
Eur. Phys. J. Appl. Phys. 53, 20801 (2011)
DOI: 10.1051/epjap/2010100270

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL
APPLIED PHYSICS

Efficient generalized source field computation for h-oriented
magnetostatic formulations

P. D�lotko1 and R. Specogna2,a

1 Jagiellonian University, Institute of Computer Science, �Lojasiewicza 6, 30348 Kraków, Poland
2 Università di Udine, Dipartimento of Ingegneria Elettrica, Gestionale e Meccanica, Via delle Scienze 208, 33100 Udine, Italy

Received: 1st July 2010 / Received in final form: 11 October 2010 / Accepted: 2 December 2010
Published online: 28 January 2011 – c© EDP Sciences

Abstract. A technique based on a tree-cotree decomposition, called Spanning Tree Technique (STT) in
this paper, has been shown to be simple and efficient to compute the generalized source magnetic fields
for h-oriented magnetostatic formulations when solenoidal source electric currents over the faces of the
mesh are given as input. Yet, it has been recently shown that STT may frequently fail in practice. Other
techniques, which circumvent STT problems, have been proposed in literature. However, all of them greatly
worsen the computational complexity and memory requirements regarding the source field computation.
The aim of this paper is to present a generalization of STT called Extended Spanning Tree Technique
(ESTT), which is provably general and it retains the STT computational efficiency.

1 Introduction

In h-oriented finite element method (FEM) magneto-
static formulations, or in the corresponding ones ob-
tained by the Discrete Geometric Approach (DGA), cell
method or Finite Integration Technique (FIT), algorithms
based on the tree-cotree decomposition are commonly em-
ployed to compute the so-called generalized source mag-
netic fields [1] once the solenoidal source electric current
over the faces of the mesh is given as input. Beside all the
proposed algorithms, the one introduced in [2] – called
Spanning Tree Technique (STT) in this paper – is par-
ticularly attractive, since it is simple to implement and
exhibits an optimal complexity, being the running time
linear with the number of mesh elements.

Let us consider an array of Degrees of Freedom (DoFs)
hs, one for each edge of the mesh, needed to represent the
rotational part of the magnetic field. The entry of the ar-
ray hs relative to each edge e, denoted as 〈hs, e〉, is defined
as the line integral of the generalized source magnetic field
hs on the edge e. Hence, the array hs contains the gener-
alized source magneto-motive forces (mmfs) produced by
the known source currents. The source currents are de-
scribed by means of an array of DoFs is which contains
as entries the currents on each face of the mesh. The STT
is an algorithm which computes hs when is is provided as
input.

In electromagnetic modeling, it is customary to assume
that the computational domain D is topologically trivial
(i.e. it has the same homology as a ball). Let us assume

a e-mail: ruben.specogna@uniud.it

that D is covered by a mesh whose incidence is encoded in
the simplicial complex K and let us fix a spanning tree T
using as graph the nodes and edges in K. After setting the
values of hs relative to the spanning tree edges to zero,
the STT enforces the discrete Ampère’s law iteratively on
each face of the mesh [2]. In fact, if the boundary edges of
a face are all set but one, the hs on the missing edge can be
uniquely determined by using the discrete Ampère’s law.
This technique, recalled with more details in Section 2 of
this paper, has been presented in many papers as [2–5].
STT is frequently claimed to be general in the literature,
even though any attempt to rigorously analyze and prove
the STT termination has been reported. The algorithm
has been recently analyzed by the authors in [6] and it
has been rigorously demonstrated – by concrete counter-
examples – that various practical situations in which the
algorithm fails exist. In particular, there exist situations
involving a topologically trivial complex (for example, an
arbitrary mesh of a cube or a ball) and a spanning tree
on which the STT algorithm “hangs” in an infinite loop.
Many different algorithms that do not present this prob-
lem – reviewed in Section 2.2 – have been proposed in the
literature. Nonetheless, none of them exhibit a linear com-
plexity. Better still, their running time is frequently bigger
than the time needed to solve the original magnetostatic
problem itself.

