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Novel FDTD Technique Over Tetrahedral
Grids for Conductive Media

Lorenzo Codecasa , Member, IEEE, Bernard Kapidani , Ruben Specogna , Member, IEEE,
and Francesco Trevisan

Abstract— A fundamental extension for a recently introduced
numerical scheme for the time-domain solution of Maxwell’s
equations on tetrahedral meshes is introduced: the algorithm
is here shown to be able to handle materials with finite elec-
tric resistivity, without losing any of its amenable properties.
A theoretic stability analysis, valid for the extended algorithm,
is presented for the first time, and a Courant–Friedrich–Lewy
sufficient condition on the maximum time step allowed for
the scheme to be stable is derived analytically. This result is
completely novel for finite-difference time-domain (FDTD)-like
approaches on tetrahedral grids. Finally, the accuracy of the
extended algorithm is tested with respect to the well-known
implicit finite-element method scheme on tetrahedral grids, to the
canonical FDTD scheme on Cartesian orthogonal grids, and to a
commercial code implementing FDTD with staircasing mitigation
techniques.

Index Terms— Conductive materials, discrete geometric
approach (DGA), finite-difference time-domain (FDTD) methods,
numerical stability, tetrahedral grids.

I. INTRODUCTION

THE original finite-difference time-domain (FDTD)
method, devised by Yee [1], has inspired a conspicuous

amount of research in the field of numerical schemes for
solving Maxwell’s equations in the time domain, thanks to
its simplicity and computational efficiency [2]. The original
algorithm, which computes the values of electric and magnetic
fields on the points of two interlocked Cartesian orthogo-
nal grids, has also been reinterpreted as a finite-integration
technique (FIT) algorithm [3], where the computed quantities
are the integrals of the field over geometric elements of the
grids. Both formulations suffer from the so-called staircase
approximation problem: when an interface between regions
with discontinuous material properties is not conforming to
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the Cartesian grid, the second order of accuracy of the
finite-difference approximation is lost. In this regard, even
recent improved techniques based on combined arithmetic and
harmonic averaging techniques [4], [5] do not preserve the
original accuracy in the neighborhood of the interface.

This problem is inherent to the Cartesian orthogonal dis-
cretization of the domain, as unstructured grids (tetrahedral
or polyhedral) mesh generators avoid it with grids conform-
ing to the discontinuities in material properties. Approaches
that have had some degree of success in adapting the
FDTD algorithm to unstructured grids include schemes based
on the finite-element method (FEM) [6]–[8], on the cell
method [9]–[13], and more recently, formulations based on
the discontinuous Galerkin (DG) approach [16], [17]. Yet,
accuracy questions on the DG methods are still open, since
these methods do not explicitly require the local fulfillment of
physical conservation laws (charge conservation in particular)
across mesh element interfaces. On the other hand, classical
FEM formulations, which do not share this drawback, can be
made unconditionally stable [7], at the cost of the resulting
scheme being implicit, i.e., the computation includes solving
a linear system of algebraic equations at each time step.
This severely limits the scalability of the algorithm. Recently,
in the framework of the discrete geometric approach (DGA),
a technique has been introduced in [13], which yields an
explicit, charge preserving, and conditionally stable algorithm
on tetrahedral grids, with the limitation of being formulated for
strictly dielectric materials. How to overcome this limitation is
unfortunately not obvious. This paper is rooted in the formu-
lation of this previous work and aims at addressing this issue.
Furthermore, although the properties of the material operators
in [13] show that the resulting scheme is conditionally stable,
a Courant–Friedrich–Lewy (CFL) condition equivalent to the
one of the original FDTD algorithm is not given. This is also
dealt with in the following.

The rest of this paper is organized as follows. The discretiza-
tion of the equations in the lossless case is reintroduced in
Section II for the sake of clarity. The extension of the scheme
to the case of lossy materials is introduced in Section III, and
details on how to render its implementation efficient are given.
A CFL condition for the algorithm is analytically derived in
Section IV, where the numerical upper bound on the time step
for any given tetrahedral grid is also given. Numerical results,
which validate the main results claimed in the rest of this
paper, are shown and discussed in Section V. In Section VI,
conclusions are drawn.
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Fig. 1. Hexahedron �r is the element on which the basis functions are
defined.

II. LOSSLESS CASE FORMULATION

In the case of materials with infinite resistivity, Maxwell’s
equations in a bounded finite domain � can be written as

∂b
∂ t

= −∇ × e (1)

μh = b (2)
∂d
∂ t

= ∇ × h (3)

εe = d (4)

in which μ and ε are symmetric, positive-definite tensors.
In the following, we will work in the framework of the DGA,
where electromagnetic fields are discretized by taking their
integrals, called degrees of freedom (DoFs), over geometric
elements of two interlocked meshes: a primal tetrahedral mesh
and a polyhedral dual mesh, obtained by the barycentric
subdivision of the primal mesh. Discrete differential operators
are encoded by the incidence matrices of geometric elements
of the mesh, much like it is done in FIT schemes on Cartesian
orthogonal grids. Within this framework, the peculiarity of the
approach of [13] lies in the choice of the basis functions that
discretize constitutive equations. These are discretized locally
on every nonempty intersection �r (see Fig. 1) between a
tetrahedron τv and a dual cell τ̃ṽ centered in any of the four
vertices of τv . The magnetic permeability in (2) is discretized
in �r as a 3×3 symmetric, positive-definite matrix Mμ

r , whose
entry at its i th row and j th column is∫

�r

w̃i
r (r) · μ(r)w̃ j

r (r) dr (5)

