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A Discrete Geometric Approach to Cell Membrane
and Electrode Contact Impedance Modeling

Antonio Affanni, Ruben Specogna∗, Member, IEEE, and Francesco Trevisan

Abstract—This paper presents a novel discrete model for cell
membranes and electrodes contact impedances alternative to the
widely used finite elements. The finite element approach can be
considered as a tool for constructing finite dimensional systems
of equations that approximate the specific electroquasistatic bio-
logical problem on the discrete level. Although the finite element
technique is explained typically in terms of variational or weighted-
residual approaches, another, less familiar way is available to re-
formulate geometrically the same physical problem. This approach,
referred to as discrete geometric approach, allows a direct link be-
tween geometry and the degrees of freedom describing the specific
biological problem. It is straightforward to implement in any finite
element open software and it assures a correct modeling of voltages
and currents playing a fundamental role in a biological problem.
The validation has been performed, as a first step, against an-
alytical solutions; then, we considered impedance measurements
regarding erythrocytes in whole blood flowing in microchannels at
high shear rates.

Index Terms—Cell membrane modeling, complete electrical
impedance tomography (EIT) model, contact impedance model-
ing, discrete geometric approach (DGA), thin layers.

I. INTRODUCTION

THERE is a great research interest in developing techniques
to transport materials into cells through their membranes

without damage for the cells and with a precise control over
how much material is delivered. A promising technique, often
referred to as nanoelectroporation [1], is based on the application
of a local electric field to an area one-hundredth the size of
those used in microfluidic-based methods. The application of
a precise local electric field to the cell membrane induces a
transmembrane potential (TMP) distribution on it, which causes
permeabilization. Thence, the volume of material delivered to
cells can be controlled through a precise voltage distribution
along the cell membrane and its time evolution.

In order to evaluate such TMP potentials, the problem of
modeling in an accurate way the cell membrane is becoming of
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increasing interest in bioelectromagnetics research [2], [3]. This
is due to the fact that the membrane thickness is orders of magni-
tudes thinner than the cell size, and trying to produce a volumet-
ric mesh for the membrane is not appealing for various reasons.
It is clear, in fact, that a huge number of elements is needed in
order to obtain good-shaped tetrahedra (i.e., as close as possible
to a regular tetrahedron) in the membrane volume, yielding to
an excessive cardinality of mesh elements. Moreover, if the cell
shape is complicated, it is also difficult to produce a membrane
volume with a uniform thickness [2]. Even though the volumet-
ric meshing of the membrane is frequently performed, see for
example [4], [5], a more appealing solution employing thin lay-
ers has been introduced in [2]; however, the solution is obtained
by applying an appropriate boundary condition in the COMSOL
commercial software instead of providing a physical modeling
of the membrane layer. A further critical point is the modeling of
the electrical interfaces between biological fluids and electrodes.

Therefore, the aim of this paper is twofold. From the one
hand, we propose an alternative approach to thin structures
modeling. The approach is based on formulating the electro-
magnetic laws of the electroquasistatic (EQS) regime, directly
in a discrete form on a pair of oriented and staggered cell com-
plexes, one dual of the other, leading to the so-called discrete
geometric approach (DGA) for computational physics [6],
[7]. This approach is attractive because it is straightforward
to implement in any open source finite element software and
it offers some advantages when a nonlinear or anisotropic
conductivity of the membrane is considered.

On the other hand, we will model a general and efficient way,
by means of the DGA, the electrodes and external circuits used to
apply voltages and currents to the biological tissue under study.
This modeling is particularly useful to account for the contact
impedance in the case of electrical interfaces with a biological
fluid like whole blood flowing in artificial microchannels.

This paper is structured as follows. In Section II, we recall the
DGA formulation for 3-D EQS problems. Section III addresses
the modeling of the membrane as a thin layer, whereas Sec-
tion IV describes in detail how to impose boundary conditions
and take into account the contact impedance of the electrodes.
In Section V, some numerical results are presented for model
validation and, in Section VI, the conclusions are drawn.