The aim of this paper is to introduce an extension of
STT, called Extended Spanning Tree Technique (ESTT),
which does not suffer from the failures of STT presented
in [6] and in all practical cases it retains STT compu-
tational efficiency. The presented approach is based on
the idea of symbolic computations that can be easily

Article published by EDP Sciences

http://www.epjap.org
http://dx.doi.org/10.1051/epjap/2010100270
http://www.edpsciences.org


The European Physical Journal Applied Physics

implemented in any object oriented programming lan-
guage or in Matlab�. The fundamental idea is, when STT
hangs, to declare the value of hs over one edge whose value
is not computed yet to a (unknown) symbolic value and
continue iterating with STT. At the end, some system
of equations needs to be solved to compute the unknown
symbolic values. Each equation of the reduced system en-
forces the discrete Ampère’s law locally on one face f and
involve in general some of the unknown symbolic values
and some of the hs already set. As it will be shown, in all
practical cases the system results void or consists of few
unknowns.

The paper is structured as follows. In Section 2 a
survey of the STT algorithm and other alternative algo-
rithms used for the generalized source field computation
is addressed. Section 3 deals with the presentation of the
Extended Spanning Tree Technique (ESTT), which elim-
inates the STT failures retaining STT computational ef-
ficiency. Some statistics are presented in Section 4 which
enable to find the best spanning tree generation strat-
egy suitable with the STT algorithm. Once the presented
strategies are applied, the probability of STT failure is low
but still possible. When using ESTT, the optimal tree gen-
eration strategy allows to minimize the size of the small
linear system to be solved in ESTT. The impact of the
extension of the generalized source field support on the
computational time and on the quality of the solution is
investigated in addition. In Section 5, the conclusion are
drawn.

2 The Spanning Tree Technique (STT)

The array hs has to be constructed in such a way that the
discrete Ampère’s law holds on every faces of the mesh

Chs = is, (1)

where C is the usual incidence matrix between the faces
and the edges of the mesh. is is a given array having
an entry for each face of the mesh being a real (or com-
plex) number corresponding to the current associated to
the considered face1. To have a consistent solution, let us
assume that the given array is represents a solenoidal cur-
rent. Namely, it verifies Dis = 0, where D is the incidence
matrix between cells and faces. If this would not be the
case, since DC = 0, the following contradiction would
arise

0 �= Dis = DChs = 0.

Therefore, a necessary condition in order to have a consis-
tent solution is that a solenoidal current has to be provided
as input. In cohomology theory such an array is represents
a 2-cocycle, see for example [7,8]. Since the cell complex K
is assumed to be homologically (and therefore cohomolog-
ically) trivial, each cocycle is a coboundary. Hence, there

1 In case of magnetostatic problems or eddy-current prob-
lems solved in time domain, the current array is real-valued.
In case of eddy-current problems solved in frequency domain,
the current array is complex-valued.

has to exist a 1-cochain hs such that Chs = is. Conse-
quently, the solenoidality of the current is a necessary and
sufficient condition for the existence of a solution.

The rank of the C matrix is obviously not maximal,
thus equation (1) has an infinite number of solutions. In
fact, if two different arrays, hs

1 and hs
2 which represent two

cocycles in the same cohomology class (i.e. which differ by
the coboundary G of a magnetic scalar potential Ω), then
the following holds

Chs
1 = C(hs

2 + GΩ) = is, (2)

where G is the incidence matrix between the edges and
the nodes of the mesh. Equation (2) holds since CG = 0.

Now a tree-cotree decomposition is introduced. Let us
fix a spanning tree T using as graph the nodes and edges in
K, together with the corresponding cotree C. Let us order
the edge’s labels in such a way that the edges belonging
to the cotree come first, followed by the edges in the tree.
Therefore, in what follows, the new basis obtained after
the reordering is considered in place of the old one. The
matrix C and the vector hs can be consequently parti-
tioned in

CChs
C = is − CT hs

T . (3)

The coefficients hs
T relative to tree edges can be fixed ar-

bitrarily. It is well known, in fact, that fixing the value
over the tree edges corresponds to eliminate the kernel
ker(C) of the incidence matrix ([9], p. 106). Let us fix the
coefficients of hs relative to tree edges to zero. Since the
kernel of the system of equation (3) has been eliminated,
its rank becomes full and a unique solution of

CChs
C = is (4)

exists.
The STT algorithm is introduced as an attempt to

solve equation (4) by means of back-substitutions only [2].
In other words, if the algorithm succeed, there is no need
to use a linear system of equation solver or even to ex-
plicitly construct the matrix C by using a sparse matrix
data structure. In fact, hs may be obtained by means of
the STT algorithm presented in Table 1.

