
IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 8, AUGUST 2010 3069

Voltage and Current Sources for Massive Conductors Suitable With the
- Geometric Eddy-Current Formulation
Paweł Dłotko�, Ruben Specogna�, and Francesco Trevisan�

Jagiellonian University, Institute of Computer Science, Kraków 31-007, Poland
Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica (DIEGM), Università di Udine, Udine 33100, Italy

The aim of the paper is to present an automatic and general technique, suitable with the - geometric eddy-current formulation,
to impose sources over massive conductors of any shape. For this purpose, the localized source approach is used, which does not require
the solutions of steady-state conduction problems in the preprocessing stage. Nevertheless, this approach needs a thick cut in each active
conductor, which is usually found “by hand.” In this paper, an automatic and general algorithm to compute such thick cuts is introduced.
Some benchmark problems are presented to demonstrate the generality and the robustness of the algorithm.

Index Terms—Cell method, cohomology computation, current and voltage sources, discrete geometric approach (DGA), eddy-cur-
rents, finite integration technique (FIT), thick cuts.

I. INTRODUCTION

T HE so-called “discrete geometric approach” (DGA) [1],
similar to the finite integration technique (FIT) [2] or the

cell method [3], allows to solve directly Maxwell’s equations in
an alternative way with respect to the classical finite elements.

In this paper, an automatic technique to enforce sources
on massive conductors, suitable with the eddy-current -
geometric formulation [4], is introduced. In particular, the
localized source approach [5], [6] is considered. This approach
presents many advantages with respect to the distributed source
approach [6]; For example, it does not require steady-state
conduction problem solutions in the preprocessing stage. Fur-
thermore, the localized source approach is based on global
quantities—voltages and currents—which enables a straight-
forward coupling between the eddy-current formulation and
electric circuits.

The domain of interest of the eddy-current problem, which
is a subset of the three-dimensional Euclidean space , has
been partitioned into an active conductive region , a passive
conductive region , and a nonconductive region . We as-
sume that the region —where sources are enforced—consists
of the union of disjoint conductors , , such
that . Moreover, we assume that the first Betti
number [7] of each domain , , is one.1

No assumption is given about the conductors belonging to
.
The domain is covered by a tetrahedral finite element mesh.

The corresponding simplicial complex (see [3]) is referred
to as primal complex. From the primal simplicial complex, the
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1This assumption is not restrictive in practice since sources are usually im-
posed only on torus-like conductors. This assumption allows to consider knotted
active conductors. In case the user needs to relax this assumption, it is still pos-
sible to directly apply the general algorithm described in Section V-B5.

barycentric dual complex is also introduced [3]. The inci-
dence matrix between edges and nodes of the primal com-
plex is denoted by , by is denoted the incidence ma-
trix between faces and edges of , and by the incidence
matrix between tetrahedra and faces of . The matrices

, , and describe the corresponding
incidence matrices of the dual barycentric complex [3].

The localized source approach needs a thick cut [6] for each
active conductor, which is usually found “by hand” [5]. When
dealing with complicated geometries or a big number of active
conductors, an automatic technique to find such thick cuts can
be very useful. This is the reason why we propose in Section V
an original, general, and completely automatic topology-based
algorithm to construct thick cuts, which does not require any
prior knowledge about the geometry of the active conductors.

II. THICK CUTS FOR THE TORI

Let us consider each active conductor , with
. The elements of and that correspond to

geometrical entities belonging to , are denoted as and
, respectively.
For each edge belonging to , an integer is specified. The

values are determined in such a way that the sum (with inci-
dence) of the values of the edges belonging to a cycle is equal to

(or ) if and only if the cycle “goes times around the con-
ductor, on or inside it” (All homologically trivial cycles [7] go
around the conductor zero times. Moreover, since we focus on
solid toric regions only, the cycles that goes around the branch
of each conductor are homologically trivial.).2

The integer values relative to each edge are stored into
arrays , , one array for each conductor. The
array is a thick cut. More precisely, the thick cut is the repre-
sentative of a first cohomology group [7] generator.

On the left of Fig. 1, an example of torus-like active conductor
is considered. On the right of Fig. 1, the black edges represent
the edges whose integer coefficients in the thick-cut array are
nonzero.

2Formally speaking, since the first homology group � �� � � [7], then
there exists one generator ��� of � �� �. For a given cycle �, the sum of ���
with incidence is equal � � if � � ����, where ���� indicates the ho-
mology class of the cycle ��. In the considered case, the homology group is
torsion-free [7], and there is a direct correspondence between first homology
and cohomology generators.
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Fig. 1. (left) Example of torus-like conductor. (right) Zoom on a portion of the
conductor in the neighborhood of the nonzero-valued edges in the thick cut (the
thick black edges). The collection of dual faces, dual to nonzero-valued thick-cut
edges, form a surface � on the dual complex that “cuts” the conductor.

