
Eur. Phys. J. Appl. Phys. 52, 23309 (2010)
DOI: 10.1051/epjap/2010101

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL
APPLIED PHYSICS

A perturbation method for the A-χ geometric eddy-current
formulation

R. Specogna1,2,a, P. Dular1,b, and F. Trevisan2,c
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Abstract. A perturbation method for the A-χ geometric formulation to solve eddy-current problems is
introduced. The proposed formulation is applied to the feasibility design of a non-destructive evaluation
device suitable to detect “long” longitudinal flaws in hot steel bars.

1 Introduction

Industrial companies have a remarkable interest about the
techniques for the detection of the surface flaws that can
be present during hot mill rolling process of steel bars with
circular cross-section (with a diameter from 8 to 80 mm,
a speed from 5 to 100 m/s in the longitudinal direction z
and a temperature from 800 to 1200 ◦C).

The capability to detect these flaws permits a fast and
straightforward quality assessment of the product and pro-
vides the possibility to reduce those flaws due to a wrong
set-up of the manufacturing process parameters. The flaws
considered have a depth ranging from 0.1 mm to 2 mm
and, even though they have quite different shapes and
sizes, they generally correspond to an interruption of the
material continuity (also from the electrical point of view)
and lay almost along an axial direction.

Two main categories of surface flaws can be consid-
ered, depending on their axial length L: the “short” flaws,
with L ranging from 1 mm to 20 mm and the “long” flaws
with L from a meter to tens of meters. In any case, the
flaw width is much smaller than the two other dimen-
sions. Short flaws can be easily detected using a differen-
tial method in which the signal, after the noise reduction,
is compared with a similar signal taken few centimeters
away along the axial direction. On the contrary, so far,
no practical solution has been found as regards the detec-
tion of long flaws, for which a differential approach is not
suitable.

In this paper, the feasibility design of a possible con-
figuration able to detect the long flaws is addressed. The
numerical simulations have been performed by means of
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the A-χ geometric formulation [1]. To solve the forward
problem efficiently, a perturbation method suitable with
the A-χ formulation is proposed. The advantages over the
classical A-χ formulation are discussed.

2 The A-χ geometric formulation

The so-called “discrete geometric approach” (DGA) [2–
4], similarly to the finite integration technique (FIT) [5]
or the cell method [6,7], allows to solve directly Maxwell’s
equations in an alternative way with respect to the clas-
sical Galerkin method in finite elements.

The domain of interest D of the eddy-current problem,
has been partitioned into a source region Ds and in a
passive conductive region Dc. The complement of Dc

⋃
Ds

in D represents the air region Da.
We introduce in D a pair of interlocked cell complexes

using barycentric subdivision [6] for the dual complex and
we denote by G the incidence matrix between edges e
and nodes n, by C the incidence matrix between faces
f and edges e and by D the incidence matrix between
cells v and faces f . The matrices G̃ = DT , C̃ = CT and
D̃ = −GT describe the mutual interconnections of the
dual barycentric complex (dual volumes ṽ, dual faces f̃ ,
dual edges ẽ, dual nodes ñ).

Next, we consider the integrals of the field quanti-
ties with respect to the oriented geometric elements of
the mesh, yielding the Degrees of Freedom (DoF) arrays.
Each entry of a DoF array is indexed over the correspond-
ing geometric element. There is a univocal association be-
tween a global variable and the corresponding geometric
element [8]. We introduce the following arrays of DoFs:

– Φ is the array of magnetic fluxes associated with faces
f ∈ D;

Article published by EDP Sciences

http://www.epjap.org
http://dx.doi.org/10.1051/epjap/2010101
http://www.edpsciences.org


The European Physical Journal Applied Physics

– F is the array of m.m.f.s associated with dual edges
ẽ ∈ D;

– I is the array of currents associated with dual faces
f̃ ∈ Dc. In Ds we introduce the array Is of impressed
currents;

– U is the array of e.m.f.s associated with primal edges
e ∈ Dc.

We introduce also the following arrays of DoFs relative to
the potentials used in this formulation:

– A is the array of circulations of the magnetic vector
potential A along the primal edges e ∈ D;

– χ is the array of the electric scalar potential χ associ-
ated with primal nodes n ∈ Dc.