where functions w̃i
r (r) (with i = 1, 2, 3) are three constant

basis functions with compact support in �r given by

w̃i
r (r) = ã j

r × ãk
r

ãi
r × ã j

r · ãk
r

in which i , j , and k is any permutation of 1, 2, and 3 and ã1
r ,

ã2
r , and ã3

r are the tangent vectors of the portions of the three
edges of τ̃ṽ with nonempty intersection with �r (as shown
in Fig. 1). Conversely, the dielectric permittivity tensor of (2) is
discretized into a 3×3 symmetric, positive-definite matrix Mε

r

whose entry at its i th row and j th column is∫
�r

wi
r (r) · ε(r)w j

r (r) dr (6)

where functions wi
r (r) (with i = 1, 2, 3) are three constant

basis functions with compact support in �r given by

wi
r (r) = a j

r × ak
r

ai
r × a j

r · ak
r

in which i , j , and k is any permutation of 1, 2, and 3 and a1
r ,

a2
r , and a3

r are the tangent vectors of the portions of the three
edges of τv with nonempty intersection with �r (as shown
in Fig. 1).

Obtaining the discretized version of (2) in global form
is straightforwardly done by assembling all the Mμ

r values
contributing to a tetrahedron τv and inverting locally the 4×4
resulting matrix. The same can be done locally in every dual
cell τ̃ṽ for the discrete global version of (4). This yields sparse,
symmetric, and positive-definite matrices Mμ−1

and Mε−1
.

With these premises, the discretized Maxwell’s equations
over a tetrahedral primal grid G and barycetric dual grid G̃ are

ϕn+ 1
2 − ϕn− 1

2

�t
= −Cvn (7)

f̃ n+ 1
2 = Mμ−1

ϕn+ 1
2 (8)

ψ̃n+1 − ψ̃n

�t
= C̃ f̃ n+ 1

2 (9)

vn+1 = Mε−1
ψ̃n+1 (10)

in which the following usual definitions apply: ϕn+(1/2) is the
vector of the fluxes of b through the primal faces of G at time

instant (n + (1/2))�t , f̃
n+(1/2)

is the vector of line integrals
of h along the dual edges of G at time instant (n + (1/2))�t ,
ψn is the vector of the fluxes of d through the dual faces of
G at time instant n�t , vn is the vector of line integrals of
e along the primal edges of G at time instant n�t , C is the
primal face-edge incidence matrix of the grid G and encodes
the discrete equivalent of the curl operator, and C̃ = CT is the
dual face-edge incidence matrix of the grid G (T indicating
transposition) and again encodes the discrete equivalent of
the curl operator. Matrix Mμ−1

transforms the fluxes ϕn+(1/2)

into line integrals f̃ n+(1/2) and ensures the consistency of the
discretized equation (8). Matrix Mε−1

transforms the fluxes
ψ̃n into line integrals vn and ensures the consistency of the
discretized equation (10). With a few algebraic manipulations,
the system of (7) through (10) can be written as

f̃
n+ 1

2 = f̃
n− 1

2 − �tMμ−1
Cvn (11)

vn+1 = vn + �tMε−1
C̃ f̃

n+ 1
2 (12)

which define an explicit leapfrog time-marching scheme. It is
important to note that the fields obtained by interpolating
the numerical solution with the given basis functions are
piecewise-uniform, hence in general discontinuous. This pecu-
liarity distances the method from canonical FEM, in which the
basis functions need to comply with more stringent sequence
properties [14].
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Fig. 2. Local quantities defined on the single dual volume. For the sake of
clarity, we show a 2-D section in which the section of the dual volume is the
colored area. It is important to note that even if DoFs are defined on dual
volumes, material tensors are still piecewise-uniform on primal volumes as in
the standard FEM.

III. INTRODUCTION OF ELECTRIC LOSSY MATERIALS

In the DGA framework, we want to extend (11) and (12)
to the case of lossy materials, without giving up any cru-
cial property of the original FDTD algorithm. Let us first
recall that, in the presence of materials with finite resistivity,
Ampére–Maxwell’s equation in the continuous domain can be
written as

ε
∂e
∂ t

+ σ e = j t (13)

j t = ∇ × h (14)

in which j t is the total electric current density which accounts
for both the displacement current term and the ohmic conduc-
tion current term. Since (13) contains both e and its derivative,
a discretization of (13) and (14) trivially inferred from (7)–(10)
would fail in keeping the algorithm explicit. In the following,
we show that how this can be achieved with a more subtle
approach.

A. Discretization of Ampére–Maxwell Law

Let us consider a single volume τ̃ṽ ∈ G̃, as in Fig. 2. If we
label Fτ̃ṽ

the set of faces of G̃ in the boundary of τ̃ṽ , we can
discretize 14) as follows:

ĩ
n+ 1

2
τ̃ṽ

= Sτ̃ṽ
C̃ f̃

n+ 1
2 (15)

where ĩ
n+(1/2)

τ̃ṽ
is a column vector of size |Fτ̃ṽ

|, containing the
fluxes of j t through the faces of G̃ in the boundary of τ̃ṽ at
time instant (n + (1/2))�t , and Sτ̃ṽ

is a transformation matrix
with |Fτ̃ṽ

| rows and number of columns equal to the number
of faces in G̃. Every row of Sτ̃ṽ

has exactly one entry equal to 1
corresponding to a dual face in the boundary of τ̃ṽ and zero
everywhere else. If we then define vn

