∂K) basis scale with the number of 1-dimensional holes in K, 
which are small compared to the mesh edges. Moreover, the most 
apparent advantage of having a short cycle basis is that low-rank 
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Fig. 8. Example of CT (with 3 levels) and corresponding matrix partitioning.

approximation techniques perform much better when the cycle ba-
sis is localized. This yields a limited applicability of the L-approach 
to large scale problems, like the ones involving thermonuclear fu-
sion devices. This aspect is in detail addressed in the next section.

Let us observe that also the L-approach actually uses (co)ho-
mology generators, given that the computation of the cycle basis 
on the dual graph G̃ used in Section 3 is exactly the computation 
of the generators of the H1(C, Z) homology group [34, p. 506], 
where C is the 1-dimensional simplicial complex representing the 
dual graph G̃ .

6. Low-rank approximation of dense matrices

As a common drawback of integral methods, both the presented 
approaches end up with dense algebraic systems whose storage 
and assembling cost grow with N2, where N is the number of 
DoFs. Moreover, the solution of (24) or (29) by a direct solver, 
e.g. using an LU factorization of the system matrix, has a O(N3)

complexity. Nevertheless, coupling integral formulations with low-
rank approximation techniques based on hierarchical-matrix rep-
resentations is an efficient solution to increase the size of the 
largest solvable problem on standard workstations [4,14], since, 
the solution complexity of performing an LU factorization is re-
duced approximately to Nlog(N) [35]. In this section we briefly 
review the low-rank approximation of dense matrices based on H-
matrices. The state of the art of hierarchical-matrices also covers 
other data-sparse formats like HODLR matrices, HSS matrices and 
H2 matrices, which provide similar results in terms of accuracy 
and compression. For a detailed discussion on such formats the 
reader is referred to [36]. Efficient libraries for implementing low-
rank approximations of dense matrices can be found in HLIBPro 
[37], STRUMPACK Dense Package [38], hm-toolbox [39] and HODLRlib 
[40].

A low-rank approximation of the dense matrix Z in (15a) is 
feasible since the integral kernel of a generic entry Zij has a 
strong geometrical dependence because of the Green’s function, 
see (18). Indeed, the larger is the geometric distance between the 
integration domains �i and � j , the smoother the integrand func-
tion. Thus, as algebraic consequence, if the index set {1, ..., N}
corresponds to suitably ordered mesh elements, then Z exhibits 
rank-deficient properties in its off-diagonal blocks, which can be 
exploited by a hierarchical partitioning of the matrix. We would 
like to stress the requirement of “suitably ordered mesh elements”, 
since this strongly affects the accuracy and the efficiency of the 
approximation. The index set {1, ..., N} of the mesh elements cor-
responding to the system DoFs, i.e. the faces of K in (15a), should 
be reordered so that close indices in {1, ..., N} correspond to near 
faces in the 3D space. Such reordering is performed by cluster-
ing the mesh elements, e.g. using a geometric bisection algorithm, 
and identifying each face in the 3D space with a DoF coordinate r̂, 
that corresponds to the face barycentre. Then, according to a user-
controlled binary cluster tree (CT), the Z matrix is partitioned such 
that the entries belonging to a matrix sub-block Z(τi , τ j) corre-
spond to mesh elements belonging to a couple of CT nodes τi and 
τ j (Fig. 8), for which the following geometrical mean quantities are 
defined:
9

Fig. 9. Example of H-matrix partitioned in admissible low-rank blocks (green) and 
inadmissible high-rank blocks (red). The number printed inside each block refers to 
the total count of columns evaluated by ACA for such sub-matrix.

diam(τi) := max
{‖r̂k − r̂h‖2 : r̂k, r̂h ∈ τi

}
(36)

dist(τi, τ j) := min
{‖r̂k − r̂h‖2 : r̂k ∈ τi, r̂h ∈ τ j

}
. (37)