The STT termination has been taken for granted in
many papers and no rigorous proofs regarding its termi-
nation or – on the contrary – counter-examples of non-
termination have been provided. Recently, the authors
have shown, by some concrete counter-examples, that var-
ious problems may arise [6].

2.1 A simple example of STT failure

To clearly see that the STT algorithm may fail, the follow-
ing counter-example is presented [6]. A three-dimensional
homologically trivial complex made by eight tetrahedra,
twenty-two faces, twenty-one edges and eight nodes is con-
sidered. An exploded view of the tetrahedra is visible on
the top of Figure 1. A spanning tree is formed by consid-
ering the thick edges represented on the bottom of Fig-
ure 1. If the STT algorithm – as implemented for example

20801-p2



P. D�lotko and R. Specogna: Efficient generalized source field computation

Table 1. The STT algorithm.

checkBoundary ( simplex T )

1. int numOfEdg := 0, simplex F := 0, double sum := 0;
2. for every simplex E being an edge of T

(a) if 〈hs, E〉 is defined then

i. numOfEdg + +;
ii. sum := sum + C[F, E]〈hs, E〉;

(b) else F := E;
3. return (numOfEdg, sum, F ).

STT ( simplicial complex K )

1. Generate T – a spanning tree of K. Let S be an empty
list;

2. for every edge E ∈ T set 〈hs, E〉 := 0;
3. for every triangle T ∈ K

(a) (numOfEdg, sum, F ) := checkBoundary( T );
(b) if ( numOfEdg = 2 ) S := S ∪ T ;

4. while( S is not empty )
(a) take any T ∈ S; S := S \ T ;
(b) (numOfEdg, sum, F ) := checkBoundary( T );
(c) if (numOfEdg = 2) then

i. 〈hs, F 〉 := −C[T, F ] sum + 〈is, T 〉;
ii. for every triangle C whose boundary edge is F

do

A. (n, s, F ′) := checkBoundary( C );
B. if (n = 2) S := S ∪ C;

5. return hs.

in Table 1 – is run, it hangs in an infinite loop. This is
due to the fact that no edge can be set since each face has
zero or one tree edges in its boundary. This pedagogical
counter-example shows that the STT is not general, since
its termination cannot be taken for granted.

When a gauged magnetostatic formulation is used, it is
required to construct a tree that is complete on the bound-
ary as described in [2–5]. The reader should be aware that
also if the tree is complete on the boundary STT fail-
ures may easily happen, see a concrete counter-example
in ([6], Sect. 5.1.2). In this paper, we concentrate on un-
gauged formulations, which are known to be more efficient
with respect to the gauged ones. Dealing with ungauged
formulations, no boundary condition is needed for the gen-
eralized source magnetic field.

A modification of the STT is proposed in [10] dealing
with a cubical structured mesh. This algorithm, if applied
on a tetrahedral mesh, frequently fails in practice as we are
going to show. It turns out that it has even problems with
two-dimensional complexes, where the STT is provably
general. To show this, let us consider the two-dimensional
complex in Figure 2a. The currents specified for each face
are all zero except for the face S, represented by a dark
triangle in Figure 2a. Let the current associated to S be
an arbitrary non-zero value, say one to fix the ideas. In
the first iteration of [10] algorithm, the dark triangle in
Figure 2b is considered. A tree, represented in the picture

Fig. 1. A simple counter-example for the STT algorithm
termination.

by thick edges, is found on S and a zero value is associ-
ated to these edges. The value relative to the third edge
is set to a non-zero value, indicated in the picture by a
dotted edge (depending on orientations, not shown in the
picture for the sake of clarity, the non-zero value is 1 or
−1), by using the discrete Ampère’s law. Next, all the tri-
angles sharing an edge with S are considered. For each of
them, a local tree is constructed by using as tree edges as
many edges already imposed as possible. As usual, a zero
value is associated to the tree edges and the cotree edges
are determined accordingly to discrete Ampère’s law, see
Figure 2c. In all the pictures, the edges associated with a
zero value are represented by thick black edges. After con-
sidering all the triangles in the set, a new set is formed by
the triangles which share an edge with the set considered
in the previous iteration and not yet considered, see Fig-
ure 2d. This procedure should run until all the triangles
are considered. Let us analyze the output of the algorithm
after the fourth iteration, see Figure 2e. As one can easily
see, the output is wrong. In fact, let us concentrate on the
cycle made by edges with a zero associated value repre-
sented in Figure 2e. This cycle imposes the circulation of
the m.m.f. to zero, while should be once since the cycle
encircle the unit current through S.