τ̃ṽ
as the vector of size

|Fτ̃ṽ
| containing line integrals of e along the halves of primal

edges of G which intersect τ̃ṽ at time instant n�t , (13) can
be discretized as follows:

ĩ
n+ 1

2
τ̃ṽ

= Mε
τ̃ṽ

vn+1
τ̃ṽ

− vn
τ̃ṽ

�t
+ Mσ

τ̃ṽ

vn+1
τ̃ṽ

+ vn
τ̃ṽ

2
(16)

where Mε
τ̃ṽ

and Mσ
τ̃ṽ

are square, symmetric, and

positive-definite matrices of size |Fτ̃ṽ
| discretizing the

ε and σ tensors, respectively, and the standard semi-implicit
approximation was used for the σ -dependent term on the
right-hand side of (16). Matrices Mε

τ̃ṽ
and Mσ

τ̃ṽ
are constructed

locally on every dual volume, generalizing to σ the procedure
already described for ε in Section II. A remark is in order:
for (16), to yield a local consistent discretization of (13) for
any τ̃ṽ ∈ G̃, material tensors ε and σ need not be uniform
in the dual volume (they are, in fact, piecewise-uniform on
primal volumes as usual). Let us finally define two additional
local matrices

Pτ̃ṽ
= Mε

τ̃ṽ
+ �t

2
Mσ

τ̃ṽ

Qτ̃ṽ
= Mε

τ̃ṽ
− �t

2
Mσ

τ̃ṽ
.

With these definitions, we can apply a local matrix inversion
approach for each τ̃ṽ : by equating the right-hand sides of (15)
and (16) and inverting with respect to vn+1

τ̃ṽ
, it ensues

vn+1
τ̃ṽ

= (Pτ̃ṽ
)−1 · (Qτ̃ṽ

vn
τ̃ṽ

+ �tSτ̃ṽ
C̃ f̃

n+ 1
2
) ∀τ̃ṽ .

It is easy to notice that we can append all local vectors vn
τ̃ṽ

to
form a single global column vector vn

τ̃ . It then ensues

vn+1
τ̃ = (Pτ̃ )

−1 · (Qτ̃v
n
τ̃ + �tSτ̃ C̃ f̃

n+ 1
2
)

(17)

where (Pτ̃ )
−1 and Qτ̃ have block diagonal matrix form

(Pτ̃ )
−1 =

⎡
⎢⎢⎢⎣

(Pτ̃1)
−1 0 · · · 0

0 (Pτ̃2)
−1 · · · 0

...
...

. . .
...

0 0 · · · (Pτ̃|ṽ |)
−1

⎤
⎥⎥⎥⎦

and Sτ̃ = [ST
τ̃1

ST
τ̃2

· · · ST
τ̃|ṽ | ]T , where |ṽ | is the total number of

volumes in G̃. Matrix Sτ̃ has exactly two nonzero entries equal
to one in each column, since two halved edges correspond to
each edge in the primal mesh G. Discrete Equation (17) can
be written as

vn+1
τ̃ = Aτ̃v

n
τ̃ + �tBτ̃ C̃ f̃

n+ 1
2

where Aτ̃ = (Pτ̃ )
−1Qτ̃ and Bτ̃ = (Pτ̃ )

−1Sτ̃ . It general-
izes (12) to the case of lossy media when only it splits electric
field DoFs into halved primal edges, effectively adding one
unknown for every primal edge of G.

Finally, to have a fully functioning leapfrog time-marching
algorithm, one just needs to add back together the halved
edge quantities by left-multiplication with the transpose of the
appropriate transformation matrix

vn+1 = ST
τ̃ v

n+1
τ̃

. (18)

The scheme comprising (11), (17), and (18) inherits all
the benefits of the FDTD algorithm for lossy materials on
Cartesian grids. It is explicit, conditionally stable, and it has
the second-order accuracy in time. At no point in its derivation,
the properties of (11) and (12) are lost. Furthermore, matrices
(Pτ̃ )

−1 and Qτ̃ are both block diagonal so both their construc-
tion and their product with DoFs vectors are performed with
limited computational effort. Finally, we note that the updating
equation (12) is retrieved if σ = 0 everywhere in the grid.
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Fig. 3. Local quantities defined on the single tetrahedron.

B. Discretization of Faraday’s Law

A similar approach can be applied on the primal mesh.
On any single tetrahedron τv ∈ G, as in Fig. 3, we can
discretize (1) on τv as follows:

ϕ
n+ 1

2
τv − ϕ

n− 1
2

τv

�t
= −Sτv Cvn (19)

where ϕn+(1/2)
τv is a vector of size 4 containing the fluxes of b

through the primal faces of τv at time instant (n + (1/2))�t .
Matrix Sτv is a transformation matrix with four rows and
number of columns equal to the number of faces in G. Every
row of Sτv has exactly one entry equal to 1 corresponding
to a primal face in the boundary of τv and zero everywhere
else. We can locally construct a symmetric positive-definite
4 × 4 matrix (Mμ

τv )
−1 that discretizes the μ tensor, with the

procedure recalled in Section II, such that the relation

f̃
n+ 1

2
τv

= (Mμ
τv

)−1
ϕ

n+ 1
2

τv (20)

holds, where f̃
n+(1/2)
τv

is the vector containing the line integrals
of h along the halves of dual edges of G contained in τv ,
and (20) is a consistent local discretization of (2) for any
τv ∈ G. By substituting (20) into (19) and inverting with

respect to f̃
n+(1/2)

τv
, we get

f̃
n+ 1

2
τv

= f̃
n− 1

2
τv

− �t
(
Mμ

τv

)−1Sτv Cvn ∀τv .