II. ELECTROQUASISTATIC GEOMETRIC FORMULATION

We assume that the computational domain D is a connected
subset of the 3-D Euclidean space. We cover D with a simplicial
cell complex K whose oriented geometrical elements are nodes
n, edges e, faces f (triangles), and volumes v (tetrahedra) [see
Fig. 1(a)]; the cardinality of each geometrical elements set is
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Fig. 1. Geometric elements of K and K̃ and their association with physical
variables. (a) Geometric elements of K: Nodes n, edges e, faces f (triangles),
and volumes v (tetrahedra). (b) Dual node ñ is the barycenter of the tetrahedron
v, a dual edge ẽ is a broken segment of line joining the barycenters of a pair
of tetrahedra through the barycenter of the face f they have in common. (c)
For each edge e ∈ K, exists a dual face f̃ bounded by dual edges that are
dual to the star of faces incident to e. The dual face consists in the union of
planar quadrangles, one for each tetrahedron that is incident to the edge e. Each
quadrangle has one corner in the middle point of the edge, one in the barycenter
of a tetrahedron v, the other two in the barycenters of the two triangles in the
boundary of v that have the edge e in their boundaries. (d) For each node n ∈ K,
exists a dual volume ṽ bounded by dual faces that are dual to the star of edges
incident to the node n.

denoted as N , E, F, and V , respectively. The topology of K is
encoded in the incidence matrices: G (between the orientations
of the pairs e and n), C (between the orientations of the pairs f
and e), and D (between the orientations of the pairs v and f ),
see for example [6], [8]. Next, a dual barycentric complex K̃ is
constructed from K by using the barycentric subdivision [8], [9]
yielding dual volumes ṽ dual faces f̃ , dual edges ẽ, and dual
nodes ñ which are in a one to one correspondence (duality)
with the geometrical elements n, e, f , and v of K, respectively
[see Fig. 1(b)–(d)]. Thanks to the duality between K and K̃,
the incidence matrices of K̃ are deduced from those of K as:
G̃ = DT , C̃ = CT , and D̃ = −GT [8], Sec. 3].

We consider the integrals of the field quantities, the electric
field1 E, the electric displacement field D, the current density
vector J, and the charge density scalar field ρ involved in the
EQS problem with respect to the oriented geometric elements
of K, K̃, yielding integral variables grouped into degrees of
freedom (DoF) arrays [7]. In particular, we denote with U the
array2 of voltages Ue =

∫
e E · dl associated with primal edges

e ∈ K, with V the array of scalar potentials Vn associated with
primal nodes n ∈ K; on the dual side, we introduce the array Q
of electric charges Qṽ =

∫
ṽ ρdv associated with dual volumes

ṽ ∈ K̃ and the arrays I, Ψ of electric currents If̃ =
∫

f̃ J · ds,
and electric fluxes Ψf̃ =

∫
f̃ D · ds across dual faces f̃ ∈ K̃,

respectively, Fig. 1. In the following, we will focus on the EQS

1A vector field X is denoted in roman type.
2An array X is denoted in boldface type and its ith element reads Xi .

problem formulated at the angular frequency ω; thence, the
DoFs arrays considered are arrays of complex numbers.

According to the DGA, physical laws can be expressed by
means of exact algebraic relations between the DoFs, using only
the topology of the mesh represented by incidence matrices.
Faraday’s law, in the discrete setting, translates into CU = 0.
This algebraic relation is enforced by using the array of electric
scalar potentials V such that

U = −GV (1)

since CG = 0 holds for every complex K.
Moreover, Gauss’ law and the current continuity law can be

written in the discrete setting [10] as the following algebraic
constraints:

−GT Ψ = Q (2)

−GT I = −iωQ (3)

respectively.
To form the final system of equations, discrete counterparts

of constitutive relations must be added to the physical laws (1),
(2), and (3). The discrete counterpart of the continuous electric
constitutive relation D = ε E, where ε is the positive definite
permittivity tensor rewrites as

Ψ = EU (4)

where E is a symmetric positive definite square matrix of order
E linking the arrays Ψ, U. Similarly

I = SU (5)

is a discrete counterpart of the J = σ E Ohm’s constitutive rela-
tion, with σ being the symmetric and positive definite conduc-
tivity tensor; the matrix S is symmetric positive definite and it
links the arrays I, U. We observe that the matrices E, S have the
same geometric structure, since they map DoFs on primal edges
to DoFs on dual faces. Therefore, they can be constructed effi-
ciently with a single piece of software provided that permittivity
is swap round with conductivity [10].