One purpose of this paper is to show that STT per-
forms much better when the so-called BFS trees are used.
A BFS tree can be obtained by using BFS (Breadth-First
Search) strategy [11] to the graph consisting of the nodes
and the edges of the mesh. Previously, it was known that
this kind of trees – called also minimal diameter trees –
produce less iterations in the STT [4,12] algorithm, but
it was not pointed out that this is expressly required to
reduce the probability of failure to an acceptable value.

20801-p3



The European Physical Journal Applied Physics

Fig. 2. A simple counter-example for the [10] algorithm.
(a) The two-dimensional complex used in the counter-example.
(b–e) The first four iterations. The result produced in the last
(fourth) iteration is wrong, since discrete Ampère’s law is vi-
olated. In fact, the m.m.f. circulation evaluated on the cycle
represented in (f) by thick edges is zero, while should match
the current though the triangle S.

2.2 A survey on different algorithms

Some alternatives with respect to the STT algorithm, that
do not suffer from a lack of generality, have also been
proposed in the literature.

A näıve solution to the problem would be to solve the
linear system of equation (4) by a linear system solver.
To this aim, a sparse matrix data structure has to be first
created and the linear system has to be rigorously solved,
which of course substantially increase both the computa-
tional time and the coding effort (in fact, an integer-based
solver is usually not needed in FEM codes). For example,
in [13] this is done with a reordering and a Gaussian elim-
ination which is claimed to avoid the usual fill-in increas-
ing during the Gaussian elimination. It is rather difficult
to have some guarantees that the fill-in increasing will
be small enough to enable to reach a solution in prac-

tice. After the factorization is available, the system is
solved by back-substitution over reals. Nonetheless, it is
well known that, during integer elimination, arbitrary big
integers may be present in the computation, requiring a
costly package to manage arbitrary large integers.

An iterative real-valued (or complex-valued) solver has
been used for example in [14,15], where the source field
is obtained by means of a FEM projection technique.
Nonetheless, the cost of solving such a big linear system
is not negligible concerning both the computational com-
plexity and memory requirements. Actually, as already
pointed out in [14], it requires even more computational
effort than solving the original magnetostatic or eddy-
current problem.

Techniques based on the so-called fundamental cycles2

are also possible, see for example [1,16]. This approach
requires a huge computational effort to retrieve all the
fundamental cycles. Moreover, the currents over surfaces
whose boundaries are the fundamental cycles have to be
efficiently determined. Especially how to provide quickly
these currents is not addressed at all in the cited pa-
pers. Solve this problem in general would require to find a
surface whose boundary is the fundamental cycle, which
again requires to solve rigorously a non-maximal rank sys-
tem on integers.

To conclude, even though if these approaches are prov-
ably general, all of them increase the coding and compu-
tational complexity and the memory requirements with
respect to STT. An effective extension of the STT, called
Extended Spanning Tree Technique (ESTT), is introduced
in the next Section. ESTT results provably general and
exhibits a linear complexity on average.

3 The Extended Spanning Tree Technique
(ESTT)

As already discussed in Section 2.1, the STT algorithm
hangs in an infinite loop when there are still edges with-
out a hs value set but does not exist a triangle T having
exactly one boundary edge still to be set. However, due
to the uniqueness of the solution, we know that each edge
value has to be set to a precise real (or complex) number.

The ESTT algorithm works exactly as the STT algo-
rithm until it hangs in an infinite loop. When it hangs, the
list of the remaining triangles is searched for a triangle T
having a unique edge set by the algorithm.

– If such T is found, an edge E′ of T for which the value
〈hs, E′〉 is not set yet, is set to the unknown fixed value
x1.

– If such a T is not found, then any triangle T is picked.
Two edges E1, E2 of T are set to the unknown fixed
values x1 and x2.

Since after this simple manipulation there exists a trian-
gle T with exactly one boundary edge still to be set, the

2 Let us consider a spanning tree over a graph. Each cotree
edge form, together with some tree edges, one and only one
cycle which is called fundamental cycle.

