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Modeling Current Density Distribution Inside Proton-Exchange Membrane
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A numerical model of the cathode of a proton-exchange membrane fuel cell (PEMFC) based on the discrete geometric approach is
presented. The current density distribution inside a PEMFC cathode is simulated. The discrete formulation of a steady-state conduction
problem in nonisotropic media is coupled to nonlinear boundary conditions representing the charge transfer at catalyst layers. The
cathode performance is assessed under different load conditions by assuming a constant voltage operation mode. Results are in good
agreement with those presented in the literature.
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I. INTRODUCTION

D URING the last decade, the idea of a sustainable devel-
opment based on eco-compatible technologies has drawn

increasing attention. Fuel-cell technologies, being based on
clean, efficient, and low impact electrochemical processes, have
been widely investigated [1], [2]. These devices produce elec-
tric power from oxidation of hydrogen or other fuels, which are
continuously supplied. Fuel cells are an important technology
for a wide variety of applications, including automotive and
distributed generation. Proton-exchange membrane fuel cells
(PEMFCs) are considered to be the most suitable fuel cells
for transportation and portable applications due to their low
operating temperature, high energy density, and efficiency.

PEMFCs consist of a membrane electrode assembly (MEA)
sandwiched between the anode (ACC) and the cathode current
collectors (CCCs) in Fig. 1. The MEA can be divided into
five layers compounded together: the anodic/cathodic catalyst
layers (ACL and CCL) are dispersed on both sides of the
polymeric electrode membrane (PEM), which is interleaved
between the gas anodic/cathodic diffusion layers (ADL and
CDL). Chemical reactions take place at catalyst layers where
three different phases coexist. Triple-phase boundaries (TPBs)
are the most active sites for electrode reactions since electrode
particles, electrolyte phase, and gas pores intersect. These com-
plex phenomena are quite difficult to be modeled, even though
some attempts have been made with approximate models like
the one presented in [3].

The reactants flow through diffusion layers from flow chan-
nels to the catalyst layers. Oxygen is typically taken from the
atmospheric air and hydrogen is stored in high-pressure vessels
or in metal hydride cartridges. Electric charges follow different
paths: electrons are drawn from the TPB by the anode diffusion
layer and flow to the external circuit through current collectors,
while protons flow through the PEM. Electrons and protons are
consumed in the oxygen reduction reaction producing water.

In this context, mathematical models are useful for inter-
preting experimental data and designing optimized fuel-cell
configurations. A higher current density for a given cell voltage
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Fig. 1. PEMFC structure: the membrane electrode assembly is sandwiched be-
tween the anode and cathode current collectors.

and more uniform current density on the cross section are
the current issues under investigation. Several mathemat-
ical models have been developed to investigate the effect of
various design and operating conditions on the fuel-cell per-
formance and to understand the underlying mechanism, either
for solid-polymer-electrolyte or PEMFCs [4]–[6]. Moreover,
advanced computational models (multidimensional, multiphase
models), which account simultaneously for electrochemical
kinetics, current distribution, hydrodynamics, and multicompo-
nent transport may provide a more accurate picture of transport
and kinetic phenomena in PEMFCs with different flow distri-
bution strategies [7].

The aim of this paper is to develop a numerical simulation
model of the electronic conduction inside the cathodic CDL at-
tached to a segmented graphite current collector. In a typical
PEMFC, one of the basic features to be improved is the average
current density for a fixed operating cell voltage. On the other
hand, uniformity of current density distribution across the entire
active area is essential for performance optimization.

The effect of several features, such as electrode configuration,
air-flow rate, fuel and oxidant gas stream humidity, and cell tem-
perature on the spatial and temporal current density distribution
have been investigated by representing the PEMFC cathode as
a segmented electrode/current collector assembly as described
in [8] and [9]. The electric scalar potential distribution is sim-
ulated by solving a nonlinear, anisotropic conduction problem,
where field equations are expressed directly in algebraic form
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by means of the discrete geometric approach (DGA) [11], [10].
The current density distribution can be easily computed from
potential distribution in order to estimate its degree of unifor-
mity through the entire active area of the electrodes [9]. As a
result, it is possible to increase the current density for a given
working cell potential.

II. DISCRETE GEOMETRIC MODEL

We propose a 2-D discrete geometric model of the cathode
region, where the electronic conduction occurs. Due to the peri-
odic symmetry of the model, only a part of the electrode struc-
ture is considered. We denote as the
domain of interest, consisting of a CDL region and one
half of two adjacent graphite current collectors plates ,
separated by an insulating region (Fig. 2).