Within the framework of the DGA, Maxwell’s laws can be
written exactly as topological balance equations between
DoFs arrays, as

CT F = It (1a)
Φ = CA (1b)

GT
c I (1c)

where (1a) is the Ampère’s balance law, (1b) assures that
Gauss’ balance law DΦ = 0 is satisfied identically (since
DC = 0) and (1c) is the balance continuity law. Gc is
the sub-matrix of G relative to the edges and nodes in Dc

and (It)e is equal to (I)e for edges e ∈ Dc, (Is)e for edges
e ∈ Ds and zero elsewhere.

The discrete counterparts of the constitutive laws can
be written as

F = ν Φ in D (2a)
I = σ U in Dc (2b)

where the construction of the matrices ν and σ, called
constitutive matrices, will be addressed in Section 3.

Combining discrete Faraday’s law (CU)f = −iω(Φ)f ,
with f ∈ Dc, with (1b), we can express the e.m.f. associ-
ated with an edge e ∈ Dc as

(U)e = −iω ((A)e + (Gcχ)e) , (3)

since CG = 0 holds identically.
From (1a)–(1c), (2a)–(2b) and (3), the final algebraic

system, having A and χ as unknowns [1,9,10], can be writ-
ten as(

CT νCA
)
e

= 0 ∀e ∈ Da,(
CT νCA

)
e

= (Is)e ∀e ∈ Ds,(
CT νCA

)
e
+ iω (σ Ac)e + iω (σGc χ)e = 0 ∀e ∈ Dc,

iω
(
GT

c σ Ac

)
n

+ iω
(
GT

c σGc χ
)

n
= 0 ∀n ∈ Dc,

(4)
where the array Ac is the sub-array of A, associated with
primal edges in Dc. With the notation (x)k, we mean the
kth row of array x, where k = {e, n} is the label of edge e
or of node n.

As boundary conditions we impose (A)e = 0 on e ∈
∂D and solve the singular linear system of equations with
a CG method without gauge condition.

3 Constitutive matrices

The square matrix ν (dim(ν) = Nf , Nf being the num-
ber of faces in D) is the reluctance matrix such that (2a)
holds exactly at least for an element-wise uniform induc-
tion field B and magnetic field H in each tetrahedron and
it is the approximate discrete counterpart of the consti-
tutive relation H = ν B at continuous level, ν being the
reluctivity assumed element-wise a constant.

The square matrix σ (dim(σ) = Nec , Nec being the
number of edges in Dc) is the conductance matrix such
that (2b) holds exactly at least for an element-wise uni-
form electric field E and current density J in each tetra-
hedron and it is the approximate discrete counterpart of
the constitutive relation J = σ E at continuous level, σ
being the conductance assumed element-wise a constant.

Classical ways to construct the constitutive matrices ν
and σ for a tetrahedral mesh are the Discrete Hodge tech-
nique based on Whitney’s maps, described in [11] or the
so called Galerkin Hodge [12], that produce the same stiff-
ness matrix as the Finite Elements with first order edge el-
ement basis functions. With the first solution the obtained
matrix is non-symmetric, but it’s possible to demonstrate
that, if the Whitney’s functions are evaluated in the center
of mass of the tetrahedron, the matrix σ becomes sym-
metric [9].

Another original solution is to use the edge and face
vector basis functions defined in [13] for tetrahedra and
triangular prisms. As proven in [13], these basis functions
assure that symmetry, positive-definiteness, and consis-
tency1 properties are satisfied for all constitutive matri-
ces.

For our application, an hexahedral mesh will be partic-
ularly effective. The construction of the constitutive ma-
trices, called also Discrete Hodge operators, for an hex-
ahedral mesh is addressed for example in [14], where a
consistent but non-symmetric matrix is constructed. In
this paper we will use the original solution presented
in [15], which guarantee symmetry, positive-definiteness,
and consistency of the constitutive matrices. In [15] it is
also shown that the constitutive matrices obtained by the
Galerkin Hodge are not consistent in the case of hexahe-
dral meshes, thus are not suitable within the DGA frame-
work.

The main advantage of the DGA with respect to the
correspondent Finite Element formulation is that the con-
struction of the stiffness matrix is faster, since no numer-
ical evaluation of a volume integral is needed, being the
constitutive matrices constructed geometrically.