20801-p4



P. D�lotko and R. Specogna: Efficient generalized source field computation

Table 2. C++ style class of extended number.

class extNumber

{

public:

//here suitable arithmetic operators and

//conversions should be implemented.

extNumber( double val )

{

this->value = val;

this->wasValueSet = true;

}

extNumber()

{

for(int i=0;i!=this->numberOfSymVar;++i)

this->symbolicVar.push_back(0);

this->symbolicVar.push_back(1);

++this->numberOfSymVar;

this->wasValueSet = false;

}

private:

double value;

bool wasValueSet;

std::vector< double > symbolicVar;

static int numberOfSymVar;

};

int extNumber::numberOfSymVar = 0.

STT algorithm can continue iterating. The only difference
is that the algorithm operates on an extended implemen-
tation of real (or complex) numbers. On one hand, the
number can be explicitly known, on the other, it represents
some unknown fixed value. Such an implementation of a
number may be obtained easily by using any object ori-
ented programming language or Matlab�. Let us present
in Table 2 an example of extended class of a real number
implemented in C++. In the class presented in Table 2
two constructors are indicated. The first one creates a
standard double variable packed in the extNumber class
object. The second one, used when the STT algorithm
hangs, creates a new unknown symbolic variable. To store
the symbolic variables, the standard template library [17]
vector symbolicVar is used. The symbolic variables are
enumerated with integers starting from 0. To enumerate
the variables, a static variable numberOfSymVar being the
member of the extNumber class is used. Therefore, the
value of the ith symbolic variable is stored at the ith po-
sition of symbolicVar vector. Such an approach enables
fast and easy arithmetic operations using symbolic vari-
ables (which are in fact the arithmetic operations on the
symbolicV ar vectors). The obvious details are left to the
reader.

Now, the ESTT algorithm is presented. Instead of pro-
viding a full-length implementation, only the differences
with respect to the STT algorithm are discussed. Namely,
the point (4) of the STT algorithm is reorganized as al-
ready described in this Section to obtain the ESTT algo-
rithm presented in Table 3.

Table 3. The changes that need to be applied to STT in order
to obtain the ESTT algorithm.

(4a) while ( true )

1. while( S is not empty )
(a) take any T ∈ S; S := S \ T ;
(b) (numOfEdg, sum, F ) = checkBoundary( T );
(c) if (numOfEdg = 2) then

i. 〈hs, F 〉 := −C[T, F ] sum + 〈is, T 〉
ii. for every triangle C whose boundary edge is F

do

A. (n, s, F ′) = checkBoundary( C );
B. if (n = 2) S := S ∪ C;

2. if for every edge E the value 〈hs, E〉 is set, then

break;
3. search for a triangle T having the value 〈hs, E〉 set for

exactly one edge E;
4. if such a triangle T exists, for one of its edges E′ not

already set impose the value by using extNumber() con-
structor;

5. if such a triangle T does not exists pick any triangle T ′

(a) Let E and E′ be two edges not already set in the
boundary of T ′;

(b) Set the values for E and E′ by using extNumber()
constructor;

6. for every triangle T which have the value of exactly two
boundary edges set do S := S ∪ T ;

(4b) For every triangle T ∈ K if 〈hs, CT T 〉 is a nonzero
unknown value add the equation 〈hs, CT T 〉 = 0 to the linear
system of equations;
(4c) Solve the linear system of equations (one can use for
example [20]) and set the values of the suitable edges.

3.1 Proof of ESTT generality

We already pointed out that the solution of the system (4)
is unique. When the STT algorithm is propagating, setting
a value to an edge E is equivalent to obtaining a unique
solution of one equation in equation (4). This equation,
together with the corresponding unknown, can be canceled
out and both the rank of the resulting system and the
number of unknowns is decreased by one. Therefore, since
the rank of the system was maximal, during each iteration
of the STT algorithm it remains maximal although the
system itself gets smaller.

When STT hangs, the unknown symbolic variable is
created and propagated by the ESTT algorithm. When
adding a new symbolic variable, no value is computed
and no equation is canceled out in the considered linear
system. Therefore, the system and its rank remain invari-
ant. Later, once that the propagation is resumed, the rank
goes down again. It is therefore clear, that the rank of the
resulting system is equal to the number of symbolic vari-
ables used in course of ESTT algorithm run.