The upper part of the boundary of the region is in tight
contact with the cathode catalyst layer, where electric charges
are consumed due to the oxygen reduction reaction. The cathode
catalyst layer is assumed to be a zero-thickness region since its
dimension is typically negligible compared to that of the other
layers of the MEA.

A. Domain Discretization
According to the DGA, the computational domain is dis-
cretized into a pair of interlocked cell complexes, one dual of
the other (Fig. 3). In our 2-D field problem, the current density
J and electric field E are assumed to be parallel to the plane;
the primal cell complex consists of nodes , edges , faces1 ,
and volumes (prisms with triangular base) ; we denote with ,

, , and the cardinalities of the corresponding sets of geo-
metric elements, respectively. The dual cell complex, consisting
of dual faces2 , dual edges , and dual nodes , is obtained ac-
cording to the barycentric subdivision from the primal complex
[11]. Since the problem is 2-D and the current density and elec-
tric field lie in the plane, we consider the projection on a
plane of such a pair of interlocked grids; therefore, the primal
volumes correspond to triangles with , and
the primal faces correspond to edges. In the following text, we
will denote as the incidence matrix of dimension be-
tween primal edges and primal nodes, with as the incidence
matrix of dimension between primal faces and primal
edges, and with representing the incidence matrix
of dimension between dual volumes and dual faces.

B. Nonlinear Discrete Conduction Problem

The behavior of the cathode catalyst layer is simulated by in-
troducing appropriate nonlinear Neumann boundary conditions,
which account for the electric charge transfer rate. According to
the DGA, the physical laws governing the nonlinear conduction
problem inside the cathode region can be expressed exactly by
means of algebraic relations between degrees of freedom using
only the topological information of the mesh embedded in the
incidence matrices.

Hence, Faraday’s law for stationary fields can be expressed
with the DGA directly in algebraic form [12] as

(1)

1Each surface is of thickness � and its trace is a line in the �� plane.
2Each dual surface is of thickness � and its trace is a line in the �� plane.

Fig. 2. Two-dimensional model on the ��� �� plane of a segmented electrode
at the cathode. (The picture is not scaled proportionally.) The cathode catalyst
layer (CCL)—where reactions take place—is evidenced on the top.

Fig. 3. Geometric entities of primal and dual cell complexes tailored inside the
primal volume � in a one-to-one correspondence with triangle �; in particular,
primal nodes � and primal edges � are evidenced, since they define a 2-D planar
mesh. The thickness of the triangular prism � is denoted by �.

where is the array of the voltages on primal
edge , with ; denotes the th entry of the
array . We define as the array of the electric scalar potentials

associated with each primal node , with
(Fig. 2). By noting that , (1) can be implicitly enforced
at the discrete level by means of electric scalar potentials as

(2)

The current continuity law can be written as the following
algebraic relation:

(3)

where , are arrays of current of dimension ; denotes
the array of source currents, which depends nonlinearly on the
electric scalar potential.

The Ohm’s law between fields can be expressed in
discrete form with a constitutive matrix that links the array of
voltages to the array of currents as

(4)

The square matrix of dimension encodes the information of
the material properties and of the geometry of the problem. The
constitutive matrix can be easily constructed in a geometric
fashion (i.e., by applying for triangles the same ideas developed
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in [12] and [13] for tetrahedra) in such a way that (4) holds ex-
actly for an element-wise uniform electric field E, electric cur-
rent density J, and conductivity tensor in each volume .

C. Modeling the Catalyst Layer

The current density in a neighborhood of each node
in the catalyst layer can be modeled according to the

Butler–Volmer equation accounting for, for example, the PEM
hydration, the reactant and product concentration, and temper-
ature [8], [9]

(5)

where is the equilibrium potential characteristic of the elec-
trochemical reaction, is the cathode Tafel constant, and is
the apparent exchange current density. By multiplying the cur-
rent density by the area of the dual face

, the corresponding source current is obtained, where
is model thickness and is the width (Fig. 2). Thus,

is a prescribed function of the electric potential
in the node . If the node belongs to the catalyst layer,

then is the current crossing the dual face corre-
sponding to the node ; the entries of are null for any
other node not belonging to the catalyst layer.

