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Topology Preserving Thinning of Cell Complexes
Paweł Dłotko, and Ruben Specogna, Member, IEEE

Abstract— A topology preserving skeleton is a synthetic
representation of an object that retains its topology and many of
its significant morphological properties. The process of obtaining
the skeleton, referred to as skeletonization or thinning, is a very
active research area. It plays a central role in reducing the
amount of information to be processed during image analysis and
visualization, computer-aided diagnosis, or by pattern recognition
algorithms. This paper introduces a novel topology preserving
thinning algorithm, which removes simple cells—a generalization
of simple points—of a given cell complex. The test for simple
cells is based on acyclicity tables automatically produced in
advance with homology computations. Using acyclicity tables ren-
der the implementation of thinning algorithms straightforward.
Moreover, the fact that tables are automatically filled for all
possible configurations allows to rigorously prove the generality
of the algorithm and to obtain fool-proof implementations. The
novel approach enables, for the first time, according to our
knowledge, to thin a general unstructured simplicial complex.
Acyclicity tables for cubical and simplicial complexes and an open
source implementation of the thinning algorithm are provided as
an additional material to allow their immediate use in the vast
number of applications arising in medical imaging and beyond.

Index Terms— Skeleton, skeletonization, iterative thinning,
topology preservation, homology, topological image analysis.

I. INTRODUCTION

THINNING (or skeletonization) is the process of reducing
an object to its skeleton. The topology preserving skele-

ton may be informally defined as a thinned subset of the object
that retains the same topology of the original object and often
many of its significant morphological properties. Thinning is
a very active research area thanks to its ability of reducing
the amount of information to be processed for example in
medical image analysis and visualization as well as simpli-
fying the development of pattern recognition or computer-
aided diagnosis algorithms. Hence, it is not surprising that
thinning gained a pivotal role in a wide range of applications.
An exhaustive review of the literature is beyond the scope
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of this work. 2D skeletons have been used for digital image
analysis and processing, optical character and fingerprint
recognition, binary image compression, pattern recognition
and matching since a long time ago. See for example the
survey paper [1]. More recently, 3D skeletons have been
widely used in computer vision and shape analysis [2], in com-
puter graphics for mesh animation [3] and in computer aided
design (CAD) for model analysis and simplification [4], [5]
and for topology repair [6].

There is also a vast literature of applications of skeletons
in medical imaging. They have been used for route planning
in virtual endoscopic navigation [7], for example in virtual
colonoscopy [8]–[12] or bronchoscopy [13]. Skeletons have
also been an important part of clinical image analysis by
providing centerlines of tubular structures. In particular,
there is a large body of literature showing applications
of skeletons to blood veins centerline extraction from
angiographic images [12], [14]–[20], and intrathoracic
airway trees classification [21]. Also protein backbone
models are produced with skeletons [22]. Furthermore,
many computer-aided diagnostic tools rely on skeletons. For
example, skeletons have been used to identify blood vessels
stenoses [23]–[25], tracheal stenoses [26], polyps and cancer
in colon [27] and left atrium fibrosis [28].

There are medical applications of skeletons where topology
preservation is essential. Non invasively determine the 3D
topological network of the trabecular bone [29] is a good
example. Indeed, many studies demonstrate that the elastic
modulus and strength of the bones is determined by the
topological interconnections of the bone structure rather than
the bone volume fraction [30], [31]. Therefore, topological
analysis plays a fundamental role in computer-aided diagnostic
tools for osteoporosis [30].

Topology preserving thinning is non trivial and a vast
literature, briefly surveyed in Section I-A, has been ded-
icated to this topic. In particular, thinning by iteratively
removing simple points [32] is a widely used and effective
technique. It works locally, therefore it is efficient and easy
to implement. While reading the literature one may notice
that thinning algorithms are claimed to be “topology preserv-
ing,” even though in most cases a precise statement of what
that means is left unaddressed. This paper uses homology
theory [33] to rigorously define what the virtue of being
topology preserving actually consists of. This theory is less
intuitive than the concepts used so far, including simple
homotopy type [34], but exhibits some important theoretical
and practical advantages that will be highlighted later in
the paper. We remark that a homological definition of simple
points has already been used in the context of skeletonization
in [16] and [35], but only in the case of cubical complexes.
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Fig. 1. Let us consider, as an example, a 2D simplicial complex K
representing an annulus. On the left, the thick cycle represents a 1D skeleton
of K obtained by means of standard collapsing of K [33]. On the right, the
gray triangles represent a 2D skeleton of K according to the definition used
in this paper. This kind of skeleton is obtained after removing a sequence of
top dimensional cells.

