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The aim of this paper is to present a 3-D time-domain eddy-current formulation based on the discrete geometric approach (DGA)
over unstructured and nonorthogonal hexahedral dual grids. The resulting differential algebraic system of equation, solved by means
of a singly-diagonally implicit Runge–Kutta (SDIRK) variable step-size solver, leads to very accurate results at reduced computational
costs, as shown by numerical analysis.
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I. INTRODUCTION

T HE so-called discrete geometric approach (DGA) [1],
common to the finite integration technique (FIT) [2],

[3] or the cell method (CM) [4], [5], allows to solve directly
Maxwell’s equations in an alternative way with respect to the
classical Galerkin method in finite elements.

In [6], Codecasa et al. have proposed a novel method for dis-
cretizing the constitutive relations of the DGA for generic hex-
aedral dual grids. As a major theoretical result, such method
guarantees the consistency and the stability of the discretized
equations, in the sense of Lax–Richtmyer equivalence theorem
[7].

In this paper, such novel method for discretizing constitu-
tive relations is applied to eddy-current problems in the time
domain. In this way, an formulation for eddy-current prob-
lems in the time domain is derived by the DGA, for unstructered
and nonorthogonal dual grids, in which the primal grid is hex-
aedral. As far as the authors know, this is a major achievement
with respect to previous results reported in literature [8], [9],
in which eddy-current problems were discretized by DGA only
over structured hexahedral grids. As shown by the proposed nu-
merical analysis, the novel constitutive relations can lead to very
accurate results at reduced computational costs, since they avoid
the geometric discretization inaccuracy deriving from the use
of orthogonal hexahedral grids [8], such as staircase effects, or
from the use of structured hexahedral grids for modeling com-
plex geometries [9].

II. DGA FORMULATION

The 3-D domain of interest of the eddy-current problem
is covered by a mesh of generic hexahedra. The corresponding
cell complex [4] is denoted as . Three subdomains of are
identified: the passive conductive region , the nonconductive
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region (air region) , and the source region . From , a
dual complex is also introduced [4], based on the barycentric
subdivision of the boundary of each hexahedron [10]. The inci-
dence matrix between faces and edges is denoted by and the
incidence matrix between hexahedra and faces is denoted by .
The incidence matrix between faces and edges of the dual com-
plex is [4].

Next, the following integrals of the field quantities with re-
spect to the oriented geometric elements of the mesh are intro-
duced, yielding the degrees of freedom (DoF) arrays:

• is the array of magnetic fluxes associated with faces
;

• is the array of magnetomotive forces (m.m.f.s) associ-
ated with dual edges ;

• is the array of circulations of the magnetic vector poten-
tial along primal edges ;

• is the array of currents associated with dual faces in
;

• array of impressed currents associated with dual faces
is introduced in ;

• finally is the array of electromotive forces (e.m.f.s) on
primal edges .

Maxwell’s laws are written exactly as topological balance equa-
tions between DoFs arrays, as

(1)

(2)

where (1) is the Ampère law, and (2) involves the array in such
a way that Gauss’ law is satisfied identically (since

). Discrete Faraday’s law

(3)

is formulated, in terms of , as follows:

(4)

The discrete counterpart of the constitutive laws is approximate
and is written as

(5)

(6)
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Fig. 1. Hexahedron � is shown, together with a primal node � , a primal
edge � , and a primal face � , and a dual node �� , a dual edge �� , and a dual
face �� . The barycenters � of edge � and � of face � are also shown. Also
the tetrahedron � is evidenced.

where and are square symmetric positive-definite matrices
ensuring consistency of equations, in the sense of Lax–Richt-
myer equivalence theorem [7], and are constructed for an hexa-
hedral primal grid in a novel way as outlined in the next section.

A symmetric algebraic system of equations, having as
unknown, can be obtained by combining (2), (4), (5), and (6)
into (1)

(7)

where contains the entries of the array relative to the edges
of . The source current vector can be expressed, for
example, as ,1 where can be computed as
described in [13] for a unit current and is a function of time
that describes the time evolution of the source current.

A. Integral Sources

When modeling stranded coils, it is useful to introduce inte-
gral sources, which do not require the coils to be meshed. With
this aim, we express the array as , where
contains the contribution produced by the source currents in
and due to the eddy currents in .

Equation (7) can then be rewritten as

(8)

where . Each entry of the
array can be precomputed as , where
is a primal edge in and is the magnetic vector potential
due to a unit source current in .

III. DISCRETE CONSTITUTIVE RELATIONS

Each hexahedron of the primal grid is partitioned in 24
tetrahedra , with (Fig. 1). Each tetrahedron

1In general, this technique can be easily extended to more than one coil.

has as vertices the dual node corresponding to , the
barycenter of a primal face on the boundary of , and
the two primal nodes bounding a primal edge on the boundary
of . The label of the th primal edge is a function of the label
of the th tetrahedron as . Similarly the label of
the th primal face of is a function of the label of the th
tetrahedron as .

In the generic tetrahedron , we introduce a pair of triangles
and . The triangle has as vertices the dual node ,

the barycenter of face , with , and the barycenter
of edge , with . It is oriented as the dual face ,
with . The triangle has as vertices the pair of nodes
bounding edge , with and the barycenter of face

, with . It is oriented as the primal face , with
.

The following quantities are introduced, denoted in roman
type: is the edge vector2 corresponding to , is the face
vector3 corresponding to , is the edge vector of the portion
of dual edge contained in volume , and is the face vector
of the portion of dual face contained in volume . We will
also introduce the area vectors , associated with , ,
respectively.