Once the while loop in the ESTT algorithm termi-
nates, the linear system of equations have to be cre-
ated and solved in order to determinate the values of all

20801-p5



The European Physical Journal Applied Physics

symbolic variables. When constructing the system, trivial
equations involving some symbolic variables (for example
the ones like (x1 +1)−(x1)+(1) = 2) are eliminated. Also
the repetitions of the same equation are removed from
the final system. In all the considered cases the number
of equations obtained in this way matches the number of
unknowns which is a very small or void in practice.

3.2 ESTT rigorous complexity analysis

When STT does not hang in an infinite loop, the perfor-
mance of ESTT and STT are very similar considering the
computational complexity3. In this case, ESTT uses a lit-
tle more memory to store the numbers4. In practice, the
extra cost of ESTT with respect to STT is not visible to
the user.

Let us therefore analyze the time complexity of the
STT algorithm presented in the Table 1. Since the tree
can be constructed in linear time, the steps (1)–(3)
need a linear time with respect to the number of ele-
ments in the complex. It is also clear that the proce-
dure checkBoundary (simplex T ) needs a constant time5.
Therefore, also the body of the while loop in the point (4)
of the algorithm needs a constant time. It remains to com-
pute the number of iterations of the while loop in the
point (4) of the algorithm. But it is clear that each trian-
gle T will be considered only once. Hence, the complexity
of the while loop is linear and consequently the complex-
ity of the whole STT algorithm is linear.

When STT hangs in an infinite loop, an extra vari-
able has to be added and, at the end, a linear system of
equations has to be solved. Adding an extra variable in
the algorithm does not affect the performance of the al-
gorithm. The only important quantity is the number of
the extra equations of the linear system that needs to be
solved at the end. At the moment, there are no rigorous
results to determine this size. Nonetheless, it seems very
unlikely in practice to consider a mesh for which the linear
system would consists in more than few, say three, equa-
tions. In fact, it is rare even to have a system with just
two equations. Therefore, it is reasonable to assume that
the number of extra equations on average is bounded by
a constant. With this assumption it is straightforward to
see that also the ESTT algorithm exhibits a linear com-
plexity. In the worst possible case, the size of the system

3 The only difference is that STT uses processor directives to
perform arithmetic operations on real (or complex) numbers,
while ESTT uses objects of the class extNumber where the
arithmetic operation can be effectively implemented as inline
arithmetic operators. Hence, with a good implementation, the
difference is not too big.

4 This is due to the fact that, in the considered case, the
class extNumber contains one real (or complex) number and
one boolean value while STT needs only one real (or complex)
number to be stored.

5 Such a complexity may be achieved once the value 〈hs, E〉
is kept together with E as an extra field of the simplex data
structure and can be accessed in constant time.

Fig. 3. The micro inductor used as a benchmark problem.

Table 4. STT performance with random trees.

#tetrahedra #trees tested #failures Ratio

471 30 000 346 1.2%
2499 30 000 4562 15.2%
4603 30 000 8722 29.1%

12 271 11 400 8310 72.9%

would be proportional to the size of the mesh. Anyway,
the cost of solving it would be less than the algorithm
presented in [13].

4 Numerical results

The proposed algorithm has been applied to the source
field computation on real-sized industrial magnetostatic
problems without experimenting any difficulty. As an ex-
ample, the micro inductor in Figure 3 surrounded by an
insulating region is considered.

First of all, the statistics of STT failures on various
meshes of the considered problem are produced. To this
aim, the STT has been executed on thousands of random
trees for each mesh producing the results in Table 4. The
results show that, for big enough meshes, the probability
of STT failure is very high. So we can conclude that STT
does not perform satisfactorily by using random trees. By
using ESTT, the correct result is obtained in each tested
case.

Using BFS trees, no failures has been reported em-
ploying the STT on the benchmark problem. Nonetheless,
the STT convergence using BFS trees cannot be proved,
since concrete counter-examples exists. Namely, there ex-
ists three-dimensional meshes without holes and cavities
in which STT fails even if using BFS trees. There is even
some example, like the Furch’s knotted ball [18], in which
STT does not converge for any choices of BFS spanning
tree. Hence, to have a provably good method which is re-
liable in practice, ESTT is expressly needed.