This paper generalizes this idea to cell complexes that are
more general than cubical complexes. There are many appli-
cations that would benefit from an algorithm for general
unstructured simplicial complexes [36, p. 35]. In fact, the
geometry of 3D objects is frequently specified by a triangu-
lated surface, obtained for example by using an isosurface
algorithm as marching cubes [36, p. 539], [12] applied on
voxel data from computed tomography, magnetic resonance
imaging or any other 3D imaging technique. Another pos-
sibility is to obtain the triangulations from the convex hull
of point clouds provided for example by 3d laser scanners.
Triangulated surfaces offer two potential advantages over
voxel representation. They allow to adaptively simplify the
surface triangulation, see [36, p. 549, Fig. 16.20]. They
also allow to visualize and edit the object efficiently with
off-the-shelf software (for example with the many tools for
stereo lithography) and without the starcase artifacts typical
of voxel representation of objects with curved boundary. One
may even easily print the object with additive manufacturing
technology (i.e. 3d printers).

Another issue that arises reading the literature is that many
different definitions of topology preserving skeleton exist.
In some papers, the skeleton is obtained by removing simple
pairs in the spirit of simple homotopy theory by what is
well known as collapsing in algebraic topology [33]. The
resulting skeleton, if no other constraints are used, has a lower
dimension with respect to the input complex. On the contrary,
this paper assumes that the skeleton is always a solid object
of the same dimension as the initial complex. The difference
is highlighted in Fig. 1.

In this paper the skeleton of a given complex K is defined
as a subset S(K) ⊂ K that is obtained from K after
removing a sequence of top dimensional cells. We require
that the homology [33] of the initial complex K is preserved
during this process. In particular, a top dimensional cell can
be safely removed if this does not change the homology
of the complement of S(K). Fig. 2 provides an intuitive
explanation why the last requirement is desirable. This addi-
tional requirement, to the best of our knowledge, is not
documented in other papers. We call this cell a simple cell,
which is a generalization of the idea of simple points [32] in
digital topology. Clearly, in nontrivial cases, the skeleton S(K)
is not unique.

Fig. 2. Suppose the iterative thinning Algorithm 1 is used to skeletonize a
2D simplicial complex K representing an annulus. Let the dark gray triangles
belong to the skeleton S(K). On the left, the result obtained by checking
whether the removal of a cell changes the topology of S(K) complement. On
the right, the result obtained by checking whether the removal of a cell changes
the topology of S(K). The numbers inside triangles indicate the iteration
number of the while loop in the thinning algorithm when they were removed.
Both skeletons preserve topology. However, in most applications, the skeleton
on the left is preferred.

Resorting to explicit homology computations to detect
simple points as in [16], [32], and [35] is quite computationally
intensive, as the worst-case complexity of homology compu-
tations is cubical, see also the discussion in [32]. In this paper,
we introduce a much more efficient solution by exploiting the
idea of tabulated configurations, i.e. acyclicity tables, that are
described in detail in Section III.

Usually, a skeleton also requires to preserve the shape of
the object. In this paper we show some very simple proof
of concept idea how to preserve both homology and shape.
Of course, this is just an example to illustrate how the idea of
acyclicity tables can be used together with some additional
techniques that guarantee shape preservation.

The paper is organized as follows. In Section I-A the prior
work on thinning algorithms is surveyed. Section I-B analyzes
the original contributions of the present paper. In Section II
the property of being a homology preserving thinning is
rigorously stated. In Section III the concept of acyclicity tables
is introduced, whereas, in Section IV, the topology preserving
thinning algorithm is presented. Section V discusses the results
of the thinning algorithm on a number of benchmarks and,
finally, in Section VI the conclusions are drawn.

A. Prior Work

There are hundreds of papers about thinning. Most of
them fall into two categories. On one hand, there are papers
using morphological operations like erosion and dilatations to
obtains skeletons, see [37] and references therein. They do
not guarantee topology preservation in general. The others
use the idea of removing the simple points from the given
cell complex, see [16], [32], [35]. Without pretending to be
exhaustive, in the following we resume previous results.

1) 2D Images: Most of the work on thinning regard finding
skeletons of 2D images. A very comprehensive survey on
this topic may be found in [1]. This case is well covered in
literature and general solution exists, see [38]–[43].