Considering the union of dual faces one-to-one with nonzero-
valued thick-cut edges, a surface that “cuts” the conductor is
obtained on the dual complex;3 see, for example, on the right in
Fig. 1. The reader should be aware that the surface is always
orientable, but, in general, can be also self-intersecting.

III. LOCALIZED VOLTAGE SOURCES

The localized voltage source approach [6], also referred to
as “generalized source potential” in [5], is now recalled. Let us
define the array as

(1)

where is the enforced voltage on the th conductor. Note
that, for a fixed edge , only one term of the sum is nonzero.
Then, the - formulated eddy-current problem in the fre-
quency domain becomes [6]

(2)
where , , , are the constitutive matrices, which
can be considered as the discrete counterparts of the constitutive
relations [4]. The subscripts denote the subarrays or subma-
trices relative respectively to entities belonging to or .
Moreover, we set .

The term , assures that the continuity law is
satisfied, therefore the ungauged - formulation can be used
[4]–[6] to solve (2).

Finally, the total current flowing in the th active con-
ductor can be easily determined in a post-processing stage as

(3)

3Thanks to the Poincaré–Lefschetz duality, � �� � �� � �� � �� � holds
[7]. Thus, the first cohomology group of � can be reinterpreted as the second
relative homology group of the dual complex � . The generator of this group
consists of dual faces that form a surface � on dual complex having the
boundary on �� and that is not itself boundary of any volume in � .

IV. LOCALIZED CURRENT SOURCES

In the - geometric formulation, can only be specified
using (3), which also gives a relationship between and .
The symmetric algebraic system of equations, having also
as unknown, becomes

(4)
where and

.
The treatment of problems that require a combination of cur-

rent and voltage sources follows easily by combining (2) and
(4).

Furthermore, both the localized voltage sources and the lo-
calized current sources are easily generalized when a general
external circuit is connected to the port of some active con-
ductor. In this case, both and of that conductor have
to be added as unknowns of (4). Correspondingly, an equation
describing the external circuit has to be written into the linear
system of (4).

V. AUTOMATIC THICK-CUT COMPUTATION

A. Previous Approaches

A general algorithm for the homology computations is well
known since many decades ago [7], and it is based on the com-
putation of the Smith Normal Form [7], [8]. This computation,
although general, is quite time-consuming and cannot be naively
applied even in the simplest practical problem. What is usually
done is to apply some reduction algorithms that reduce the cardi-
nality of the simplicial complex without changing its topology.
The exploitation of the state-of-the-art reduction techniques like
[9] is fundamental to have an implementation that can be used
in practice [10], [11].

A couple of theoretical algorithms or implementations
to compute the thin cuts—i.e., the representatives of the
second relative homology group generators
[11], [12]—have been proposed so far in [13] and [14]. Both
approaches, due to the lack of efficient reduction techniques,
result in a prohibitive computational time demonstrated by the
absence of concrete results using real-sized meshes. Moreover,
it is important to note that the direct thin cuts computation is in
general not useful in practice for the thick-cuts computation.
The reason is described in [11, Sec. 7.2.1].

There have been also some attempts to compute thin cuts
using approaches based on homotopy [7]. These algorithms are
born to compute the thin cuts in the complement of the con-
ductive regions. Only the algorithms that construct a maximal
acyclic subset are relevant in case of cuts inside the conduc-
tors. The complement of with respect to the torus-like region,
in fact, might be a thin cut [15]–[18]. Other algorithms based on
simple reduction technique [19] cannot be directly used in this
context.
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Fig. 2. Flowchart of the algorithm to find the thick cut.

The homotopical approach produces thin cuts that can be
self-intersecting, which again is a problem for thick-cut extrac-
tion, as pointed out in [11, Sec. 7.2.1]. In fact, all homotopical
methods do not get the coefficients of the thick cuts, so a post-
processing (possibly very hard in general) to get coefficients of
the thick cut is needed. Moreover, in most practical cases, these
algorithms produce additional dangling surfaces, which have to
be eliminated in some way; see, for example, the filtering in
[18].

B. Proposed Algorithm

The presented algorithm works for each ,
separately.

The idea is to use an approach based on skeletonization and
Generalized Spanning Tree Technique (GSTT) [11], [20], which
is very fast and works on most cases, but it may fail for some
input. In case of problems, which are extremely rare in practice,
there is the theoretical guarantee to detect them and resort to
the computation of the first cohomology group generators with
state-of-the-art reduction techniques, which is more computa-
tionally expensive but general.

The flowchart of the proposed algorithm is illustrated in
Fig. 2. The description of each step of the flowchart will be
given in this section.