At each CT level, every couple of nodes is tested against the fol-
lowing admissibility criterion:

min{diam(τi),diam(τ j)} ≤ η dist(τi, τ j), (38)

where η is the admissibility parameter (0 < η < 2). If (38) is true, 
the corresponding sub-matrix Z(τi, τ j) ∈ Cm×n is approximated 
(i.e. compressed) using an SVD-like factorization, which stores a 
reduced number of sub-matrix columns such that:

‖Z(τi, τ j) − Uk′ V∗
k′ ‖F

‖Z(τi, τ j)‖F
< ε with k′ ≤ k, (39)

where ε is the approximation tolerance, k′ and k are the approx-
imate and exact rank of Z(τi, τ j), respectively, and U ∈ Cm×k′

, 
V ∈Cn×k′

are its low-rank factors. On the contrary, non-admissible 
blocks are factorized and stored as dense sub-matrices without any 
kind of approximation. Because of its low-rank properties, matrix 
Z will be composed mostly by admissible blocks (Fig. 9), which 
should be directly approximated in order to avoid a high memory 
consumption during the factorization. As example, the factorization 
can be performed using the Adaptive Cross Approximation (ACA) 
algorithm [41]: the columns of a generic admissible sub-block 
Z(τi, τ j) are adaptively computed until condition (39) is reached, 
avoiding to entirely store Z(τi, τ j) before its decomposition in fac-
tors U and V. User must provide an element-access routine able 
to compute any generic entry of Z required by ACA. It is worth 
noting that the time required by ACA to compress each matrix 
sub-block is highly dependent by the programming efficiency of 
such routine which, usually, cannot be optimized as in the case 
of assembling the whole matrix Z at once. Indeed, if ACA needed 
all matrix entries, the required time will be greater than the one 
of an optimized “routine”. Nevertheless, thanks to low-rank prop-
erties of Z, the reduced number of matrix evaluations performed 
by ACA gives a reasonable speed-up in assembling the compressed 
version of Z [14].

In the C-formulation, since the unknown vector T is associated 
to the edges of K, the edge barycentres are used as DoFs coordi-
nates. It is worth noting that each entry of the system matrix (29)
arises from the double integral of a function different from the in-
tegrand in Zij . For example, the kernel of entries belonging to the 
first matrix block K involves the curl of the face basis functions 
which integration support �i is defined as

�i =
Nv⋃

vk : vk � ei, i ∈ {1, ..., Ne}. (40)

k=1
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Yet, the discrete curl C is a local operator, which maps the problem 
unknowns to local (i.e. short) cycles. The distance between the DoF 
coordinates involved in Kij is not far from the mean distance be-
tween their supports �i and � j , thus the smoothness of the kernel 
is preserved and a low-rank approximation of K is still feasible. On 
the contrary, the remaining matrix blocks (i.e. KH, HT K and HT KH) 
cannot be safely approximated since they involve the mutual cou-
pling between primal grid edges and cohomology generators or the 
mutual coupling between generators themselves. Matrix H is not a 
local operator and the supports of the independent currents are all 
the volumes incident with the generator cycle. Hence, the kernel 
smoothness may be lost along these global cycles, leading to an 
inefficient and inaccurate low-rank approximation.

Luckily, for almost all applications of interest the total num-
ber of entries in such blocks is really small compared to those 
in K, hence they can be stored as dense sub-matrices without 
any approximation and with a negligible effect on memory allo-
cation. Nevertheless, the time required for the entire computation 
of their entries grows quadratically with the generators length. For 
example, the assembling time for the (i, j) entry of HT KH has a 
O(Ni N j) complexity, where Ni and N j are the length of the i-
th and j-th cohomology generators in H, respectively. Hence, the 
computation of a minimal length cohomology basis is crucial to 
speed-up the assembling of system (29), particularly when consid-
ering fine meshes with relatively high values of β1(K).

Different methods can be adopted to assemble the system block 
matrix (29) and to avoid the compression of blocks KH, HT K and 
HT KH. However, since such implementation could be highly de-
pendent on the used library, in the last paragraph of this section 
we will present a general method to handle this unusual H-matrix 
structure.