2) 3D Cubical Complexes: In case one wants to skeletonize
three (or higher) dimensional images, there are much less
papers available in literature. Most of them rely on case study,
see [44]–[57]. The problem is that it is hard to prove that a
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rule-based algorithm is general, i.e. it removes a cell if and
only if its removal does not change topology. In 3d there are
more than 134 millions possible configurations for a cube
neighborhood and only treating correctly all of them gives
a correct thinning algorithm. References [16], [32], and [35]
use explicit homology computations to detect simple points.

There are papers presenting thinning algorithms for 3D
images in which Euler characteristic is used to guarantee
topology preservation, see [43], [54] and references therein.
The problem is that Euler characteristic is a rather raw
measure of topology and it is not sufficient to preserve
topology in general for 3D cubical complexes. For 3D images
one needs to use both Euler characteristic and connectivity
information to preserve topology, but this is not sufficient for
4D images.

3) 2D Simplicial Complexes and Cell Complexes: All the
strategies presented so far are applicable only to cubical
grids (pixels, voxels, · · · ). To our best knowledge, there
are just a few papers dealing with 2d grids that are not
cubical, and they are restricted to 2d binary images mod-
eled by a quadratic, triangular, or hexagonal cell complex,
see [58]–[61]. The main reason for the lack of results on
general 2d simplicial complexes may be the absence of
regularity in unstructured simplicial grids that makes case-
study algorithms very hard to devise and to implement. This
gap in the literature is covered by the present paper.

4) 3D Simplicial Complexes and Cell Complexes: We are
not aware of algorithms that deal with unstructured 3d sim-
plicial complexes or more general cell complexes. There are
only some papers that find the 1D skeleton by using the well
known collapsing in algebraic topology [62]–[65]. Again, this
gap in the literature is covered by this paper.

B. Summary of Paper Contributions

In this Section the main novelties presented in this paper
are summarized:

1) The claim “topology preserving thinning” is rigorously
defined for any cell complex with homology theory.

2) A novel topology preserving thinning algorithm that
removes simple cells is introduced. This algorithm falls
into the category of thinning algorithms based on simple
points and generalizes all previous papers. In fact, the
acyclicity tables introduced in this paper give a classi-
fication of all possible simple points that can occur in
a cell complex. Therefore, no rules are needed since all
of them are encoded into acyclicity tables.

3) The most important advantage of the novel approach is
that acyclicity tables are automatically filled in advance,
for any cellular decomposition, with homology compu-
tations performed by a computer. Therefore, once the
tables are available, the implementation of a thinning
algorithm is straightforward since identifying simple
cells requires just queering the acyclicity table. No other
topological processing is needed.

4) The fact that acyclicity tables are filled automatically
and correctly, for all possible configurations, provides a
rigorous computer-assisted mathematical proof that the

homology-based thinning algorithm preserves topology.
It is also verified, simply by checking all acyclic con-
figurations, that using Euler characteristic is not enough
to ensure preservation of topology in 3D or higher
dimensional cubical and simplicial complexes. However,
when one checks both Euler characteristic and that
the number of connected component before and after
cell removal remains one, then topology is preserved.
Checking Euler characteristic together with connectivity
does not suffice in 4d.

5) The acyclicity tables for simplicial complexes of dimen-
sion 2, 3 and 4 and for cubical complexes of dimension 2
and 3, that can be freely used in any implementation of
the proposed algorithm, are provided as supplemental
material at [66]. This way, we dispense readers to
implement homology computations.

6) The thinning algorithm, unlike the standard collapsing
of algebraic topology [33], does not require the whole
cell complex data structure but it uses only the top
dimensional elements of the complex, with obvious
memory saving.

7) As a proof of concept, an open source C++ imple-
mentation that works for 3D simplicial complexes is
provided to the reader as supplemental material at [66].
We remark that the code is optimized for readability and
memory usage and not for speed.

II. TOPOLOGY PRESERVING THINNING

BY PRESERVING HOMOLOGY

When one claims that an algorithm “preserves topology,”
in order to give a precise meaning to this statement, one
needs to specify which topological invariant is preserved.
In the literature, the invariant is assumed to be, in most cases
implicitly, the so called homotopy type [33]. The problem of
this choice is that this strong topological invariant in general is
not computable according to Markov [67]. This is the reason
why in this paper we propose to use homology theory—
which is computable—in place of homotopy theory. Indeed,
homology seems to be the strongest topological invariant that
can be rigorously and efficiently computed. Therefore, every
time we claim that topology is not changed, implicitly we
mean that the homology is not changed.