4 Integral sources

We can express the array A as A = As + Ar, where As

is the array of circulations of the contribution to the mag-
netic vector potential produced by the source currents in
Ds and Ar is the array of circulations of the contribution

1 A precise definition of the notion of consistency for consti-
tutive matrices is given in [4].
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to the magnetic vector potential due to the eddy-currents
in Dc. Therefore we have that(

CT νCAs

)
e

= (Is)e

(
CT νCAr

)
e

= 0 ∀e ∈ Ds(
CT νCAs

)
e

= 0
(
CT νCAr

)
e

= (I)e ∀e ∈ Dc

(5)

holds. Each entry (As)ei of the array As can be pre-
computed as (As)i =

∫
ei

As · dl, where ei is a primal edge
in D and As is the magnetic vector potential due to the
known source current density in Ds.

Here we will consider stranded circular coils, thus As

can be computed in closed form in terms of the elliptic
integrals of the first and second kind [16].

In this way, we can rewrite the system (4) by removing
the source currents from its right hand side, obtaining

(
CT νCAr

)
e

= 0 ∀e ∈ D − Dc,(
CT νCAr

)
e
+ iω (σ Acr)e + iω (σGc χ)e =

(v)e ∀e ∈ Dc,

iω
(
GT

c σ Acr

)
n

+ iω
(
GT

c σGc χ
)
n

= (w)n ∀n ∈ Dc,

(6)
where v = −iωσ Acs and w = GT

c v. Acr and Acs are the
sub-arrays of Ar and As containing the DoFs associated
with primal edges in Dc.

5 Perturbation method for A-χ

We will indicate with the superscript u and p the quanti-
ties in the unperturbed and perturbed configurations re-
spectively. For the unperturbed configuration we write:

(
CT νCAu

r

)
e

= 0,(
CT νCAu

r

)
e
+ iω (σu (Au

cr + Gcχ
u + Acs))e = 0,

iω
(
GT

c σu (Au
cr + Gcχ

u + Acs)
)
n

= 0.

(7)

In the perturbed case the distribution of σp differs from
the distribution in the unperturbed case σu

(
CT νCAp

r

)
e

= 0,(
CT νCAp

r

)
e
+ iω (σp (Ap

cr + Gcχ
p + Acs))e = 0,

iω
(
GT

c σp (Ap
cr + Gcχ

p + Acs)
)
n

= 0.

(8)

Next, we consider the difference between the perturbed
(p) configuration and the unperturbed (u) configuration,
while keeping constant the source currents. We will indi-
cate with Av = Ap − Au = Ap

r − Au
r and χv = χp − χu

the corresponding differences. The difference will be
(
CT νCAv

)
e

= 0,(
CT νCAv

)
e
+ iω (σp (Ap

cr + Gcχ
p + Acs)

−iω σu (Au
cr + Gcχ

u + Acs))e = 0,

iω
(
GT

c σp (Ap
cr + Gcχ

p + Acs)

−iω GT
c σu (Au

cr + Gcχ
u + Acs)

)
n

= 0.
(9)

80 mm
560 mm

80 mm

64 mm

34 mm

sampling circumference

62 mm

~ ~ ~ ~

Fig. 1. The geometry of the eddy-currents problem.

Now we add and subtract to the second equation the fol-
lowing quantity iω σp (Au

cr+Gcχ
u+Acs); similarly to the

third equation we add and subtract the following quantity
iω GT

c σp (Au
cr + Gcχ

u + Acs). Then (9) becomes
(
CT νCAv

)
e

= 0,(
CT νCAv

)
e
+ iω (σp (Av + Gcχ

v) + iω (σp − σu)
× (Au

cr + Gcχ
u + Acs))e = 0,

iω
(
GT

c σp (Av + Gcχ
v) + iω GT

c (σp − σu)
× (Au

cr + Gcχ
u + Acs))n = 0,

(10)
where the term

iω (σp − σu) (Au
cr + Gcχ

u + Acs) = Id (11)

represents a known impressed current Id in the flaw re-
gion only; Id depends on the quantities computed in the
unperturbed (u) configuration and on the sources As. We
rewrite (10) as
(
CT νCAv

)
e

= 0 ∀e ∈ D − Dc,(
CT νCAv

)
e
+iω (σp (Av +Gcχ

v))e = − (Id)e ∀e ∈ Dc,

iω
(
GT

c σp (Av + Gcχ
v)

)
n

= − (
GT

c Id

)
n

∀n ∈ Dc.