In the L-formulation, the DoF coordinates are defined as the 
barycentres of those faces in K which correspond to the dual 
cotree edges of G̃ . L̃ is a non-local operator which maps the DoFs 
from the K faces to a set of independent dual loops in K̃ and a 
generic entry (i, j) of L̃T ZL̃ involves the double integral on sup-
ports �i and � j that are all the volumes incident with the global 
dual loops z̃i and z̃ j individuated by the dual cotree edges ẽi and 
ẽ j , respectively:

�i =
Nv⋃

k=1

vk : vk � fh, ∀ fh = D(ẽh) : ẽh ∈ z̃i . (41)

Thus, all DoFs are associated to global (i.e. long) cycles which sup-
port may cover a great part of the domain � and this cancels 
the low-rank properties of L̃T ZL̃ off-diagonal blocks. To sum up, 
the dense system matrix arising from the L-formulation cannot be 
safely approximated unless sufficiently minimal length dual loops 
are provided, such that they do not spread far from the corre-
sponding dual cotree edge.

6.1. Assembling of H-block-matrices with partitioned cluster tree

In the previous section it has been pointed out that blocks in 
(29) involving the matrix H of cohomology generators cannot be 
safely compressed in a low-rank format. The resulting block H-
matrix, i.e. H(Z), must then admit a hierarchical structure where 
sub-blocks KH, HT K and HT KH are treated as high-rank matrices. 
The approach we adopted relies on a modified construction of the 
CT. Normally, in a cluster tree the index set {1, ..., N} is recursively 
halved and the resulting sub-sets are arranged on nested levels of 
the tree (Fig. 10a). Differently, in our approach we force a first divi-
sion of the index set by separating the indices related to the mesh 
edges from the ones associated to the cohomology generators, each 
10
Fig. 10. Comparison of a standard binary CT and a modified CT partitioned according 
to (42). In this example Ng = 3.

one is then included into a separate index set with unitary cardi-
nality (Fig. 10b):

{1, ..., N} = {1, ..., Ne} ∪ {Ne + 1} ∪ {Ne + 2} ∪ ... ∪ {Ne + Ng
}
,

(42)

with N = Ne + Ng . Furthermore, a fictitious set of coordinates, 
equal to a unique arbitrary numerical value, is associated to the 
Ng unknowns related to cohomology generators. This allows the 
low-rank approximation algorithm to test the CT nodes against the 
admissibility criterion. However, independently on its admissibil-
ity, each sub-block Z(τi, τ j) with i = 1 and 1 < j ≤ 1 + Ng is a 
1-D vector of rank k′ = k (see Fig. 11), hence it will be stored by 
an entire computation of its entries. The same statement holds 
for blocks Z(τi, τ j) with 1 < i ≤ 1 + Ng and j = 1, as well as 
when 1 < i ≤ 1 + Ng and 1 < j ≤ 1 + Ng being in the last case 
Z(τi, τ j) a trivial block with only one element. The implemented 
approach does not affect the low-rank approximation algorithm, 
since it relies on the CT construction only. Hence, it can be applied 
independently on the used library, provided that the user must be 
able to customize the tree construction.

A particular case consists of 3D objects characterized by small 
holes, if compared to the characteristic dimensions of the ob-
ject: let consider, as example, a metallic supporting plate which 
is drilled in different positions to allow its fastening using some 
screws. In such cases, if a minimal length cohomology basis is 
computed, the generators are cycles whose dimensions are not so 
different from the ones of the local cycles corresponding to the 
DoFs in T. Hence, cohomology generators can be treated as local 
cycles too and, associating to each one a DoF coordinate corre-
sponding to the generator barycentre (i.e. the mean point between 
the barycentre of edges forming such generator), the overall sys-
tem (29) is compatible with a low-rank approximation.
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Fig. 11. H-block-matrix partitioned using the modified CT. The vector partitioning 
of blocks involving cohomology generators (in this example Ng = 3) can be easily 
recognized in the zoomed picture.