Homology groups may be used to measure and locate holes
in a given space. 0D holes are the connected components.
1D holes are handles of a given space, whereas 2D holes
are voids totally surrounded by the considered space (i.e.
cavities). One can look at a n-dimensional hole as something
bounded by a deformed n-sphere. A space is homologically
trivial (or acyclic) if it has one connected component and no
holes of higher dimensions. A rigorous definition of homology
groups is not presented in this paper due to the availability
of rigorous mathematical introductions in any textbook of
algebraic topology as [33] and the lack of space. For a
more intuitive presentation for non mathematicians one may
consult [68], [69].

In this paper, we consider in particular two standard ways
of representing spaces, namely the simplicial and cubical
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complexes. A n-simplex is the convex hull of n + 1 points
in general position (point, edge, triangle, tetrahedron,
4D tetrahedron). A simplex spanned with vertices
x1, . . . , xn is denoted by [x1, . . . , xn]. By a face of a
n-simplex A we mean the simplices spanned by a proper
subset of vertices spanning A. A simplicial complex S is a
set of simplices such that for every simplex A ∈ S and every
face B of simplex A, B ∈ S. Pixels (2-cubes) and voxels
(3-cubes) are widely used in image analysis. They form a
Cartesian grid, that is cells are unit squares or unit cubes and
vertices have integer coordinates. Even though we assume
to deal with a Cartesian grid, the results presented in this
paper hold also for more general grids such as a rectilinear
grid, that is a tessellation of the space by rectangles or
parallelepipeds that are not, in general, all congruent to each
other. Therefore, we define a cubical complex K as a set of
cubes such that for every cube A ∈ K and for every B being
face of we have A, B ∈ K. We want to stress here that we
assume every cell to be closed, i.e. if a cell is present in a
complex, so do are its faces.

In the iterative thinning algorithm presented in this paper,
the top dimensional cells are iteratively removed from the
object. Homology theory is used to ensure that removing of
a given cell does not change the topology of the object. If
removal of a cell does not change the topology, the cell is
said to be simple. Due to efficiency reasons, the homology
cannot be recomputed after removing every single element. In
fact, one may compute the homology of a cell complex for
instance with [70] software, but the worst case computational
complexity is cubical. Therefore, the main idea is to rely on
the so called Mayer–Vietoris sequence [33]. Let us express
the considered space X as X = X ′ ∪ V , where V is a single
top dimensional simplex or voxel. The sequence states that
once the intersection X ′ ∩ V is homologically trivial, then
the homology of X ′ is the same as the homology of X . This
important result is the key of the method presented in this
paper. In fact, it implies that, in order to preserve the homology
of X with respect to X ′, one should check the homology of the
intersection X ′ ∩ V . In practice, this may be easily performed
with the [70] software.

The main novelty of this paper is to present a different
idea to speed up the computations. Let V be a simplex or
voxel. By bd V we denote the boundary of V , i.e. all lower
dimensional cells which are entirely contained in the closure
of V . The idea is based on the observation that in bd V there
are not too many elements, namely

1) 6 in case of triangle (2D simplex);
2) 14 in case of tetrahedron (3D simplex);
3) 30 in case of 4D simplex (i.e. the convex hull of 5 points

in R
4 in general position);

4) 8 in case of pixel (2D cube);
5) 26 in case of voxel (3D cube).

By configuration we mean any subset of bd V . When looking
for simple cells, the configuration characterizes the way V
intersects the complement of the set that we aim to thin.
A configuration is acyclic if its homology—computed as the
homology of the corresponding chain complex—is trivial.
Since the number of all possible configurations in bd V is 2i ,

Fig. 3. The model of the (a) 3D simplex (tetrahedron of
edges 01,02,03,12,13,23 and faces 012,013,023,123), the (b)
2D cube (pixel of edges 01,02,13,23) the (c) 3D cube (voxel
of edges 01,03,04,12,15,23,26,37,45,47,56,67 and faces
0123,0145,0347,1256,2367,4567).

where i is the number of boundary elements of V , one may
pre-compute the homology of all the configurations and store
them in a lookup table. In this case, homology computations
are done only in a pre-processing stage and once and for all.
After creating them, one may instantly (i.e. in O(1) time) get
the answer whether the intersection X ′ ∩ V is homologically
trivial or not. This is the strategy that we aim to use in
the thinning algorithm. Next section shows how to use the
acyclicity tables and how to obtain them automatically.