Let us now define column vector f̃
n+(1/2)

τ , obtained by

appending all f̃
n+(1/2)
τv

in G at time instant (n + (1/2))�t .
We get

f̃
n+ 1

2
τ = f̃

n− 1
2

τ − �t
(
Mμ

τ

)−1Sτ Cvn (21)

where (Mμ
τ )−1 has the form

(Mμ
τ )−1 =

⎡
⎢⎢⎢⎣

(
Mμ

τ1

)−1 0 · · · 0
0 (Mμ

τ2 )
−1 · · · 0

...
...

. . .
...

0 0 · · · (Mμ
τ|v| )

−1

⎤
⎥⎥⎥⎦

and Sτ = [ST
τ1

ST
τ2

· · · ST
τ|v| ]T , where |v| is the total number

of tetrahedra in G. Matrix Sτ has exactly two nonzero entries
in each column associated with any primal face which is not
in the boundary of G. The columns of Sτ which map to faces

in the boundary of G on the other hand will have just one
nonzero entry, equal to 1. It is evident that (21) contains the
same information of (11), but splits the unknown line integrals
of h into halved dual edges, adding one unknown for every
primal face of G which is not in the boundary of �. To retrieve
the full dual edge DoFs, one just needs to add back together
the halved quantities by left-multiplication with the transpose
of the appropriate selection matrix

f̃
n+ 1

2 = ST
τ f̃

n+ 1
2

τ . (22)

We remark that, by left-multiplying (21) by ST
τ and using (22)

recursively, one gets

f̃
n+ 1

2 = ST
τ f̃

n+ 1
2

τ

= ST
τ f̃

n− 1
2

τ − �tST
τ Mμ−1

τ Sτ Cvn

= f̃
n− 1

2 − �tMμ−1
Cvn

where we have used the fact that Mμ−1 = ST
τ (Mμ

τ )−1Sτ by
construction. The additional unknowns for the magnetic field
line integrals are, in fact, actually never used in the algorithm.
Nevertheless, we introduce them to complete the symmetry
of the equations (which can be exploited should a magnetic
conductivity need to be introduced, e.g., for PML), and they
will be useful in Section IV for the stability analysis.

C. Reduction of Redundant Unknowns

A noticeable drawback of the scheme of (17) and (18) is
that it has twice the number of edge unknowns with respect to
the actual grid size of �. This drawback can be mitigated with
algebraic manipulations and with certain, physically relevant,
assumptions on the materials’ properties.

Let us now take, without loss of generality, a dual volume τ̃ṽ

contained in a spatial region in which ε and σ are homogenous
scalars, and it is straightforward to see from (6) that

(Pτ̃ṽ
)−1 · Qτ̃ṽ

= ε − �t
2 σ

ε + �t
2 σ

I = αε,σ I (23)

where I is the identity matrix and αε,σ is a dimensionless
scalar parameter. This can be done for all edges, which share
property (23). The ensuing recombination of halved edges is
made clear graphically in Fig. 4: in a shelllike layer of edges
(the ones which intersect the annulus bounded by the two
dashed lines), the halved primal dual edges must be used,
while in the rest of the computational domain, the number
of primal edge unknowns is, instead, equal to the number of
primal edges in the grid. Formally, this procedure leads to
the definition of new hybrid DoFs vρ̃ , such that vρ̃ = ST

ρ̃τ̃vτ̃ ,
where Sρ̃τ̃ is a new transformation matrix, mapping the new
DoFs to the ones defined by vτ̃ . Every row of S

ρ̃τ̃
is all

zeros except for one entry equal to 1, while every column
of S

ρ̃τ̃
has two or one nonzero coefficients, depending on

whether a halved edge lies in a dual volume which shares
property (23) or not.

With this formalism, (17) becomes

vn+1
ρ̃ = Aρ̃v

n
ρ̃ + �tBρ̃C̃ f̃

n+ 1
2
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Fig. 4. 2-D section of an example in which the computational domain is split
into three regions where the three subcases of the time-marching algorithm
apply: the domain � is the union of an arbitrarily shaped object �C (the
red area in the online version) with σ �= 0 ∈ �C and a perfectly dielectric
(possibly inhomogenous) region �D given by its complement with respect to
a larger box.

where

Aρ̃ = ST
ρ̃τ̃ (Pτ̃ )

−1Qτ̃ Sρ̃τ̃

(
ST

ρ̃τ̃ Sρ̃τ̃

)−1

Bρ̃ = ST
ρ̃τ̃ (Pτ̃ )

−1Sτ̃

and (18) becomes

vn+1 = ST
τ̃ Sρ̃τ̃

(
ST

ρ̃τ̃ Sρ̃τ̃

)−1
vn+1

ρ̃

where we do not have to actually compute any further matrix
inversion, since ST

ρ̃τ̃
S

ρ̃τ̃
is a diagonal matrix with all diagonal

entries equal to 1 or 2.
In the limit, in which ε and σ are homogenous scalars

in the whole grid G, the number of unknowns is reduced
to the one given by the original grid. In fact, the procedure
yields equations which are equivalent to the starting ones.
Algebraic manipulations are just used to merge unknowns
associated with line integrals of the electric field in regions
of uniform material properties, with no additional assumption
on material properties values with respect to the original
algorithm. It is also evident from the definitions of P and αε,σ

that, again, (12) is retrieved if σ = 0. Finally, it is also relevant
to note that the whole procedure of recombination of halved
primal edges can be exploited even if instead of homogenous
scalars, ε and σ are just proportional tensors.