(12)
From (12), we obtain directly the solution due to the per-
turbation, reducing the cancelation error [17,18].

6 Application to non-destructive testing

The application concerns the design of a device for the
detection of long longitudinal flaws that can be present
during the hot mill rolling process of the steel bars with
circular cross-section.

The geometry of the problem, depicted in Figure 1,
consists of a conducting AISI 310 steel bar, modeled as a
conducting cylinder Dc. The radius of the bar is 17 mm
and the conductivity is σ = 1.236 × 106 S/m. A longitu-
dinal perfectly insulating surface flaw is assumed, 0.5 mm
deep from the surface of the cylinder and 0.2 mm thick.

A source coil Ds (32 mm inner radius, 40 mm outer
radius, 80 mm height, 640 turns) encircles the rod and is
feeded by a sinusoidal current density of 106 A/m2 with a
frequency of f = 100 kHz. Since the rod is hot, the lift-off
is chosen to be 15 mm.

Unlike usual NDT methods that use global quantities,
usually the impedance variation of the receiving coils, the
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sensors sample B on points distributed over a circum-
ference. We choose the circumference to lie in the plane
z = 40 mm, with a radius of 31 mm and the center on the
axis of the coil, see Figure 1. The sampling circumference
is considered fixed with the coil, since in practice the coil
and the receiving sensors are assembled together.

Unlike usual NDT methods that use global quantities,
usually the impedance variation of the receiving coils, the
sensors sample B on points distributed over a circum-
ference. We choose the circumference to lie in the plane
z = 40 mm, with a radius of 31 mm and the center on the
axis of the coil, see Figure 1. The sampling circumference
is considered fixed with the coil, since in practice the coil
and the receiving sensors are assembled together.

The variation of the tangential component of B along
the sampling points due to the presence of a flaw will be
analyzed and compared with the one obtained from the
difference between the perturbed and unperturbed solu-
tions.

6.1 Magnetic induction field computation

To calculate the value of the induction magnetic field B
components in a sample point P, two different approaches
can be used:

(i) Find the hexahedron whose P belong. Calculate A =
Ar + As over the twelve edges. Find the magnetic
fluxes through the four faces with Φ = CA and finally
interpolate B(P) using the magnetic fluxes inside the
hexahedron with the face basis functions.

(ii) Using the Biot-Savart Law:

B(P) = Bs(P) +
μ0

4π

∫
Dc

J(P′) × r̂

r2
dV,

where Bs is the magnetic induction produced by the
source coil and r̂ is the unit vector directed as the
segment PP′.

The second solution is preferable, in fact, being B the re-
sult of a global evaluation, it yields a more accurate value.
The volume integral is computed using three Gauss’s
points.

7 Numerical results

An extruded mesh with about 313k hexahedra, yielding
more then 1.1 million of DoFs, is used for the computa-
tions, see Figure 2. Thanks to integral representation of
sources, this mesh will not be changed in all the simula-
tions, even when the source coil is moved. Since in general
it is a full three-dimensional problem, we cannot take ad-
vantage of any symmetry.

7.1 Validation

The code is validated comparing the results in terms of
current density and magnetic induction with respect to a
two-dimensional axisymmetrical FEM simulation. In Fig-
ure 3 the current density along a sampling line (x = 2 ×

a) b)

Fig. 2. (Color online) (a) One fourth of the hexahedral mesh
used in the NDT application. (b) A zoom on the mesh in the
neighborhood of the flaw.
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Fig. 3. (Color online) The computed current density J (real
part on the left, imaginary part on the right) along a sampling
line in the case of unperturbed problem, compared with an
axisymmetrical two-dimensional FEM simulation.
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Fig. 4. (Color online) The computed real part of the induc-
tion magnetic field B along a sampling line in the case of
unperturbed problem, compared with an axisymmetrical two-
dimensional FEM simulation. B is found both with direct in-
terpolation (interp) and using the Biot-Savart law (integ).