III. USE OF ACYCLICITY TABLES

AND THEIR GENERATION

Let us consider a generic cell V of a cell complex. Let
us fix an order of all boundary elements {b1, . . . , bn} of V .
We consider all subsets of the set {b1, . . . , bn} and enumerate
them in the following way. For J ⊂ {1, . . . , n} the number of
a subset {bi}i∈J is

∑
i∈J 2i . The acyclicity table of V is an

array of size 2n having, at position j = ∑
i∈J 2i , the value

true if the configuration {bi }i∈J is acyclic and false otherwise.
Let us describe how the acyclicity table is constructed

and used starting by considering a tetrahedron (3D simplex),
see Fig. 3a. Let us enumerate vertices, edges and faces of
tetrahedron as in Fig. 3a. We now introduce an ordering on
boundary elements of the 3D simplex (bold numbers are the
indexes of elements in the given order):

1 2 3 4 5 6 7
0 1 2 3 01 02 03
8 9 10 11 12 13 14
12 13 23 012 013 023 123.

(1)

Let l1, . . . , lk be the indexes of elements in the considered
configuration (i.e. bold numbers corresponding to elements
that are present in the configuration). The index of the
configuration in the acyclicity table is computed with

index :=
k∑

i=1

2li .

The acyclicity table is generated as follows. All possible
configurations of the elements are automatically generated
and the homology group of each of these configurations is
computed with the [70] software. If a configuration turns out
to be acyclic, then a true is set to the place in the array
corresponding to the examined configuration, false otherwise.
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Example 1: Suppose the 3D simplex [4, 5, 19, 20] is given
as input. Let [4, 5, 19] and [20] be the maximal elements
in the configuration (i.e. the configuration consists of those
elements and the vertices [4], [5], [19], edges [4, 5], [4, 19],
[5, 19] that are the faces of [4, 5, 19]). This configuration
needs to be mapped into the 3D simplex model presented
in Fig. 3a. Hence, we have the following mapping between
vertices: 4 →0, 5 → 1, 19 → 2, 20 → 3. It is naturally
extended to the mapping on simplices. Namely, the triangle
[4, 5, 19] is mapped to [0,1,2] in the 3D simplex model,
whereas vertex [20] is mapped to vertex [3]. Therefore, the
elements in this configuration are:

1) Vertices: [0], [1], [2], [3] (indices 1, 2, 3, 4);
2) Edges: [0,1], [0,2], [1,2] (indices 5,6,8);
3) Face: [0,1,2] (index 11).

Consequently, the index of this configuration is

index = 21 + 22 + 23 + 24 + 25 + 26 + 28 + 211 = 2430.

One may check, at this position of the provided acyclicity table
for 3D simplices, that this configuration is not acyclic1.

In the same spirit, we introduce an ordering for the
2D simplex

1 2 3 4 5 6
0 1 2 01 02 12,

(2)

and for the 4D simplex

1 2 3 4 5 6
0 1 2 3 4 01
7 8 9 10 11 12
02 03 04 12 13 14
13 14 15 16 17 18
23 24 34 012 013 014
19 20 21 22 23 24
023 024 034 123 124 134
25 26 27 28 29 30
234 0123 0124 0134 0234 1234.

(3)

In the case of cubes, unlike the case of simplices, the model
cube is expressly needed to specify the location of vertices in
the cube2. The model for 2- and 3D cubes is represented in
Fig.s 3b and 3c. The ordering for the 2D cube is

1 2 3 4 5 6 7 8
0 1 2 3 01 02 13 23,

(4)

whereas, for the 3D cube (voxel) is

1 2 3 4 5 6
0 1 2 3 4 5
7 8 9 10 11 12
6 7 01 03 04 12
13 14 15 16 17 18
15 23 26 37 45 47
19 20 21 22 23 24
56 67 0123 0145 0347 1256
25 26

2367 4567.

(5)

1Clearly it cannot be, since it has two connected components.
2This happens because in a cube not all vertices are connected with edges

as in case of simplices. Therefore, the model cube is needed to point out the
incidences of the vertices.

Of course, in order to compute the index in the acyclicity table,
exactly the same procedure as the one described for the 3D
simplex is used.

Historically, acyclicitiy tables for cubes [71] and sim-
plices [72] were introduced in order to speed up homology
computations. In this paper we provide an even stronger
result. Not only the homology classes of the initial set and
its skeleton are the same, but one can construct a retraction
from the initial set to its skeleton. The existence of retraction
implies the isomorphism in homology, but the existence of
retraction is a stronger property than homology preservation.
We demonstrated the existence of a retraction by a brute-
force computer assisted proof, i.e. by checking all acyclic
configurations and constructing a retraction for each of them.
Thus, the following lemma holds.

Lemma 3.1: For every acyclic configuration C in
the boundary of 2-, 3- or 4D simplices and 2- or
3D cubes (denoted as bd(K )) there exist a simple homotopy
retraction from bd(K ) \ C to C.