By combining (1), (4), (5), and (2) in (3), the following al-
gebraic linear system of equations, having the scalar potentials
(V)n in the nodes n ∈ K as unknowns, is obtained [10]

(
GT SG + iωGT EG

)
V = KV = 0. (6)

In the following, we will propose an efficient method to construct
the K matrix directly without passing through the construction
of the single matrices E, S.

A. Efficient Computation of K

The geometric approach we pursue leads to an efficient com-
putation of the stiffness matrix in terms of the geometric entities
of the primal cell complex only [11]. In the following, without
loosing generality, we focus on a single tetrahedron vk of the
primal complex. With respect to vk , we compute local (K)k

matrix, with k = 1, . . . , V ; the corresponding global matrix K
is easily deduced, by adding the local contributions from each
tetrahedron of the complex, according to a standard assembling
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Fig. 2. Membrane of an erythrocyte represented by a triangular mesh.

process. The entry (K)k
ij of a local symmetric stiffness matrix

for tetrahedron vk , is given by

(K)k
ij =

1
9|vk |

Dkifi · (σ + iωε) Dkj fj , {i, j} ∈ {1, . . . , 4}
(7)

where fj denotes the area vector3 of face fj opposite to node nj ,
|vk | is the volume of the tetrahedron vk , and Dki is the incidence
between the pair (vk , fi).

We note that the dual complex and incidence matrices are
not explicitly constructed; in this way, they do not represent an
overhead with respect to classical finite elements.

III. CELL MEMBRANE MODELING

In this section, we model thin layered structures, such as
cell membranes, by means of the DGA for EQS; to this aim, we
assume that the thin layer has a thickness of δ and its conductivity
and permittivity are σδ and εδ , respectively. Both conductivity
and permittivity are assumed element-wise uniform.

In the case of thin layered structures, it is convenient not to
mesh the thin layer with a 3-D mesh, since such layered struc-
tures are thousands of times thinner than the dimensions of the
other objects in the domain of interest. Therefore, we will con-
sider the layered structure as a surface with a 2-D triangular
mesh on it; this allows us to reduce considerably the number of
elements improving also the shape of the tetrahedra around the
layered structure, which in turn allows us to reduce the discreti-
sation error. As an example, in Fig. 2, such a triangulated surface
M representing the membrane of an erythrocyte is shown.

A. Geometric Formulation for the Thin Layer

The nodes belonging to M are doubled in such a way that a
discontinuity of the electric scalar potential is allowed through
the membrane [see Fig. 3(a)]. Each pair of nodes on M, such
as {ni, nj} in Fig. 3(a), possesses the same coordinates but
they are considered as two different elements of the simplicial
complex K. After updating the incidence matrices, the resulting
new simplicial complex K′ is not connected anymore.

Let us introduce an additional dual face on the membrane sur-
face M for each node belonging to a node pair [see Fig. 3(b)];
we denote with f̃i the dual face pairing with node ni and f̃j the
dual face pairing with node nj . Each portion of f̃i [a quadrilat-
eral surface, Fig. 3(b)] is tailored within a triangle of the cluster

3It is the vector having as amplitude the area of the face, normal to the face
and oriented in a congruent way as the orientation of the face.

Fig. 3. (a) Nodes beloning to the membrane M are doubled. In this picture,
the pairs of nodes, as {ni , nj }, are displayed one apart from the other only
for clarity. In the membrane model, the nodes of a pair share exactly the same
coordinates, so the nodes {ni , nj } in the picture should be thought to be placed
in the same point of the space. (b) Additional dual face f̃i , dual to node ni

in M. Again, f̃i and f̃j relative to a node pair {ni , nj } are coincident in
terms of coordinates. (c) Quadrangles used to compute the thin layer equivalent
admittances; the quadrilateral surface corresponding to f has an area of |f |/3.

of triangles having ni in common; f̃j is obtained by duplicating
f̃i . We remark that f̃i and f̃j are stacked one over the other
in such a way that they are coincident in terms of coordinates.
Therefore, they, by no means, represent the boundary of a vol-
umetric model of the membrane and there is no displacement
between f̃i and f̃j .