We can now define the following piecewise uniform vector
function attached to the edge , defined at each point

, as:

(9)

where is the volume of and is the Kronecker delta
symbol. We can also define the following piecewise uniform
vector function attached to the face , defined at each
point as

(10)

where .
A show in [6], these vector functions, constructed in a purely

geometric way, possess the properties requested for constructing
discrete constitutive relations for DGA by means of the ener-
getic approach [11], [12].

Thus, the following numbers:

(11)

(12)

are the entries of symmetric positive-definite constitutive
matrices , , respectively, ensuring consistency and stability
of discrete equations.

2Edge vector � is directed as the edge � , its amplitude is the length of � ,
and it points as the inner orientation of the edge.

3Area vector � is normal to face � , its amplitude is the area of � , and it
points in a way congruent with the screw rule with respect to the inner orienta-
tion of the face.
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Since the edge and face vector functions are piecewise uni-
form in (i.e., uniform in each subregion), the volume in-
tegrals in (11) and (12) can be efficiently computed

(13)

where is the volume of and is any point in .

IV. TIME INTEGRATION METHOD FOR DAE PROBLEM

Systems (7) and (8) can be recast into the general form

(14)

where array denotes one of the unknown arrays or
, and and are square matrices of dimension , being

the number of primal edges in . Their definition can be easily
evinced from (7) and (8). In our eddy-current problem, matrix

is time invariant and independent of , the magnetic
medium being linear. Matrix is time invariant and singular.
In this way, (14) is not an ordinary differential equation (ODE)
but rather a system of differential algebraic equations (DAEs) of

class. To solve (7) or (8), we rely on an inhouse developed
singly-diagonally implicit Runge–Kutta (SDIRK) DAE solver
with a variable step size. In the following sections, we will sum-
marize the implemented algorithm based on the fundamental pa-
pers [14]–[17].

A. SDIRK DAE Solver

We focus on a Runge–Kutta (R–K) method with stages.
In Fig. 2, we introduce an matrix , and arrays ,

, where is an array of ones . The components of
and are referred to as weights and abscissae, respectively.

Starting from , the th stage of an R–K method
is computed as

(15)

where is the stage value, is the stage derivative, and
is the current step. The new estimate at is
updated by

(16)

To apply an R–K method, the following substitutions in (14)
are made for the stage : is replaced by given by (15),
by , and by . Thus, we obtain the following stage
equation:

(17)

Since in an SDIRK matrix is lower triangular, by introducing
, we can invert (15) yielding the stage derivative

in terms of the stage variables and the stage (17) can be
rewritten as

(18)

In the general nonlinear case, this stage equation is solved by
means of Newton’s method with stage Jacobian

. One can freely update a Jacobian to improve performance or
keep the same Jacobian for several stages if it gives acceptable
convergence. However, in our linear case, a linear system can
be conveniently used instead.

The solution is now updated as

(19)

where and is a vector of ones .

B. Error Estimation

An embedded pair of R–K methods is typi-
cally used to estimate the error in . Such a pair uses the same
matrix but different advancing vectors and and related
local orders4 and . In the implemented SDIRK,
is accurate with and the auxiliary SDIRK has

. If and are the estimates from these two
methods, holds, and the difference between them is
typically assumed to be the local error for the method

(20)

Letting , the local error for an embedded SDIRK
pair is computed as

(21)

V. NUMERICAL EXPERIMENT

A fully 3-D geometry consisting of a circular coil placed
above a conducting plate with conductivity 4 10 S/m
is considered as a benchmark problem. Such a simple geom-
etry is chosen to be able to compare the results with an accu-
rate reference solution obtained by using a 2-D axisymmetric
independent code (ANSYS). The geometry is shown in Fig. 3.
The considered primal grid is represented in Fig. 4, where do-
mains , , and are shown. The source current is en-
forced by a stranded circular coil in with a time dependence

, where 1 ms.
To compare the results obtained with the DGA implemented

in the geometric approach to Maxwell’s equations (GAME)
code,5 the ANSYS finite-elements software is used to compute
reference solutions. Since the problem is axisymmetric, a
reference solution has been computed with ANSYS using a
2-D quadrilateral mesh consisting of about 50 000 elements of
second order (time step of 0.01 ms).

Then, a fully 3-D simulation is computed with the GAME
code using the primal grid consisting of 19 136 hexahedra

4A time integration method is of order � if the local error depends asymptot-
ically on the time step � as ��� �.

5http://www.comphys.com
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Fig. 2. Butcher table showing the arrays �, �, ��, and �.

Fig. 3. Geometry of the benchmark problem, a circular coil above a conductive
plate.

Fig. 4. Hexahedra of the considered primal grid belonging to � and �
domains.

Fig. 5. Amplitude of the current densities along the sampling line shown in
Fig. 3.

(59 330 DoFs) shown in Fig. 4. The GAME takes about 4 s of
CPU time for the assembling of the sparse matrices and 4 s for
each time step. In the implemented DAE solver, the time step
is variable.

The amplitude of the current density along a number of points
evenly distributed along a sampling line (shown in Fig. 3) for

1 ms is represented in Fig. 5. In Fig. 6, the time behavior
of the amplitude of the current density in the point (situated
on the sampling line, at a distance of 7.5 mm from the axis) is
shown. The results obtained by the GAME code are in a quite
good agreement with those of ANSYS.

Fig. 6. Time evolution of the module of the current density in the reference
point � shown in Fig. 3.

VI. CONCLUSION

A 3-D geometric time-domain eddy-current formulation
suitable with hexahedral meshes has been presented. The for-
mulation has been successfully validated using a finite-elements
commercial software.
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