At the end of this section, let us define more rigorously a
simple cell.

Definition 3.2: A cell T in a complex K is simple if (bd T \
(T ∩ (K \ T ))) is acyclic.

In the supplemental material, we provide the acyclicity
tables for 2, 3, 4 dimensional simplices and 2, 3 dimensional
cubes (pixels, voxels), in such a way that the reader can safely
bypass the step of constructing them. We note that we do
not provide tables for higher dimensional elements, since the
memory required to store them is huge3.

IV. TOPOLOGY PRESERVING THINNING ALGORITHM

In this section we propose a simple thinning technique
that iteratively removes simple cells. The algorithm is valid
both for cubes and for simplices provided that the appro-
priate acyclicity table is used. We want to point out that
the algorithm works on top dimensional cells (cubes, sim-
plices). Therefore—unlike the case of homological algorithms
or collapsing—there is no need to generate the whole lower
dimensional cell complex data structure4. The input of the
algorithm consists of a list K of top dimensional cells in the
considered set. The output is a subset of K being its skeleton.

At the beginning, we present a first version of the algorithm
that preserves only the topology of K. One first searches the
list K to find all the cells K1, . . . , Kn that are simple and
store them into a queue L. Then, the queue L is processed
as long as it is not void. In each iteration, an element K is
removed from the queue L. Then, with the acyclicity table,
one has to check if K is simple in the set S(K). We want to
point out that elements already removed form the considered
set S(K) in previous iterations are treated as the exterior of
S(K) at a given iteration. If K is simple in S(K), then it is
removed from the set S(K). In this case, all neighbors of K 5

3All configurations for 4D cube require almost 109 PB. All configurations
for 5D simplex require 4096 PB. On the contrary, the acyclicity table for the
3D simplices provided as supplemental material requires no more than 32kB.

4This structure have to be generated only locally for the boundary of a cell
T when checking if T is simple.

5A neighbor of cell/simplex K is any cell/simplex K1 ∈ K such that K ∩
K1 �= ∅.
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Algorithm 1 Topology Preserving Thinning

that are still in S(K) are added to the queue L. The details
of the presented procedure are formalized in Algorithm 1.
We want to stress that Algorithm 1 is just an illustration. It
may be turned into an efficient implementation by using more
efficient data structures (for instance removing from the list
S(K) can be replaced by a suitable marking the considered
element.) Also searching for intersection of T with current
S(K) should be performed by using hash tables that, for the
sake of clarity, are not used explicitly in Algorithm 1. Let us
now discuss the complexity of the algorithm. Clearly the for
loop requires O(‖K‖) operations. We assume that one can set
and check a flag of every cell in a constant time. This flag
indicates if a cell is removed from S(K) or not. Every cell
T ∈ K appears in the while loop only k times, where k is
maximal number of neighbors of a top dimensional cell in the
complex. Therefore, the while loop performs at most k ‖K‖
iterations before its termination. The time complexity of every
iteration is O(k), which means that the overall complexity
of the procedure is O(k2 ‖K‖). Typically the number k is a
dimension dependent constant and, in this case, the complexity
of the algorithm is O(‖K‖). The same complexity analysis is
valid for Algorithm 2.

We now present in Algorithm 2 a simple idea that enables
to preserve the shape of the object in addition to its topology.
We stress that the aim of this second algorithm is just to show
how to couple topology and shape preservation.

In Algorithm 2 there is one difference with respect to
Algorithm 1. After removing a single external layer of cells,
a check is made at line 2 to determine whether all cells that
remain in S(K) are already in the boundary of S(K). Once
they are, the thinning process terminates6. The topology is
still preserved due to line 10. The additional constraint used
at line 16 of Algorithm 2 is very simple and it gives accept-
able results in practice. It may be easily coupled with other
techniques to preserve shape already described in literature.

Finally, we discuss the situation when one wants to keep the
skeleton attached to some pieces of the external boundary B of

6Note that it also terminates when in the previous step no cells are removed.

Algorithm 2 Shape and Topology Preserving Thinning

the mesh. In this case, when testing whether a top dimensional
cell T is simple, one should consider B ∩bd T as elements in
S(K). In other words, elements from B are not considered as
an interface between the object to skeletonize and its exterior.

A. Proofs

Now we are ready to give a formal definition of skeleton.
Definition 4.1: A skeleton of a cell complex K, denoted by

S(K), is a set of top dimensional cells such that:

1) S(K) is obtained from K by iteratively removing
top dimensional cells T1, . . . , Tn, provided that the
intersection of Ti with K \ ⋃i−1

j=1 Tj complement is
acyclic. Consequently, homology groups of S(K) and K
are isomorphic;

2) There is no top dimensional cell T ∈ S(K) that has
an acyclic intersection with S(K) complement (i.e. the
process of removing such cells has been run as long as
possible.)