We define a complex current Iij entering f̃i and leaving f̃j

thanks to the standard assumption that the current density is
orthogonal to the membrane. Next, the equivalent admittance
Ys

ij of the thin layer associated with the pair of nodes {ni, nj},
relates the TMP difference Vi − Vj corresponding to the nodes
{ni, nj} to the current Iij as

Iij = Ys
ij (Vi − Vj ) . (8)

To compute the equivalent admittance, we first obtain the per-
unit-area admittance of the membrane assumed piecewise uni-
form in each triangle f belonging to M as

Ss
f =

σδ + iωεδ

δ
. (9)

Then, the Ys
ij is computed by summing up all the admittances

of the star of quadrangles around the node ni [see Fig. 3(c)]
forming the additional dual faces f̃i ; this corresponds to the
parallel of the admittances associated with each quadrangle.
Since the area of the quadrilateral surface tailored within triangle
f of M is |f |/3, then the equivalent admittance becomes

Ys
ij =

∑

f∈Ci

|f |
3

Ss
f (10)

where Ci is the cluster of triangles f having the node ni in
common. We collect the equivalent admittances of all thin layers
in the array Ys .

B. Modified System of Equations

Now, we need to couple the currents Iij from (8) for all the
pairs {ni, nj} in the layer M with system (6). To this aim, we
consider the dual volumes ṽi and ṽj on the two sides of the
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Fig. 4. Exploded view of the two dual volumes ṽi , ṽj dual to the pair of nodes
{ni , nj } ∈ M. The two dual volumes have the additional dual faces f̃i , f̃j ,
respectively, in their boundaries.

layer M, refer to Fig. 4. The dual volume ṽi is dual to the node
ni ∈ M and the other, ṽj , is dual to nj ∈ M. It is apparent that
dual faces f̃i , f̃j complete the boundaries of ṽi , ṽj , respectively,
and Iij is the current on f̃i while −Iij is the complex current
on f̃j since ṽi , ṽj are oriented by the respective outer normals;
then, the balance laws (2), (3) applied to the boundaries of ṽi ,
ṽj , together with (1), (4), and (5), modify (6) as

(KV)i + Iij = (KV)i + Ys
ij (Vi − Vj ) = 0

(KV)j − Iij = (KV)j − Ys
ij (Vi − Vj ) = 0

where we used (8) for Iij ∀ {ni, nj} ∈ M.

C. Implementation of the Membrane Model

We summarize the practical steps for implementing the novel
membrane model.

1) The complex K′ can be generated in the preprocessing
step in various ways. One may construct the mesh for
each biological cell independently. Then, the mesh of the
extracellular medium has to be constructed taking care that
the nodes and triangles on the interfaces between the cell
meshes and the extracellular medium mesh have to match.
This operation is possible with most mesh generators as
TETGEN (available at http://www.tetgen.org).

Another solution, used in our implementation, is to
mesh the entire domain as usual with the complex K.
Then, cycle each node and see if it lies on a membrane.
If so, then add a new node at the bottom of the node list
with the same coordinates as the original node. An array
may be used to keep track of the correspondence related
to the node pairs (i.e., for the node pair {ni, nj}, the array
should return the integer label of nj given the label of ni

as input with j = nodepair(i)). The last step is to cycle
each volume v and see if it is inside a biological cell or
outside. If it is outside, nothing is done and the original
labels of the nodes of v are kept. If it is inside, cycle each
node n of the four nodes incident to v. If nodepair(n) is
nonzero, then update the incidence of v with respect to n
with incidence(v, n) = nodepair(incidence(v, n)).

2) Cycling the triangles on the membranes, construct by as-
sembling the entries of the array Ys that are initially set

Fig. 5. Contact impedance Ż i
e in series to the ith electrode.

to zero. Namely, for a generic face f ∈ M, assemble in
the array the following contributions

a) Ys
ij = Ys

ij + Ss
f |f |/3

b) Ys
hk = Ys

hk + Ss
f |f |/3

c) Ys
vz = Ys

vz + Ss
f |f |/3

where {ni, nj}, {nh, nk}, and {nv , nz} are the three node
pairs of the face f .