III. NONLINEAR COUPLED PROBLEM

By inserting (2) and (4) in (3), the following algebraic system
of equations is obtained:

(6)

The global stiffness matrix is obtained by assembling
the contributions from the local stiffness matrices of each tri-
angle in a one-to-one correspondence with a primal volume

, with . The entry of a local sym-
metric stiffness matrix can be expressed efficiently [12] in a pure
geometric way for the triangle as

(7)

where is the area of , and is the area vector3 associated
with the lateral face of . In the CDL region , the local
conductivity tensor in is diagonal, but it represents an
anisotropic conductivity along orthogonal directions, while the
conductivity of the bulk graphite collector regions is
isotropic.

Dirichlet or Neumann linear BCs must be considered in ad-
dition along with lines to ensure the uniqueness of the
solution (Fig. 2). For constant voltage operation, the potential
is imposed to a fixed value; for constant current operation, a
given uniform current density along is imposed and, con-
sequently, the potential of the equipotential interfaces

is computed; in both cases, the potential is unknown along
the catalyst layer. Finally, symmetry BCs on the lateral sides of
region are applied.

IV. NUMERICAL RESULTS

The potential distribution in the cathodic region of a seg-
mented electrode cathode of a PEM fuel cell is analyzed by con-
sidering a portion of the periodic current collector structure de-

3It is normal to the lateral face � of the prism and it points outward � ;
moreover, due to the plane symmetry, �� � � �� � holds.

TABLE I
ELECTRIC PARAMETER VALUES USED IN THE MODEL

picted in Fig. 2. The geometric data and the electric parameter
values reported in Table I refer to the fuel cell described in [9].

We solve the nonlinear system (6) by means of a
Newton–Raphson method. The Jacobian can be evaluated
from the residual of the nonlinear system

(8)

as

(9)

where denotes the element of the matrix in the th row
and th column, and is the Kronecker delta function.

The flowchart of the iterative solution scheme adopted for the
solution of the nonlinear system (6) is reported in Fig. 4. In order
to improve the convergence rate, we also experimented with a
locally linearized expression of the electron current across
a dual face instead of (5)

(10)

where V cm A.
As a boundary condition, we implemented the so-called con-

stant voltage operation of the fuel cell, where the potential of
the primal nodes on is imposed on 0.695
V, which is the normal voltage operation of the cell described
in [9]. The domain is discretized with a very refined mesh
(85 347 nodes, 168 094 triangles). The overall simulation time
is about 10 s, including the preprocessing, the computation,
two Newton–Raphson steps and postprocessing. Figs. 5 and 6
show the resulting overall potential and current density distri-
bution at the cathode for a constant voltage operation mode of
the fuel cell.

These results are in the same order of magnitude with those
reported in the literature obtained by means of a finite differ-
ence method [9]. Since contact resistances, which deeply af-
fect numerical and experimental results, are not implemented
in our model, a more direct comparison cannot be carried out.
Results concerning the constant current operation are not pro-
vided in this paper for the sake of brevity. In that case, in-
stead of fixing the potential of the primal nodes on and by
means of Dirichlet BCs, the total current crossing dual faces—in
one-to-one correspondence with primal nodes on and —is
known and can be imposed by means of Neumann BCs.

V. CONCLUSION

The developed coupled model is suitable for analyzing elec-
tronic conduction in the cathode current collectors of PEMFCs.
The DGA makes use of integral variables, which makes it pos-
sible to implement in a straightforward manner nonlinear Neu-
mann BCs. In fact, primal nodes—where potential is associ-
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Fig. 4. Flowchart of the iterative Newton–Raphson scheme used for solving
the nonlinear system.

Fig. 5. Potential distribution calculated with the DGA for a constant voltage
operation of the fuel cell. The top part of the plot shows the potential distribution
at the catalyst layer.

ated—and dual faces—where currents are associated—are in
one-to-one correspondence as can be observed in Fig. 2. This
peculiarity makes the coupling natural between the classical cur-
rent conduction model and the Butler–Volmer equation. The re-
sults obtained with the DGA are in the same order of magnitude
with those presented in [9], obtained by means of a finite dif-
ference method, and show overall good agreement in terms of
qualitative behavior. A further development will be the inclu-
sion of contact resistances in the discrete model.

Fig. 6. Planar distribution on the ��� �� plane of the electronic current density
distribution in the cathode of the fuel cell computed at constant voltage opera-
tion.
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