We want to point out that sometimes, due to some deep
phenomena in simple homotopy theory, some skeleton may
be redundant. For instance it is possible to have a skeleton
of a 3D ball as Bing’s house [73] instead being a single
top dimensional element. In general it is impossible to avoid
this issue due to some algorithmically intractable problems in
topology.

In the follwing, we formally show that the skeleton obtained
from Algorithm 1 satisfies Def. 4.1. This fact is shown with
a sequence of two simple lemmas.

Lemma 4.2: The homology of K and S(K) are isomorphic.
Proof: The proof of this lemma is a direct consequence

of the Mayer–Vietoris sequence [33]. Let T1, . . . , Tn be the
cells removed during the course of the algorithm execution
(enumeration is given by the order they were removed by
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Fig. 4. (a) Magnetic resonance angiography (MRA) image of a moderate
thoracic aortic coarctation. (b) Rendering of the 3D triangulated surface
(20922 triangles) that represents the patient-specific thoracic aortic coarctation
anatomy obtained by segmenting MRA data and (c) the skeleton extracted
with Algorithm 2.

the algorithm.) Let us show that, for every i ∈ {1, . . . , n},
homology of K \ ⋃i−1

j=1 Tj and homology of K \ ⋃i
j=1 Tj

7

are isomorphic. Let us write the Mayer–Vietoris sequence in
reduced homology for K \ ⋃i−1

j=1 Tj = (K \ ⋃i
j=1 Tj ) ∪ Ti :

. . . → Hn((K \
i⋃

j=1

Tj ) ∩ Ti ) →

→ H n(K \
i⋃

j=1

Tj ) ⊕ Hn(Ti ) → Hn(K \
i−1⋃

j=1

Tj ) → . . . .

The intersection (K\⋃i
j=1 Tj )∩Ti is acyclic. This is because

the intersection of Ti with the set complement is checked in the
acyclicity tables to be acyclic. Once it is, also (K\⋃i

j=1 Tj )∩
Ti is acyclic. Therefore, Hn((K \ ⋃i

j=1 Tj ) ∩ Ti ) is trivial.
Also, since Ti is a simplex or cube, it is acyclic. This provides
Hn(Ti ) being trivial (we are considering reduced homology.)
Consequently from the exactness of the sequence we have the
desired isomorphism between Hn(K \ ⋃i

j=1 Tj ) and Hn(K \
⋃i−1

j=1 Tj ). The conclusion follows from a simple induction.
�

Lemma 4.3: After termination of the algorithm there is no
element T ∈ S(K) that has an acyclic intersection with the
S(K) complement.

Proof: Let T1, . . . , Tn be the elements removed during
the algorithm execution (enumeration is given by the order
they were removed.) Suppose, by contrary, that a T ∈ S(K)
exists such that it has an acyclic intersection with the S(K)
complement. Let i ∈ {1, . . . , n} denotes the index of last
element among T1, . . . , Tn that has nonempty intersection
with T . If i = 0, then T would be put to the queue L in the

7The difference used in the formulas in this proof is not a set theoretic
difference. All the objects are assumed to contain all their faces.

Fig. 5. (a) Magnetic resonance imaging (MRI) image of the cerebral
circulation. (b) Rendering of the 3D triangulated surface (196,056 triangles)
representing the cerebral circulation obtained by segmenting the MRI data
and (c) the skeleton extracted with Algorithm 2.

line 5 of Algorithm 1 and removed from S(K) in the line 11
of the algorithm, since no change to its intersection with S(K)
complements is made by removing T1, . . . , Tn . If i > 0, then
after removing Ti the intersection of T with S(K) complement
does not change. Therefore, it is acyclic after removing Tj for
j ≤ i . When Algorithm 1 removes Ti in the line 12, T is added
to the list L and it is going to be removed in the line 11, since
removing Tj for j > i does not affect the acyclicity of the
intersection of T with the S(K) complement. In both cases
we showed that T is removed from S(K) by Algorithm 1.
Therefore, a contradiction is obtained. �

V. EXPERIMENTAL RESULTS

This section presents some experimental results obtained
by running the algorithms proposed in this paper on medical
data sets. Algorithm 2 is used when the input cell complex
is homologically trivial. In fact, if Algorithm 1 is executed
on a trivial complex it outputs in most cases a single top
dimensional cell. Algorithm 1 is used when one is interested
in the topology preservation only.