IV. STABILITY ANALYSIS

A. Courant–Friedrich–Lewy Condition for the New Algorithm

In the framework introduced in Section III, a stability condi-
tion for the resulting algorithm can be derived using consider-
ations formally similar to those used for the FDTD algorithm
on Cartesian grids. The algorithm outlined in Section III can
be rewritten in the following form:

Mμ
τ

f̃
n+ 1

2
τ − f̃

n− 1
2

τ

�t
= −Sτ C ST

τ̃ v
n
τ̃ (24)

Mε
τ̃

vn+1
τ̃ − vn

τ̃

�t
+ Mσ

τ̃

vn+1
τ + vn

τ̃

2
= Sτ̃ C̃ ST

τ f̃
n+ 1

2
τ (25)

where it is also straightforward to see that, if we define
Cτ = Sτ C ST

τ̃ , it ensues

(Cτ )
T = C̃τ = Sτ̃ C̃ ST

τ .

Then, multiplying on the left (25) by (vn+1
τ̃

+ vn
τ̃
)T and (24)

by ( f̃
n+(1/2)
τ + f̃

n−(1/2)
τ )T and by summing the two result-

ing equations and performing a few algebraic manipulations,
we obtain

W n+1 − W n = −Pn+ 1
2 (26)

where we have defined

W n+1 = 1

2

(
vn+1

τ̃

)T Mε
τ̃v

n+1
τ̃ + 1

2

(
f̃

n+ 1
2

τ

)T Mμ
τ f̃

n+ 1
2

τ +

− 1

2
�t
(
vn+1

τ̃

)T C̃τ f̃
n+ 1

2
τ (27)

W n = 1

2

(
vn

τ̃

)T Mε
τ̃ v

n + 1

2

(
f̃

n− 1
2

τ

)T Mμ
τ f̃

n− 1
2

τ +

− 1

2
�t
(
vn

τ̃

)T C̃τ f̃
n− 1

2
τ (28)

Pn+ 1
2 = �t

(
vn+1

τ̃
+ vn

τ̃

2

)T

Mσ
τ̃

(
vn+1

τ̃
+ vn

τ̃

2

)
. (29)

By hypothesis on the σ tensor, Pn+(1/2) ≥ 0 always holds.
Since (26) also holds, it ensues that the energy function
W n does not increase over time. Consequently, we can
use the energy method [18] to establish a CFL condition,
i.e., we require W n ≥ 0 for each time step. With this approach,
we show (see proof in Appendix A) that the following result
holds.

Theorem 1: A sufficient condition for the stability of the
scheme of Section III is

�t < min
r

hr

2cr

in which the minimum is over all volumes �r (as defined
in Section II) in the tetrahedral mesh and hr is the height
of the tetrahedron containing �r , orthogonal to the face
opposite to �r .

The condition of Theorem 1 is a theoretical condition which,
to the best of our knowledge, is completely novel for the
FDTD algorithms on tetrahedral grids, in the sense that it links
the time step with a purely geometric property of the mesh
and gives a rigorous underpinning to the following intuitive
remark: the bound on the stability of a time-domain scheme
on tetrahedral grids strongly depends on the quality of the
mesh. Tetrahedra which are close to degeneracy (going toward
the right in Fig. 5) will be the bottleneck for the conditional
stability of the algorithm.

B. Numerical Approach

The approach of Section IV-A yields a sufficient condition
for stability, i.e., a theoretic lower bound on �t . For perfor-
mance purposes, it may be desirable to obtain the upper bound
instead. Using (24), W n+1 can be equivalently rewritten as

W n+1 = 1

2

(
f̃

n+ 1
2

τ

)T Mμ
τ f̃

n+ 1
2

τ + 1

2

(
vn+1

τ̃

)T Mε
τ̃v

n
τ̃ (30)
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Fig. 5. Grid containing nearly degenerate tetrahedra as the one on the right
will require a smaller time step to yield a stable scheme.

and since, again from (24), it is

vn+1
τ̃

= vn+1
τ̃

+ vn
τ̃

2
+ �t

2

(
Mε

τ̃

)−1C̃τ f̃
n+ 1

2
τ

vn
τ̃ = vn+1

τ̃ + vn
τ̃

2
− �t

2

(
Mε

τ̃

)−1C̃τ f̃
n+ 1

2
τ

from (30), it then ensues

W n+1 = 1

2

(
f̃

n+ 1
2

τ

)T
(

Mμ
τ −

(
�t

2

)2

Cτ (Mε)−1C̃τ

)
f̃

n+ 1
2

τ

+ 1

2

(
vn+1

τ̃ + vn
τ̃

2

)T

Mε
τ̃

(
vn+1

τ̃ + vn
τ̃

2

)

from which it results that our numerical scheme is stable if
and only if

Mμ
τ −

(
�t

2

)2

Cτ

(
Mε

τ̃

)−1C̃τ > 0 (31)

where by >0, it is meant that the matrix is positive-definite.
We can apply an approach similar to [7] and [19] on (31),
obtaining the condition

�t <
2√

λMAX

where λMAX is the maximum eigenvalue of matrix
(Mμ

τ )−1Cτ (Mε
τ̃
)−1C̃τ . Since no big matrix inversion needs to

be computed, a good estimate of λMAX can be achieved with
the modest computational effort.