Fig. 12. TEAM Workshop Problem 7: asymmetrical conductor with a hole and exci-
tation coil.

7. Numerical examples

In this section we test the accuracy and the computational per-
formances of the two discussed formulations on the basis of two 
numerical examples. First, the TEAM Workshop Problem 7 [42] is 
chosen as benchmark case for both formulations. In the second ex-
ample we consider a more complex device consisting of a typical 
vacuum vessel of a MCF device. While in the former case no low-
rank approximation has been implemented, in the latter, because 
of the large size of the problem, we tested the compression perfor-
mances comparing the approximate solution of the problem with 
the exact one (i.e. solving the dense uncompressed system). The 
simulations have been run on a Linux machine equipped with 16-
core/32-thread processor (Intel� Xeon� Gold 6130 @2.10 GHz), 
for a total of 256 cores and 3 TB of RAM [43]. Both approaches 
have been implemented in the FORTRAN language. If (24) or (29)
are assembled without low-rank approximation, the matrices as-
sembling is performed in parallel via OpenMP, then the resulting 
system is directly solved using the LAPACK zgesv subroutine, based 
on LU decomposition. On the contrary, if compression is enabled, 
the low-rank approximation is implemented by the HLIBPro li-
brary which relies on a parallel computation of the entries required 
by the ACA algorithm and uses an H–LU preconditioned GMRES 
solver. We remark that, as stated in the previous section, a low-
rank approximation is feasible only for system (29), i.e. for the
C-formulation.
11
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Fig. 13. Comparison of the B z–component (real part) computed at 50 Hz with the 
two integral formulations, the FEM software and results of TEAM Workshop Prob-
lem 7, along line A1-B1 (a) and line A2-B2 (b).

Fig. 14. Comparison of the B z–component (real part) computed at 200 Hz with 
the two integral formulations, the FEM software and results of TEAM Workshop 
Problem 7, along line A1-B1 (a) and line A2-B2 (b).
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Fig. 15. Geometry (a) and first cohomology group generators H1(∂K) (b) of the vacuum vessel of Example B.
7.1. Example A

The TEAM Workshop Problem 7 consists of an asymmetrical 
conductor (ρ = 0.028 μ� m) with a hole, excited by a coil with 
2742 AT, at 50 Hz and 200 Hz frequencies (Fig. 12). To solve the 
problem, the conductor is meshed with 26250 hexahedra, lead-
ing to a number of unknowns N = 48376 in both approaches. 
The exciting field is addressed by analytical formulas. No low-rank 
approximation of matrices is applied in this example. The mag-
netic flux density is computed along two reference lines located 
at y = 72 mm, z = 34 mm (line A1-B1) and at y = 144 mm, 
z = 34 mm (line A2-B2), whose points vary from x = 0 mm to 
x = 288 mm. In this example, the results obtained by the two in-
tegral formulations are compared with the experimental data of 
the TEAM Workshop Problem 7. For the sake of comparison, we 
introduce a third set of values computed using a commercial FEM 
software.

Fig. 13 and Fig. 14 show the results of the simulations at 50 
Hz and 200 Hz, respectively. The two integral formulations lead 
to numerically identical results since they both rely on the same 
set of discrete equations (15a). The computed values are in good 
agreement with the FEM simulation, as well as with the trend of 
experimental points of the TEAM Workshop Problem 7.

7.2. Example B

In the second example presented in this work, we model a 
typical vacuum vessel used in thermonuclear fusion machines, in 
which a vertical field of 1 T (50 Hz) simulates the magnetizing field 
of the machine magnet system. The device, having an electrical 
resistivity of 7.2E-07 �m, is characterized by a complex geome-
try having 415 ports, that are used for diagnostic and pumping 
purposes. First, we consider a mesh of 252670 tetrahedra, leading 
to a system of 163160 DoFs. The geometry of the device and the 
relative cohomology generators H1(∂K), computed using the Algo-
rithm 3, are shown in Fig. 15.