A. Assessing Aortic Coarctation and Aneurism

Skeletons can be used in computer-aided diagnostic tools for
coarctation and aneurism, by evaluating the transverse areas
of any vessel structure, see [23].
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Fig. 6. (a) Computed tomography (CT) image of pulmonary airway trees.
(b) Rendering of the 3D triangulated surface (71926 triangles) represent-
ing the patient-specific pulmonary arteries and (c) the skeleton extracted
with Algorithm 2.

1) Aortic Coarctation: Aorta coarctation is a congenital
heart defect consisting of a narrowing of a section of the
aorta. Gadolinium-enhanced magnetic resonance angiogra-
phy (MRA) has been used in a 8 year old female patient
to image a moderate thoracic aortic coarctation, see Fig. 4a.
Fig. 4b shows a rendering of the 3D triangulated surface,
obtained by segmenting the MRA data, which models the
ascending aorta, arch, descending aorta, and upper branch ves-
sels. The interior of the surface has been covered with 94756
tetrahedra. The skeleton of this vessel structure, obtained with
Algorithm 2, is shown in Fig. 4c.

2) Cerebrovascular Aneurism: Cerebrovascular aneurysms
are abnormal dilatations of an artery that supplies blood to the
brain. Magnetic resonance imaging (MRI) has been used to
image the cerebral circulation in a 47 year old female patient,
see Fig. 5a. Fig. 5b shows a rendering of the 3D triangulated
surface, obtained from the segmentation of the MRI data.
The interior of the surface has been covered with 390,081
tetrahedra. The skeleton of this vessel structure, obtained with
Algorithm 2, is shown in Fig. 5c.

B. Analysis of Pulmonary Airway Trees

Skeletons have been used for quantitative analysis of
intrathoracic airway trees in [21]. A 3D triangulated surface,
shown in Fig. 6b, represents the 3D model of pulmonary air-
way trees of a 16 year old male patient obtained by segmenting
data from computed tomography (CT) images, see Fig. 6a.

Fig. 7. Rendering of the 3D triangulated surface (506,188 triangles)
representing the patient-specific colon anatomy obtained by segmenting CT
colonography data and, in black, the skeleton extracted with Algorithm 2.

Fig. 8. (a) Rendering of the 3D triangulated surface (285,346 triangles)
representing the anatomy of a human bone in a region of interest of the
trabecular region obtained by segmenting MicroCT data and (b) the skeleton
extracted with Algorithm 1.

The interior of the surface is covered with 236,433 tetrahedra.
The topology preserving skeleton obtained by Algorithm 2 is
shown in Fig. 6c.

C. Extracting Centerline for Virtual Colonoscopy

A 3D triangulated surface that represents a colon is obtained
by segmenting data from CT images, see Fig. 7. The interior of
the surface is covered with 2,108,424 tetrahedra. The topology
preserving skeleton obtained by Algorithm 2, which may be
used as a colon centerline to guide a virtual colonoscopy, is
shown in black in Fig. 7.

D. Computing Topological Interconnections of
Bone Structure

A 3D model of a human bone belonging to a 61 year old
male patient has been obtained from a stack of thresholded
2D images acquired by X-ray MicroCT scanning [74]. A
stack of 195 2D images has been considered, resulting in
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a volume of interest of about 4mm×4mm×4mm. From this
3D model, consisting of about 2.4 millions voxels, a 3D
triangulated surface has been obtained, see Fig. 8a. The interior
of this surface is covered with 688,773 tetrahedra. The topol-
ogy preserving skeleton obtained by Algorithm 1 is shown
in Fig. 8b.

VI. CONCLUSION

This paper introduces a topology preserving thinning
algorithm for cell complexes based on iteratively culling
simple cells. Simple cells, that may be seen as a generalization
of simple points in digital topology, are characterized with
homology theory. Instead of resorting to complicated
rule-based approaches, one can detect simple cells with
homology computations. The main idea of this paper is to
introduce the acyclicity tables which give a classification of
all possible simple cells that can occur in a cell complex.
These tables are filled in advance automatically by means of
homology computations for all possible configurations. Once
the acyclicity tables are available, implementing a thinning
algorithm does not require any prior knowledge of homology
theory or being able to compute homology. The fact that
acyclicity tables are filled automatically and correctly for
all possible configurations provides a rigorous computer-
assisted mathematical proof that the homology-based thinning
algorithm preserves topology. We believe that such rigorous
topological tools simplify the study of thinning algorithms
and provide a clear and safe way of obtaining skeletons.
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