10−5 m; y = 16.95 mm; z = −150/150 mm) shows very
good agreement. In Figures 4 and 5 the magnetic induc-
tion is compared along a sampling line (x = 2 × 10−5 m;
y = 31 mm; z = 0/100 mm) with the FEM simulation.
As we were expecting, the postprocessing using the Biot-
Savart law is more accurate and will be used for further
evaluations of the magnetic induction.
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Fig. 5. (Color online) The computed imaginary part of the
induction magnetic field B along a sampling line in the case of
unperturbed problem, compared with an axisymmetrical two-
dimensional FEM simulation. B is found both with direct in-
terpolation (interp) and using the Biot-Savart law (integ).
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Fig. 6. (Color online) Variation due to the flaw on the tangen-
tial component. (pert.) denote the value obtained with pertur-
bation, while (diff.) the value obtained with difference between
the perturbed and unperturbed solutions. (r) denotes the real
part, (i) the imaginary part.

7.2 Magnetic induction variation due to the flaw

After the code validation, we compute the variation of the
magnetic induction on the sampling circumference due to
the flaw. At first, this is achieved by computing the differ-
ence between the perturbed and unperturbed solutions.
Then, the magnetic induction variation is directly com-
puted by means of the perturbation method. In Figures 6,
7 and 8 the magnetic induction variations of the tangen-
tial, radial and z components are shown respectively. The
flaw is placed at 180◦ and produces a perturbation on the
tangential B field that changes sign passing from one side
of the flaw to the other. The two alternative methods to
compute such a variation are in very good agreement.

The perturbation method allows to produce more ac-
curate results at a less computational effort. The accuracy
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Fig. 7. (Color online) Variation due to the flaw on the radial
component. (pert.) denote the value obtained with perturba-
tion, while (diff.) the value obtained with difference between
the perturbed and unperturbed solutions. (r) denotes the real
part, (i) the imaginary part.
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Fig. 8. (Color online) Variation due to the flaw on the longi-
tudinal (z) component. (pert.) denote the value obtained with
perturbation, while (diff.) the value obtained with difference
between the perturbed and unperturbed solutions. (r) denotes
the real part, (i) the imaginary part.

improvement is due to the reduction of the cancelation er-
ror. This becomes fundamental especially when the formu-
lation is used as a forward solver for an inverse problem.
In this case, in fact, the variation at every iteration be-
comes smaller and smaller, requiring a good immunity to
the cancelation error.

The perturbation method also reduces the compu-
tational time. The resulting linear system of equations,
in fact, converges more rapidly and no post-processing
is needed for the unperturbed simulation. Moreover, the
computation time of the source current Id is negligible and
smaller then the calculation of the source v.

A further reduction of the computational time is ob-
tained by observing that the source of the perturbation
problem is localized into the flaw region. Consequently, the
perturbation in the current density will be concentrated in
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Fig. 9. (Color online) On the top, the current density in the
neighborhood of the flaw obtained using the unperturbed con-
figuration. On the bottom, the current density obtained with
the perturbation problem, which is confined in the neighbor-
hood of the flaw.
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Fig. 10. (Color online) The real part of the tangential compo-
nent of the magnetic induction due to the flaw obtained with
the reduced meshes is compared to the one obtained with the
original mesh.

a neighborhood of the flaw, see for example Figure 9. For
this reason, the initial mesh can be dramatically reduced
considering only the hexahedra contained in a limited re-
gion surrounding the flaw.

In this paper, the reduced mesh is constructed keep-
ing only the hexahedra with the center of mass contained
into the cylinder (x − 16.5 mm)2 + y2 = r2. Two cases
are considered, with radiuses of 20 mm and 15 mm. The
hexahedra are reduced from 313 k of the original mesh
to respectively 114k and 80 k. In Figure 10 the variation
in the real part of the tangential component of the mag-
netic induction due to the flaw obtained with the reduced
meshes are compared with the original one.

The accuracy can be further improved if a different
and more refined mesh is created around the flaw. In this

case, the impressed current Id has to be projected onto
the new mesh [18].

8 Conclusions

The perturbation method, reducing the cancelation error,
produces accurate results also for small variations in the
solution. This is especially required when the tool is used
as a forward solver for an inverse problem. Moreover the
method yields also a considerable speed-up: the mesh used
in the perturbed problem can in fact be reduced, consider-
ing only a limited region surrounding the flaw, at a small
fraction of the initial mesh.
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