V. NUMERICAL RESULTS

A. Uniform Conductive Waveguide

Our first example concerns the simulation of a rectangular
metallic waveguide of size 5 × 2.5 cm and length 10 cm in
the z-direction. At z = 0, the waveguide is excited with the
incident electric field of the TE10 modulated with the function
h(t) = sin(2π f t)�(t), where f = 5 GHz and �(t) is the
unit step function. On the other end (z = 10 cm), a perfect
electric conductor (PEC) termination is applied. We fill the
whole waveguide with a medium with nonnegligible electric
conductivity σ . A closed form for the solution of this problem,
derived in Appendix B, was not previously published to the
best of our knowledge. To validate the presented method,
comparison with both the analytic solution and other widely
known approaches has been performed both for the lossless
case and for σ = 50 mS/m. Using the following energy norm:

‖ f̃ τ‖μ = 1

2

(
( f̃ τ )

T Mμ
τ f̃ τ

) 1
2

‖vτ̃‖ε = 1

2

(
(vτ̃ )

T Mε
τ̃vτ̃

) 1
2

‖ f̃ τ , vτ̃‖μ,ε = (‖ f̃ τ‖2
μ + ‖vτ̃‖2

ε

) 1
2

Fig. 6. Relative error in energy norm: σ = 0 everywhere inside the waveguide
(h is the maximum edge length of the mesh element in the grid).

Fig. 7. Relative error in energy norm: σ = 50 mS · m−1 everywhere inside
the waveguide (h is the maximum edge length of the mesh element in the
grid).

we compared the accuracies of the various methods by study-
ing the relative error

ε̂ = ‖ f̃ τ − �(h), vτ̃ − �(e)‖μ,ε

‖�(h),�(e)‖μ,ε

where �(h) and �(e) are the projections of the analytic fields
into the geometric elements of the mesh. Figs. 6 and 7 show
the relative error ε̂, with respect to the maximum edge length
h of the mesh element, in a lossless and lossy waveguide,
respectively. The other methods shown are the classical FDTD
algorithm (in its FIT variation [3]) and the centered differ-
ence discretization of the time-domain FEM approach [7].
The grids used for the FEM and DGA approaches have 14 336,
114 688, 917 504 elements, respectively, and are successive
uniform refinements of the same grid. The grids used for the
FDTD approach have 4 096, 32 768, 262 144 cubes, respec-
tively. We remark that the FDTD slopes do not show any
superconvergent behavior since the fields in the solution of
the problem are only piecewise differentiable [20]. The error
curves show that the accuracy of the proposed method is in
very close agreement with the standard FEM with the lowest
order edge elements in both the lossless and the conductive
waveguide problems.
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Fig. 8. Two projections of the simulation setup for the numerical example
of Section V-B.

Fig. 9. Comparison of various approaches for the setup of Fig. 8. The
tetrahedral grid used comprises 5 402 984 tetrahedra, while the Cartesian
orthogonal grid comprises 8 000 000 cubes.

Fig. 10. Comparison of various approaches for the setup of Fig. 8: different
time instants.

B. Conductive Ball in Dielectric Waveguide

The second example concerns a dielectric waveguide with
the same geometry and excitation, in which a spherical con-
ductive obstacle with radius r = 5 mm has been put at the
center of the waveguide. We set σball = 0.2 S · m−1 and
εr = 1. To illustrate how the various methods behave at the
discontinuity between the conductive and dielectric objects,
we measured the transverse electric field on a line parallel to
the x-axis (setting z = 0.05 and y = 0.0125). The results for
the various approaches are shown at three different instants
in Figs. 9 and 10.

Fig. 11. Comparison with CST MWS commercial code for the setup of
Fig. 8: t = 1.5 ns.

The analytical solution to this problem is not known, but we
can still assess the accuracy of the proposed method as follows:
a tetrahedral grid is chosen and the test problem is solved
using the FEM approach. Then, the grid is uniformly refined
(by bisecting the edges of all tetrahedra), and the problem is
solved again. The process is repeated until the energy norm
(over the whole domain) of the obtained solution does not
vary by more than 1% with respect to the previous refinement.
By doing so, we stopped at a grid with 5 402 984 tetrahedra
(for a maximum of 17 117 836 unknowns, counting also splits
DoFs in the DGA approach). It can be easily noticed that the
waveforms obtained with the proposed method (on the same
grid) follow closely the ones obtained with the FEM, while
the ones obtained with an FDTD simulation with 8 million
cubes (48 420 700 unknowns) still show the evident signs of
staircasing error in the form of a shift in the discontinuities
between air and the conductive material at x = 0.02 m and
x = 0.03 m. To shed some perspective on the performance of
the proposed method, it must be noted that simulating 2 ns of
propagation with the FEM approach, for which a precoditioned
conjugate gradient solver was used, with the tolerance on the
relative residual set to 1 × 10−8, took nearly 30 h, while the
simulation with the proposed method (on the same mesh) took
approximately 2.5 h on the same architecture.

Finally, in Fig. 11, the same test bench is used to
compare the DGA approach to a known commercial code
(CST Microwave Studio) implementing closed-source tech-
niques labeled perfect boundary approximation (PBA,
see [21]) to avoid staircasing. As a reference, a PBA simu-
lation with a maximum grid step size of 62 μm was used,
and the transverse electric field was measured at time instant
t = 1.5 ns. The plot shows that the DGA approach with maxi-
mum grid size of 2 mm (1 million tetrahedra roughly) already
shows a very good agreement with the reference solution and
is visibly more accurate than a PBA simulation with a grid
step h = 125 μm (roughly 50 million cubes/hexahedra). The
reference solution took roughly 8 h to simulate 2 ns of wave
propagation on a Xeon workstation, while the DGA simulation
shown in Fig. 11 took less than 10 min on the same worksta-
tion. Obviously, the FDTD approach has the clear advantage
in terms of number of unknowns for the same grid size and
parallel computing performance, but it can be shown (see [15])
that the fractured grid formulation used in this paper allows
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the scheme proposed in this paper to achieve an order of mag-
nitude in speedup if implemented on graphic processing units.