3) Starting from the usual sparse matrix K in (6), without
taking into account the membranes, assemble for each
pair of doubled nodes {ni, nj} the values

a) (K)ii = (K)ii + Ys
ij

b) (K)jj = (K)jj + Ys
ij

c) (K)ij = (K)ij − Ys
ij

d) (K)j i = (K)j i − Ys
ij .

IV. BOUNDARY CONDITIONS AND ELECTRODE CONTACT

IMPEDANCE MODELING

A number Ne + 1 of electrodes {Ei}Ne
i=0 is defined, which

are by hypothesis disjoint and equipotential surfaces each; we
denote with E0 the reference electrode. On this set, a Dirichlet
boundary condition is applied. In the complement of ∂K with
respect to the union of the electrode surfaces, a homogeneous
Neumann boundary condition is imposed.

There are three typical ways to enforce a consistent excitation
for each electrode (see Fig. 5). i) The potential difference Ui

e =
Ū i

e of the ith electrode with respect to the reference electrode is
prescribed. This happens in practice when an e.m.f. generator
Ū i

e is connected between the ith and the reference electrode.
The result is that the potential is fixed (and known) while the
total electric current Ii

e flowing through the ith electrode can be
determined by solving (6).

ii) The current flowing through the electrode is prescribed.
This is the dual case of the 1); this time the potential is not fixed
and can “float” [a typical informal expression equivalent to say
that the potential is not fixed but it is determined by solving
(6)]. This motivates the reason why this kind of condition is
called a floating potential constraint.4 Finally, the third case
iii) is analogous to i) but deals with the presence of a contact
impedance Żi

e placed in series between the electric generator
and the considered electrode (see Fig. 5). In this case, as we

4Frequently, the current specified is zero. This corresponds to model a con-
ductor which is not connected to any electric generator.
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are going to see in detail, both the total current and voltage are
unknowns and have to be determined by solving (6).

A. Formulation of the Linear System

Let us order the electrodes in such a way that the first N
have a potential difference Ui

e = Ū i
e fixed, this corresponds to

the case i); electrodes from N + 1 to H have a current Ii
e = Ī i

e

fixed, this corresponds to the case ii); finally, electrodes from
H + 1 to Ne have a known contact impedance in series as in the
case iii). Let us order the node’s labels in such a way that the
nodes n ∈ K \

⋃Ne

i=0 Ei come first; they are referred to as interior
nodes and are collected in a subarray V′. Next, come the nodes
n ∈

⋃N
j=0 Ej , n ∈

⋃H
k=N +1 Ek , n ∈

⋃Ne

k=H +1 Ek , respectively.
Consequently, the array V is correspondingly partitioned into
four subarrays V′, V̄, V′′, and V′′′. Partitioning also the matrix
K, the linear system of equations (6) can be written as

⎡

⎢
⎢
⎢
⎢
⎣

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

V′

V̄

V′′

V′′′

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0

Is

I′′s
I′′′s

⎤

⎥
⎥
⎥
⎥
⎦

(11)

where Is , I′′s , and I′′′s are unknown currents.
We note that when dealing with practical meshes, each pair

of electrodes is separated by much more than two layers of
mesh elements. This implies5 that there is no coupling term
between electrodes so K23 = 0, K24 = 0, K32 = 0, K34 = 0,
K42 = 0, and K43 = 0. The system can be rewritten as

⎡

⎢
⎢
⎢
⎢
⎣

K11 K12 K13 K14

K21 K22 0 0

K31 0 K33 0

K41 0 0 K44

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

V′

V̄

V′′

V′′′

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0

Is

I′′s
I′′′s

⎤

⎥
⎥
⎥
⎦

. (12)

Next, we introduce the arrays ni for i ∈ {0, . . . , N} as

ni
n = 1 ∀n ∈ Ei

ni
n = 0 ∀n ∈

N⋃

j=0,j �=i

Ej ; (13)

for i ∈ {N + 1, . . . , H} as

ni
n = 1 ∀n ∈ Ei

ni
n = 0 ∀n ∈

H⋃

k=N +1,k �=i

Ek ; (14)

for i ∈ {H + 1, . . . , Ne} as

ni
n = 1 ∀n ∈ Ei

ni
n = 0 ∀n ∈

Ne⋃

k=H +1,k �=i

Ek . (15)

5The interaction between a node n is limited to the nodes belonging to the
cluster of tetrahedra of around n.