1) Data Structures Used in the Algorithm: The simplex data
structure is assumed to posses the following fields:

1) an integer value , pointing the dimension of the
simplex;

2) a boolean flag , initially imposed to ;
3) sets of pointers to boundary and coboundary

elements of the simplex [8].

The flag is used to mark the simplices deleted during
the skeletonization procedure without physically removing
them from the data structure.

2) Skeletonization: The skeletonization procedure has been
developed as an attempt to mimic the mathematical concept of
retraction [7]. The procedure presented below, based on a free
face4 collapsation [8], aims in reducing a three-dimensional
conductor into one-dimensional graph being its homotopy
retract. The simplex is denoted as free face if it is a face
of exactly one nondeleted simplex . As demonstrated in [8],
the simplices can be deleted from the complex without
changing its homology and homotopy type.

The skeletonization algorithm works on the list consisting
of all free faces in the complex. At the beginning of the algo-
rithm, all the free faces in the initial complex are added to the
list . Then, until is nonempty, in each iteration of the while
loop, a simplex is taken out of .

If is still a face of exactly one element such that
, then it is set

. Then, each of the nondeleted boundary elements of
that is a free face is added to the list .

If has no nondeleted elements in the coboundary anymore
(what can happen once the element in the coboundary of was
reduced with its other free face), then each of the boundary ele-
ments of that is a free face is added to the list .

It can be demonstrated that once the size of the boundary and
coboundary of each simplex are uniformly bounded by a con-
stant, then the complexity of the presented procedure is linear
with respect to the number of simplices in the complex. The
output of the algorithm, referred to as a skeleton of the complex

, consists of all the nondeleted simplices. In most practical
problems, the skeleton will consists of zero- and one-dimen-
sional simplices only.

3) Validation of the Skeleton: The GSTT algorithm [11]–[20]
requires as an input, when dealing with a torus-like region, a
cycle that has to be connected, not self-intersecting, and has to
“go 1 time around the conductor, inside it.”5 In order to test the
skeleton obtained by the skeletonization algorithm, one has to
check if all the two- and three-dimensional simplices in are
deleted. If so, the skeleton is a valid input for the GSTT. The
validation procedure is linear with respect to the number of all
simplices in the simplicial complex.

4) Generalized Spanning Tree Technique (GSTT): In order to
obtain the thick cut from a valid skeleton of , the GSTT algo-
rithm is used on the initial complex . A detailed description of
the algorithm can be found in [11, Sec. 8.3]. It can be demon-
strated that the algorithm complexity is linear with respect to
the number of elements in the simplicial complex. However, in
some uncommon situations, it may happen that the GSTT algo-
rithm does not converge. In this marginal case, to have a general
procedure, a pure computation of the first cohomology group
over integers is used.

5) First Cohomology Group Computations: For the compu-
tations of the first cohomology group generator of the complex

, a modified version of [10] code is used. Before the pure

4By a face of a �-dimensional simplex �, we refer to any of its �� � ��-di-
mensional subsimplices; see [8].

5It is worth to note that not all homology generators � �� � fulfill all these
requirements. In particular, with automatic homology computations, it is quite
likely for such a generator to be not connected and/or self-intersecting.
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Fig. 3. (left) Current density in a planar inductor. (right) Current density in a
knotted torus.

Fig. 4. Convergence of the planar inductor inductance with mesh refinement
using both �-� and � -� complementary eddy-current formulations. The
meshes employed in the two formulations are the same.

Smith Normal Form computations, the [9] reduction technique
is used, which makes the computations much more efficient.

The complexity of the cohomology computation may be far
bigger with respect to the complexity of the previous approach
based on skeletonization and GSTT. However, it should be
noted that the cases when pure topological computations are
needed are very rare in practice, as will be shown in Section VI.
Moreover, efficient reduction techniques employed make the
cohomology computation much faster with respect to the
worst-case analysis regarding the pure Smith Normal Form
computation.

VI. NUMERICAL RESULTS

The localized voltage and current source approach was tested
on many examples of massive conductors. For example, on the
left of Fig. 3, the resulting current density in a planar inductor
is shown. On the right of Fig. 4, another example consisting in
a knotted torus is presented.

The convergence of the inductance of the coil on the left of
Fig. 3 with respect to the mesh refinement is shown in Fig. 4.
The results obtained by the - formulation are compared to
the ones obtained by the complementary - geometric formu-
lation [11] on the same mesh showing a very good agreement.

In all the tested examples, the skeletonization algorithm re-
turned a valid skeleton, and the GSTT always converged. For

each example, many different randomly generated trees were
used without experiencing any problem. The trees used are min-
imal diameter trees that are easily constructed using Breadth-
first strategy (BFS) [21].
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