VI. CONCLUSION

An explicit numerical method for the time-domain solu-
tion of Maxwell’s equations on tetrahedral grids has been
described. This method allows to treat materials with arbitrary
electric conductivity with limited added computational cost
and has been shown analytically to have a CFL condition for
numerical stability depending on the geometric properties of
the mesh. The method’s promise for practical applications has
been shown with various numerical tests.

Adaptation of the method to handling open problems is
currently under way.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we need the following preliminary
lemma.

Lemma 1: For every intersection �r of a dual volume ṽ
with a primal volume v, the following identity holds:

Ar Mε
r AT

r = εr |�r |I3 (32)

Ãr Mμ
r ÃT

r = μr |�r |I3 (33)

where I3 is the 3 × 3 identity matrix, Mμ
r and Mε

r are the
3 × 3 matrix whose entries are defined in (5) and (6), εr is
the electric permittivity (assumed uniform in the volume �r ),
|�r | indicates the measure of �r , Ar = [a1

r a2
r a3

r ] is a 3 × 3
matrix whose columns are the edge vectors of the halves of
primal edges on the boundary of �r , and Ãr = [ã1

r ã2
r ã3

r ]
is a 3 × 3 matrix whose columns are the edge vectors of the
halves of dual edges on the boundary of �r .

Proof: At any time instant tn , take a pair of vectors en
r

and dn
r . We can always define discrete DoFs as projections of

uniform vector fields on primal halved edges in the boundary
of �r in the following fashion:

un
r = AT

r dn
r , vn

r = AT
r en

r .

Then, by using the properties of the basis functions, the fol-
lowing equality holds exactly:
(
dn

r

)T Ar Mε
r AT

r en
r

= (
un

r

)T Mε
r v

n
r

=
3∑

i=1

3∑
j=1

(
un

r

)
i

(∫
�r

wi
r (r) · ε(r)w j

r (r) dr
)(
vn

r

)
j

=
∫

�r

3∑
i=1

(
un

r

)
i w

i
r (r) · ε(r)

3∑
j=1

(
vn

r

)
j w

j
r (r) dr

= dn
r ·
(∫

�r

ε(r) dr
)

en
r .

Furthermore, if the electric permittivity is uniform in �r ,
we get

(
dn

r

)T Ar Mε
r AT

r en
r = dn

r ·
(∫

�r

ε(r) dr
)

en
r

= dn
r · (εr |�r |)en

r .

Since the choice of vectors dn
r and en

r is general, (32) easily
follows. The proof of (33) is completely analogous. �

We are now ready to prove Theorem 1.
Proof: The energy function W n+1 in (27) can be rewritten

as a sum of terms, one for each volume �r . In fact

W n+1 =
4|v |∑
r=1

W n+1
r

in which

W n+1
r = 1

2

(
vn+1

r

)T Mε
rv

n+1
r + 1

2

(
f̃

n+ 1
2

r
)T Mμ

r f̃
n+ 1

2
r +

− 1

2
�t
(
vn+1

r

)T CT
r f̃

n+ 1
2

r . (34)

Here, quantity W n+1
r is the electromagnetic energy in �r . It is

a function of the three-row vector vn+1
r , which contains line

integrals of the electric field along a1
r , a2

r , and a3
r and of

the three-row vector f̃ n+(1/2)
r , which contains line integrals

of the magnetic field along ã1
r , ã2

r , and ã3
r (oriented as

shown in Fig. 1). Matrices Mμ
r and Mε

r are the ones defined
in (5) and (6), while Cr is a 3 × 3 incidence matrix given by

Cr =
⎡
⎣ 0 −1 1

1 0 −1
−1 1 0

⎤
⎦.

Now, it can be written as

vn+1
r = AT

r en+1
r (35)

f̃
n+ 1

2
r = ÃT

r h
n+ 1

2
r (36)

in which en+1
r and hn+(1/2)

r are, respectively, the uniform
electric and magnetic field vectors in the volume �r , uniquely
reconstructed from vn+1

r and f̃ n+(1/2)
r .

By substituting (35) and (36) into (34), it ensues

2 W n+1
r = (

en+1
r

)T Ar Mε
r AT

r en+1
r + (hn+ 1

2
r

)T Ãr Mμ
r ÃT

r h
n+ 1

2
r

− �t
(
en+1

r

)T Ar CT
r ÃT

r h
n+ 1

2
r .

If the dielectric permittivity and the magnetic permeability are
uniform scalars, labeled εr and μr , respectively, in each �r

and if we indicate with |�r | the measure of �r , by Lemma 1,
it ensues

2 W n+1
r

|�r | = εr
(
en+1

r

)2 + μr
(
h

n+ 1
2

r
)2 − 2�t en+1

r × h
n+ 1

2
r · ur

being ur = br/(6|�r |), in which br is the face vector of the
face of G opposite to �r , and where we have also used the
fact that

(
en+1

r

)T Ar CT
r ÃT

r h
n+ 1

2
r = 1

3
en+1

r × h
n+ 1

2
r · br .