The problem is solved by applying a low-rank approximation 
of the dense matrices of (29) and without compression, i.e. main-
taining the full rank structure of such matrices (dense case). In 
Table 2, the computational costs for solving the described prob-
lem are summarized, comparing the assembling, solution, and total 
12
Table 2
Comparison of the computational costs between dense and approximated cases with 
Nv = 252670.

HLIBPro Dense Ratio [%]

Assembling time [s] 7632 18669 40.9
n. of entry eval. 1.92E09 1631602 7.2
Solution time [s] 3805 7826 48.6
Total time [s] 11437 26495 43.2
PMU [GB] 34.8 426 8.1

times, as well as the total number of matrix entry evaluations and 
the Peak Memory Usage (PMU) reached during such steps. In this 
case, handling the dense matrices with a low-rank approximation 
allows almost halving the computational times and reducing the 
PMU to about the 8% of the one used in the dense case. The PMU 
ratio is confirmed by the ratio between the total number of en-
try evaluations effectively performed by ACA and the total matrix 
entries.

Then, the accuracy of the approximation is checked by evalu-
ating the magnetic flux density on a toroidal surface close to the 
vessel internal wall (first wall). This kind of computation is typical 
in fusion applications, in order to estimate the “error-fields” arising 
from the eddy-currents induced in the machine conducting struc-
tures. Such eddy-currents have a greater amplitude around the 
machine ports and gaps, and produce unavoidable magnetic fields 
which break the toroidal symmetry of the machine [44]. Consid-
ering a toroidal coordinate system (r, θ, φ), the described surface 
is obtained by revolving a set of 100 points on the poloidal plane 
(φ = 0 rad) for 150 positions between 0 and 2π radians in the 
toroidal direction φ, leading to a total of Np = 15000 evaluation 
points. The radial components of the magnetic flux density are 
compared, on the toroidal surface described above, by defining the 
relative error in the evaluation point ri(θ, φ), with i ∈ {1, ..., Np}, 
and the overall mean square error ε2 as

εi =log10

∣∣∣∣ B
∗
i − Bi

Bi

∣∣∣∣ (43)

ε2 =
√√√√∑N p

i=1(B∗
i − Bi)

2

∑N p
(B )2

, (44)

i=1 i
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Fig. 16. Real part of the radial component Br(θ,φ) (values in T) on the first wall toroidal surface (a) and relative error εi (b). ε2 = 3.5E-08.

Fig. 17. Imaginary part of the radial component Br(θ,φ) (values in T) on the first wall toroidal surface (a) and relative error εi (b). ε2 = 1.6E-07.
Table 3
Comparison of the computational costs between dense and approximated cases with 
Nv = 621844.

HLIBPro Dense Ratio [%]

Assembling time [s] 26456 – –
n. of entry eval. 6.13 E09 4238582 3.4
Solution time [s] 12616 – –
Total time [s] 39072 – –
PMU [GB] 110 2874 3.9

where Bi and B∗
i represent a generic component of the magnetic 

flux density in ri evaluated in the dense and approximate cases, 
respectively. The error in the approximate case is negligible com-
pared to the dense case, as demonstrated by the error maps shown 
in Fig. 16 and Fig. 17.

Finally, we improve the mesh resolution reaching an object dis-
cretization of 621884 tetrahedra, with 423858 DoFs. Because of the 
size of the problem, a dense solution is not considered since the 
PMU would be very close to the used workstation memory limit. 
The results are compared with the previous case by evaluating the 
magnetic flux density on the vacuum vessel first wall. The mean 
square error ε2 is lower than 1% both for the real and the imag-
inary part of the magnetic flux density, which demonstrates the 
accuracy of the Volume Integral formulation even with a coarser 
discretization.