Thanks to the Dirichlet boundary condition, the three arrays
V̄, V′′, and V′′′ can be written in terms of the electrodes poten-
tial differences {Ui

e}, i ∈ {1, . . . , Ne}, as

V̄ =
N∑

j=1

Ū j
e nj , V′′ =

H∑

k=N +1

Uk
e nk

V′′′ =
Ne∑

k=H +1

Uk
e nk . (16)

Substituting (16) inside (12), we can consider as unknowns the
{Ui

e}Ne

i=N +1 in place of the DoFs belonging to the arrays V′′ and
V′′′. Moving the known terms resulting from V̄ on the right-
hand side, it is easy to see that the final equations for the interior
nodes become

K11 V′ + K13 n′′ U′′
e + K14 n′′′ U′′′

e = −K12 n̄ Ūe (17)

where we introduce the array Ūe = {U 1
e , . . . , UN

e }T , U′′
e =

{UN +1
e , . . . , UH

e }T , U′′′
e = {UH +1

e , . . . , UNe
e }T and the ma-

trices n̄ = {n1 ,n2 , . . . ,nN }, n′′ = {nN +1 , . . . ,nH }, n′′′ =
{nH +1 , . . . ,nNe }.

Equation (17) has more unknowns than equations. One equa-
tion for each floating potential electrode should be added to
specify the current flowing through it. This equation is a nonlo-
cal algebraic current continuity law [8] obtained by summing
up6 all local continuity laws relative to each node belonging to
the considered electrode as

(
nk T K31

)
V′ +

(
nk T K33 nk

)
Uk

e = Ik
e (18)

for k ∈ {N + 1, . . . , H} and
(
nj T K41

)
V′ +

(
nj T K44 nj

)
Uj

e − Ij
e = 0 (19)

for j ∈ {H + 1, . . . , Ne}.
Still, we miss one equation for each current unknown

{Ij
e }Ne

j=H +1 . The missing equations stem from Kirchhoff’s laws

needed to take into account the contact impedances Żj
e and the

e.m.f.s in series Ū j
e , see Fig. 5.

Ū j
e − Uj

e = Żj
e Ij

e , j ∈ {H + 1, . . . , Ne}.

This equation can be rewritten as

−Uj
e − Żj

e Ij
e = −Ū j

e , j ∈ {H + 1, . . . , Ne}. (20)

Then, (17), together with (18), (19), and (20), form the final
symmetric linear system of equations.

V. NUMERICAL RESULTS

The formulation described in this paper has been integrated
into the Geometric Approach to Maxwell’s Equations (GAME)
research code [14]. The software has been implemented in For-
tran 90 and the Intel Fortran 90 Compiler has been used to
produce the executable. The PARDISO direct solver contained
in the Intel MKL scientific library has been employed to solve
the resulting linear system of equations. The hardware used for

6This correspond to apply a current continuity law on a surface which “en-
circles” the considered electrode.
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Fig. 6. Spherical cell with a membrane in a uniform EQS field. Convergence
of the maximum error on the transmembrane voltage with mesh refinement for
the spherical cell benchmark.

the computations consists of an Intel Core 2 Duo T7700 2.4GHz
laptop with 4GB of RAM.

In the following, the code is validated against an analytical
solution and on experimental data.

A. Code Validation

To validate the results produced by the described formulation,
a spherical cell with a radius R = 10 μm has been considered
(see Fig. 6). The cell possesses a membrane with a conductivity
σm = 5 · 10−7S/m and a thickness δm = 5 nm. The extracel-
lular conductivity has been set to σe = 1 S/m, whereas the
cytoplasmatic conductivity has been set to σc = 0.2 S/m. The
cell is placed in a region with a static and uniform electric field
with a modulus of 100 V/cm.

The transmembrane voltage is computed as Uij = Vi − Vj ,
for all pairs of doubled nodes {i, j}. The error on the trans-
membrane voltage is computed as εij = |Uij − U ref

ij |, where
U ref

ij is the analytical value of the TMP in one of the nodes
{i, j} provided by the Schwan equation [2], [12]. The con-
vergence with mesh refinement of η = 100 maxi,j (εij ) /U ref

hk ,
where {h, k} = arg maxi,j (εij ), is depicted in Fig. 6.