Equivalently, it is

2
W n+1

r

|�r | = (xn+ 1
2

r
)2 + (yn+1

r )2 − 2�t cr x
n+ 1

2
r × yn+1

r · ur

in which xn+(1/2)
r = √

εr en+1
r , yn+1

r = √
μr hn+(1/2)

r , and
cr = 1/

√
εrμr is the speed of light in volume �r . Let us

now take an arbitrary electromagnetic field [xT yT ] �= 0 in �r .
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For W n+1
r ≥ 0 to hold for every electromagnetic field, we have

to require that

0 ≤ (x)2 + (y)2 − 2�t cr |x| | y| |ur |
= (x)2 + (y)2 − 2|x| | y| + 2 (1 − �t cr |ur |)|x| | y|
= (|x| − | y|)2 + 2 (1 − �t cr |ur |)|x| | y|

from which it ensues that, if we require

�t <
1

cr |ur |
it is W n+1

r ≥ 0 and W n+1
r = 0 implies [xT yT ] = 0. Thus,

observing that |ur | = 2/hr , in which hr is the height of
the tetrahedron containing �r , normal to the face with face
vector br , the following condition ensues:

�t <
hr

2cr
. (37)

Taking the minimum of the right-hand side of (37), the thesis
ensues. �

We remark that the present proof is easily generalizable to
the case in which ε and μ are not uniform scalars in �r .

APPENDIX B
ANALYTICAL SOLUTION FOR LOSSY WAVEGUIDE

Since a time simulation includes transients, we extend the
known frequency-domain solution of the lossless case [22] to
the whole complex plane by substituting jω → s, with s the
complex variable. We derive an analytical form for the trans-
verse electric field component Ey(r, t) = L−1{Ey(r, s)}(t) in
the time domain, with boundary conditions{

Ey(r, s) = sin
(πx

a

)
H(s), z = 0

Ey(r, s) = 0, z = �

where a is the size of the waveguide in the x-direction, � is
the distance in the longitudinal direction z at which the PEC
wall is applied, and H(s) is the Laplace transform of the
function h(t) modulating the incident field. By plugging the
boundary conditions, we get

Ey(r, s) = sin
(πx

a

)
H(s)

⎛
⎝e

−�(s)
(

z−�
c

)
− e

�(s)
(

z−�
c

)

e�(s) �
c − e−�(s) �

c

⎞
⎠ (38)

where �(s) = √
s2 + (cπ/a)2 and c = 1/

√
με is the speed

of light. (38) can be rewritten as

Ey(r, s)

= sin
(πx

a

)
H(s)

⎛
⎝e−�(s) z

c − e
�(s)

(
z−2�

c

)

1 − e−2�(s) �
c

⎞
⎠

= sin
(πx

a

)
H(s)

(
e−�(s) z

c − e
�(s)

(
z−2�

c

)) +∞∑
n=0

e
−�(s)

(
2n�

c

)

= sin
(πx

a

)
H(s)

(+∞∑
n=0

e
−�(s)

(
z+2n�

c

)
−

+∞∑
n=1

e
�(s)

(
z−2n�

c

))

where we have used the fact that |e−2�(s)(�/c)| ≤ 1, which
stems from the fact that Re{�(s)} ≥ 0. From the linearity

of both the inverse Laplace transform and the convolution
integral, it ensues

Ey(r, t) = L−1{Ey(r, s)}(t) = sin
(πx

a

)

×
(+∞∑

n=0

h ∗ L−1
{

e
−�(s)

(
z+2n�

c

)}
(t)+

−
+∞∑
n=1

h ∗ L−1
{

e
�(s)

(
z−2n�

c

)}
(t)

)
. (39)

From [23, eq. (29.3.95)], for any real nonnegative number k,
it straightforwardly follows that:
L−1{e−k�(s)}(t) = L−1

{
e−k

√
s2+( cπ

a )2}
(t)

= δ(t − k) − cπ

a
k

J1

(
cπ
a

√
t2 − k2

)
√

t2 − k2
�(t−k)

(40)

where δ(t) is the Dirac delta distribution and J1(α) is the
first cylindrical Bessel function. We remark that k must be
nonnegative for the Laplace transform to be well defined. This
is always the case in (39), since in each term of the first series,
k = (z + 2n�)/c ≥ 0 and in each term of the second series,
k = (2n� − z)/c ≥ 0 (since the sum starts from n = 1).
To extend this result to the case of a conductive medium
filling the waveguide, it suffices to notice that in this case,
we can define an equivalent permittivity ε′ = ε + σ/s and by
substituting it into �(s) (and in the speed of light), we find
that

L−1
{

e−k�(s)
}
(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(t), for σ ≤ 2π

a

√
ε

μ

g2(t), for σ ≥ 2π

a

√
ε

μ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where we have further defined

g1(t) = e−ξ t

[
δ(t − k) − αk

J1(α
√

t2 − k2)√
t2 − k2

�(t − k)

]

g2(t) = e−ξ t

[
δ(t − k) + αk

I1(α
√

t2 − k2)√
t2 − k2

�(t − k)

]

ξ = σ

2ε
, α =

√∣∣∣∣
(cπ

a

)2 − ξ 2

∣∣∣∣.
Here, I1(t) denotes the first modified cylindrical Bessel
function. It is readily shown that, in the case σ = 0,
we retrieve (40). The closed forms of other nonzero compo-
nents of the electromagnetic field can be found with analogous
steps.
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