Moreover, the computational costs shown in Table 3 are ex-
tremely promising: a high number of DoFs can be managed with 
reasonable computation times and memory usage, which would 
be unfeasible by solving the dense problem on a standard work-
station. This confirms the advantages, already observed in [14], of 
coupling Volume Integral methods with low-rank approximation 
13
Table 4
Plate with 4 holes: H1(∂K) basis length and computation times according to the 
number of basepoints.

NB P H1 length T B P [s] T H1 [s] T T O T [s]

1 588 6,20E-06 2,12E-01 2,12E-01
2 329 5,60E-04 5,14E-01 5,15E-01
5 224 1,19E-03 5,18E-01 5,19E-01
10 189 2,96E-03 5,07E-01 5,10E-01
15 178 6,02E-03 5,06E-01 5,12E-01
20 163 1,04E-02 6,02E-01 6,13E-01
30 160 2,23E-02 6,06E-01 6,29E-01
40 153 3,96E-02 6,56E-01 6,95E-01
50 150 6,23E-02 8,27E-01 8,89E-01
60 148 8,84E-02 8,27E-01 9,15E-01

techniques and proves the applicability of such methods also for 
very large scale problems.

8. H 1(∂K) basis length sensitivity to basepoints number

The last section of this work aims at defining a rule of thumb 
in choosing the basepoints number in order to compute an opti-
mal first group cohomology generator basis H1(∂K). The objective 
of this quantification is to reach a cohomology basis close the ab-
solute minimal basis, but guaranteeing a reasonable computational 
cost for its evaluation.

As a first example, we consider the simple geometry of a thick 
plate with four holes (β1(K) = 4) and we compute the minimal 
length basis achievable starting from a number of basepoints in the 
range from 1 to 60. The plate is discretized by means of a tetrahe-
dral mesh consisting of 36518 volumes and 8900 boundary faces. 
Results are summarized in Table 4, where NB P indicates the num-
ber of chosen basepoints, T T O T is the total time needed for the 
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Fig. 18. Plate with 4 holes: computational cost of finding the H1(∂K) minimal 
length basis achievable from NB P selected basepoints.

Table 5
Disk with 55 holes: H1(∂K) basis length and computation times according to the 
number of basepoints.

NB P H1 length T B P [s] T H1 [s] T T O T [s]

1 7591 5,96E-06 5,01 5,01
2 5048 1,65E-03 13,04 1,30E+01
5 3313 3,14E-03 12,79 1,28E+01
10 3084 9,61E-03 12,78 1,28E+01
15 3033 1,85E-02 12,7 1,27E+01
25 2933 5,20E-02 13,61 1,37E+01
50 2792 2,00E-01 18,68 1,89E+01
100 2713 8,40E-01 25,62 2,65E+01
150 2680 1,97 33,24 3,52E+01
200 2672 3,69 39,46 4,32E+01
275 2643 7,27 50,29 5,76E+01

basis computation, which requires a first step for the basepoints 
collocation (T B P ) and a second step for sorting the generators 
according to their length (expressed in number of edges) and se-
lecting the shortest ones (T H1 ). A Maxmin Selection algorithm [16]
is used to obtain a set of NB P basepoints evenly distributed on the 
domain boundary.

As shown in Fig. 18, the larger the number of basepoints, the 
shorter the H1(∂K) basis length. Indeed, a higher NB P allows a 
wider distribution of the basepoints on the object boundary and 
then a higher probability to collocate the basepoints close to the 
domain holes. On the contrary, a single basepoint makes the ba-
sis construction strongly dependent on its position, preventing to 
find a short basis, as shown in Fig. 20a where cohomology genera-
tors start from a single basepoint located on the top corner of the 
plate. Nevertheless, the H1(∂K) basis length tends to saturate by 
increasing the basepoints number and a value NB P = 5β1(K) can 
be a good compromise.