Then, an EQS problem has been solved by considering the cell
placed in a uniform ac field with a modulus of 100 V/cm. A rel-
ative permittivity of εre = 80, εrc = 80, and εrm = 9 has been
assumed for the extracellular medium, cytoplasm, and mem-
brane, respectively. In Fig. 7, we compare with the analytical
solution [13], the modulus of the maximum transmembrane
voltage at frequencies ranging from 1 kHz to 10 MHz.

B. Experimental Results With Whole Blood

As a second experimental benchmark, whole blood with phys-
iological hematocrit (46%) flowing in a microchannel at a high
shear rate (3000 s−1) has been considered. It is known that red
blood cells (RBC) suspensions in a quiescent state tend to ag-
gregate in pillars (so-called rouleaux). RBC aggregates start to
disappear at low shear rates. At high shear rates, RBCs tend to
deform into prolate ellipsoids with their long axis aligned par-

Fig. 7. Frequency behavior of the transmembrane voltage for the spherical
cell benchmark.

Fig. 8. Sensing device exploded drawing. Microchannel dimensions are 25 ×
0.4 × 0.25 mm.

allel to the flow, and form layers that slide on adjacent plasma
layers [15]–[17].

The measurement bench is composed by a sensing device
and a high-accuracy LCR meter, the Agilent HP E4980a. The
sensing device, as shown in Fig. 8, is composed by three as-
sembled layers which are kept together by fasteners. The upper
layer in Fig. 8 is a 2-mm thick polycarbonate slide where mi-
crofluidic couplers are bonded and, on its bottom, a 180-nm
thick gold electrode has been sputtered; the electrode dimen-
sions are 25 mm in length and 15 mm in width. The middle
layer is a 250-μm thick dimethyl-siloxane membrane where a
25-mm long and 400-μm wide microchannel is etched. The
lower layer is another 2-mm thick polycarbonate slide where
a second gold electrode (identical in dimensions to the upper
one) has been sputtered. The resulting assembled geometry is a
25 × 0.4 × 0.25 mm rectangular duct having as top and bottom
walls the gold electrodes.

The measurements have been performed in a two-wires con-
figuration with a 0.1-V ac voltage in the frequency range
1 kHz–2 MHz, ten points on the whole range logarithmically
spaced; the driving voltage amplitude has been set as low as
0.1 V in order to avoid redox reactions between gold elec-
trodes and electrolytes dissolved in plasma. In order to increase
the accuracy of the measurements, a short/open calibration of
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Fig. 9. Equivalent circuit for impedance measurements on blood: CPE models
the double layer phenomenon while CBLOOD and RBLOOD model blood
impedance.

Fig. 10. Measured impedance (in amplitude and phase) and its repeatability
during flow are shown; symbol © denotes plasma while � indicates the whole
blood.

the instrument with the same cables connected to the sensing
device has been performed; this yields to an impedance accuracy
of 0.1% in magnitude and phase [20].

It is well known in Impedance Spectroscopy theory [21] that
the interaction between a metal electrode and a fluid, wherein
salts are dissolved, gives rise to the phenomenon of a double
charge layer (double layer); this phenomenon can be modeled
as a constant phase element CPE in series to the measurand

ZCPE =
1

C(jω)α
(21)

where 0 ≤ α ≤ 1 in (21) is the phase shift of the CPE.
In order to well discern the double layer contribution from

the measurand, the frequency span has been set quite wide to
fit the data with an interpolation software which can provide
(given a known circuital model) the parameters of the model. In
Fig. 9, it is shown the equivalent circuit for blood and plasma;
it takes into account the double layer, the blood resistance, and
the blood capacitance.