20801-p6



P. D�lotko and R. Specogna: Efficient generalized source field computation

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

Millions of tetrahedra

Ti
m

e 
[s

]

STT
ESTT

Fig. 4. (Color online) STT and ESTT timings.

The execution times of both STT and ESTT are repre-
sented in Figure 4. As expected, both show a linear com-
plexity behavior.

Since ESTT is more general but slower, hence we pro-
pose the following algorithm employing a cascade of STT
and ESTT:

1. The STT using a BFS tree is applied first. If STT
converges, exit.

2. If STT fails, the slower but provably general ESTT is
employed starting from the situation in which the STT
stopped the propagation.

With this combination of STT and ESTT, one is able to
get a fast and provably good algorithm for generalized
source field computation.

In the literature, there has been some effort to reduce
the support (i.e. reduce the number of edges with a non-
zero hs value) of the generated source fields hs. However,
as already shown in [19], we experimented that this pro-
cess does not worth the effort when STT/ESTT is used.
This is because the time required to reduce the support
is frequently greater than the time gained dealing with a
compact support.

5 Conclusions

The Spanning Tree Technique (STT), widely used to im-
pose sources in h-oriented formulations for magnetostatic
problems, hangs in an infinite loop for some choices of the
spanning tree. It has been shown, by using concrete exam-
ples, that these failures do happen frequently in practice

and an extension is thereafter sought. Beside of the al-
ready proposed attempts to produce a different general
and efficient algorithm, the aim of this paper has been to
present the Extended Spanning Tree Technique (ESTT),
which is provably general and yields to an optimal compu-
tational complexity. Some examples using real-sized three-
dimensional finite element meshes are presented, showing
the utility of ESTT for practical applications.

P.D. is partially supported by MNiSW grant N N206 625439.

References

1. P. Dular, F. Henrotte, F. Robert, A. Genon, W. Legros,
IEEE Trans. Magn. 33, 1398 (1997)

2. J.P. Webb, B. Forghani, IEEE Trans. Magn. 25, 4126
(1989)

3. Y. Le Ménach, S. Clénet, F. Piriou, IEEE Trans. Magn.
34, 2509 (1998)

4. F. Henrotte, K. Hameyer, IEEE Trans. Magn. 39, 1167
(2003)

5. T. Henneron, S. Clenet, P. Dular, F. Piriou, J. Comput.
Appl. Math. 215, 438 (2008)

6. P. D�loko, R. Specogna, SIAM J. Numer. Anal. 48, 1601
(2010)

7. J.R. Munkres, Elements of algebraic topology (Perseus
Books, Cambridge, MA, 1984)

8. P. D�lotko, R. Specogna, F. Trevisan, Comput. Meth. Appl.
Mech. Eng. 198, 3765 (2009)

9. G. Strang, Linear algebra and its applications, 3rd edn.
(Thomson Business Information, Stanford, USA, 2003)

10. O. Biro, K. Preis, G. Vrisk, K.R. Richter, IEEE Trans.
Magn. 29, 1329 (1993)

11. T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction
to Algorithms, 2nd edn. (McGraw-Hill, 2002)

12. A. Murphy, Masters thesis, Boston University, 1991
13. Z. Cendes, Z. Badics, IEEE Trans. Magn. 43, 1241 (2007)
14. O.-M. Midtg̊ard, R. Nilssen, IEEE Trans. Magn. 34, 2652

(1998)
15. C. Geuzaine, B. Meys, F. Henrotte, P. Dular, W. Legros,

IEEE Trans. Magn. 35, 1438 (1999)
16. K. Preis, I. Bardi, O. Biro, C. Magele, G. Vrisk, K.R.

Richter, IEEE Trans. Magn. 28, 1056 (1992)
17. N.M. Josuttis, The C++ Standard Library: A Tutorial and

Reference (Addison-Wesley, USA, 1999)
18. G.M. Ziegler, Discrete Comput. Geom. 19, 159 (1998)
19. T. Henneron, F. Piriou, A. Tounzi, S. Clénet, J.P.A.

Bastos, N. Sadowski, J. Microw. Optoelectron.
Electromagn. Appl. 8, 135 (2009)

20. The Eigen Library, http://eigen.tuxfamily.org

20801-p7

http://eigen.tuxfamily.org

	Introduction
	The Spanning Tree Technique (STT)
	The Extended Spanning Tree Technique (ESTT)
	Numerical results
	Conclusions
	References