Then, we consider a second example consisting of a typical disk 
brake geometry (65419 tetrahedra and 27158 boundary faces) used 
for bikes or motorbikes, which is characterized by a total of 55 
holes (β1(K) = 55) (Table 5, Fig. 21). The computation of a non-
optimal H1(∂K) basis (i.e. NB P = 1) requires only few seconds, 
since it does not require to iterate on different basepoints to find 
a minimal length basis. The comparison of Fig. 19 with Fig. 18
shows that the initial slope of the H1(∂K) curve tends to increase 
with the number of holes, and the achieved basis length saturates 
sooner by increasing NB P . Therefore, with relatively high values of 
β1(K), the choice of NB P = 5β1(K) may not guarantee the com-
putational efficiency of the algorithm because of the longer time 
required for sorting the basis. We suggest to fix a maximum value 
of NB P (e.g. equal to 50), such that a general choice in the number 
of basepoints could be NB P = min(5β1(K), 50).
14
Fig. 19. Disk with 55 holes: computational cost of finding the H1(∂K) minimal 
length basis achievable from NB P selected basepoints.

9. Conclusions

We have presented a Volume Integral (VI) formulation and 
compared two approaches which both rely on a cycle basis which 
ensures the solenoidality condition of the current density in sim-
ply and multiply connected domains. While the L-approach relies 
on global cycles only, the C-approach is based on local cycles and 
combines global cycles only when the domain is not simply con-
nected. Consequently, the C-approach shows better performances 
both in the pre-processing and in the solution of large scale prob-
lems.

An efficient, general, and robust algorithm for computing a ba-
sis of the first cohomology group H1(∂K) has been described in 
detail. Important modifications have been finally carried out in or-
der to improve the original lazy cohomology generators algorithm 
and, for the first time, a complete procedure which starts from 
a lazy cohomology basis and ends with a minimal length (opti-
mized) basis of relevant generators applied to a Volume Integral 
formulation (i.e. the C-approach) has been detailed. In this regard, 
the optimization of the basis length positively affects the compu-
tational time spent both in the generators retrievial (from lazy to 
relevant generators) and in the system assembly. A rule of thumb 
in the choice of the number of basepoints has been given, in or-
der to guarantee that the time required for the basis computation 
becomes negligible if compared to the one spent in system as-
sembly and solution. Moreover, we have shown how cohomology 
and low-rank approximations are compatible in solving large scale 
problems in multiply connected domains by suitably handling the 
hierarchical matrix cluster tree. The presented approach is inde-
pendent on the used compression library, and has a negligible 
impact on the computational costs if combined with a minimal 
length cohomology basis.

On the contrary, the non applicability of low-rank approxi-
mation techniques represents an important bottleneck for the L-
approach, that unavoidably limits the size of the largest problem 
solvable on standard workstations. In particular, in MCF applica-
tions, the problem size grows rapidly with the complexity of ma-
chine geometry, characterized, for example, by a large number of 
pumping ports, insulation gaps, very narrow regions and uncon-
ventionally shaped elements. Despite integral formulations having 
shown to be more efficient than conventional FEM approaches for 
studying this kind of devices [1], only optimized integral methods 
(like the C-approach, in this work) perform well in these applica-
tions [4].

It is worth remarking that the proposed algorithm for the 
construction of a minimal length cohomology basis is also suit-
able for high-frequency problems in multiply connected domains 
where, usually, loop-star and loop-tree decomposition techniques 
are adopted [45,46].

Finally, it can be extended straightforwardly to the case of non-
linear materials, with interesting potential applications in MCF de-
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Fig. 20. Plate with 4 holes: H1(∂K) basis computed with a single basepoint (a) and minimal length H1(∂K) basis obtained with NB P = 5β1(K) = 20 (b).

Fig. 21. Disk with 55 holes: H1(∂K) basis computed with a single basepoint (a) and minimal length H1(∂K) basis obtained with NB P = 5β1 = 275 (b).
vices (e.g. modelling of ferritic steel tiles (FSTs) installed to reduce 
the toroidal magnetic field ripple).
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