Impedance data have been acquired from the same patient’s
plasma and blood, before and after centrifugation. In Fig. 10,
it is shown the impedance behavior in terms of magnitude and

Fig. 11. Model of RBCs suspension with cells arranged in a cell centered
(CC) or face centered (FC) cubic lattice.

phase of plasma and blood; as a repeatability estimation plasma
and blood have flown inside the microchannel for 5 min and
data have been acquired every 2 s. Repeatability data showed a
measurement accuracy always within 0.3% and in Fig. 10 only
few curves (for graphical reasons) acquired every 20 s are shown.
As can be seen, the double layer plays an important role at low
frequencies while at higher frequencies the impedance is mainly
resistive. The impedance value at high frequencies is 27 Ω for
plasma and 90 Ω for blood; this yields, known the microchannel
geometry, to a conductivity of plasma σPLASMA 
 0.9 S/m and
a conductivity of blood σBLOOD 
 0.27 S/m; these data are also
in accordance with the Maxwell–Fricke relation [18], [19]

σBLOOD

σPLASMA
=

1 − H

1 + (C − 1)H
(22)

where H is the hematocrit content and C is a geometrical fac-
tor depending on RBCs mean orientation with respect to the
direction of the electric field. Since in this case H = 0.46, fits
the measured data (σBLOOD/σPLASMA 
 0.3) when C 
 2.74;
this means that RBCs orientation is mainly along the axis of the
flow as it is certainly the case thanks to the high shear rate.
The ratio of the major and minor semiaxes of the prolate ellip-
soid is close to 3. In the RBCs layers that form in a flow with
high shear rate, RBCs are necessarily tightly packed since the
RBCs density in the layers is much greater than the haemat-
ocrit, which notoriously is defined as the average RBCs density
in the entire volume. This justifies the assumption of arrang-
ing the RBCs in a quasi-lattice, which presents a high packing
density. For this reasons, the simulations have been performed
by considering a suspension of RBCs ordered in a cell cen-
tered (CC) or face centered (FC) cubic quasi-lattice as shown
in Fig. 11. The bottom plane of the simulated regions has been
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Fig. 12. Variation of the real part of the effective complex conductivity versus
frequency and conductivity of the cytoplasm.

Fig. 13. Variation of the imaginary part of the effective complex conductivity
versus frequency and conductivity of the cytoplasm.

set to ground (i.e., a homogeneous Dirichlet boundary condi-
tion), while the top plane is connected to an electric generator
through a contact impedance. A symmetry condition is consid-
ered on the lateral sides by means of a homogeneous Neumann
boundary condition. The ellipsoids have the major semiaxis of
6 μm and a minor semiaxis of 2 μm. This gives the patient RBC
mean volume (MCV) of about 100 μm3 . The conductivity and
relative permittivity of plasma are set to σPLASMA = 0.9 S/m
and εrPLASMA = 90, of membrane to σm = 5 · 10−7 S/m and
εrm = 9 and of cytoplasm to σc = 0.3 S/m and εrc = 60. The
thickness of the membrane is 5 nm. The simulations provide
0.298 and 0.293 ratios of conductivity σBLOOD/σPLASMA for
CC and FC lattices, respectively; such results are in a very good
agreement with the Maxwell–Fricke theory, which assumes the
RBCs as insulators.

We introduce the effective complex conductivity σ∗
eff =

I 1
e

U 1
e

Lb ox
Sb ox

, where Lbox and Sbox are the height and the area of
the base of the simulated regions, respectively. In order to esti-
mate the impact of the cytoplasmatic conductivity, that may be
strongly patient specific, on σ∗

eff , various conductivities of the

cytoplasm ranging from zero to the conductivity of the plasma
have been considered. This allows us to test the variability of σ∗

eff
with respect to the cytoplasmatic conductivity and to explore the
behavior of the system at frequencies that at the present state
cannot be analyzed with our measurement bench. The results
versus frequency are shown in Figs. 12 and 13. No significative
differences have been reported for the CC or FC lattices.

VI. CONCLUSION

This paper presented a geometric approach to model cell
membranes and electrodes contact impedances in a way close
to the governing physical phenomena. The first advantage is that
the linear system entries, and, in particular, their contributions
due to the presence of the membranes are geometrically defined
and can be computed in a closed form without the need of any
numerical integration. Moreover, the global current associated
with the surface of each electrode is obtained directly without
any numerical integration. The method proposed in this paper
may be used for modeling suspension of cells for bioelectromag-
netics research, for example, dosimetry for electroporation and
optimization of lab-on-a-chip devices, especially for problems
too large to be simulated with commercial softwares.
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