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Computing the first cohomology group generators received great attention in computational electromagnetics as a theoretically

sound and safe method to produce cuts required when eddy-current problems are solved with the magnetic scalar potential
formulations. This paper exploits the novel concept of lazy cohomology generators and a fast and general algorithm to compute
them. This graph-theoretic algorithm is much faster than all competing ones being the typical computational time in the order of
seconds even with meshes formed by millions of elements. Moreover, this paper introduces the use of minimal boundary generators
to ease human-based basis selection and to obtain representatives of generators with compact support. We are persuaded that this
is the definitive solution to this long-standing problem.

Index Terms— Cohomology basis selection, (co)homology, first cohomology group lazy generators, magnetic scalar potential,
magneto-quasi-statics, minimal cohomology basis, thick cuts.

I. INTRODUCTION

BESIDES many attempts to circumvent it, (co)homology is
recognized to be the only safe tool to define electromag-

netic potentials in the nontrivial cases [1], [2]. A remarkable
example is the potential definition for eddy-current problems
involving topologically nontrivial conductors formulated with
the magnetic scalar potential. In this case, the first cohomol-
ogy group generators have to be considered [2], [3]. Being
impossible in practice to construct them by hand, it is natural
to search for an algorithm to do it automatically.

For 2-D problems, it has been recently shown in [4] that an
optimal graph-theoretic algorithm exists that exhibits linear
complexity and produces optimal cohomology generators. For
3-D problems, it seems to be much harder. In principle,
cohomology generators over integers—unlike the real and
complex ones—can be rigorously computed in polynomial
time with the aid of the so-called Smith normal form (SNF) [5]
of the coboundary matrix. However, this approach is not
practical as its complexity is hypercubical. The exploitation
of sparsity together with a number of reductions of the input
complexes [1], [3], [6], [7] before applying the SNF, allows the
practical solution of the problem even on meshes with millions
of elements. What is not appealing is that this process in most
of the cases takes much more than the time required by the
remaining part of the simulation. This fact does not help to
impose (co)homology as the best practice to defining potentials
in computational electromagnetics and encourages naïve and
patently incorrect solutions (as the ones surveyed in [2]).
Moreover, the implementation of topological procedures is a
rather complicated issue that usually confine this research to
a few state-of-the-art softwares [6], [7].

The need for a dramatic speed up and the dream of a
completely graph-theoretic algorithm to get rid of the SNF
core, have lead us to an algorithm called thinned current
technique [8]. This algorithm is easy to implement and orders
of magnitude faster than its competitors, but it assumes to
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deal with the conductors that retract to a graph. If this is
not the case as, for example, considering the region between
the two coaxial toroids as a conductor, it loses all of its
advantages.

The first aim of this paper is to present an extremely fast,
general, and graph-theoretic algorithm to solve this problem
called the Dłotko–Specogna (DS) algorithm [9]. This algo-
rithm, in its simpler version, does not produce a standard
cohomology basis since the output 1-cocycles are linearly
dependent (and some of them may be even cohomologically
trivial). However, since they span the first cohomology group,
they are referred to as lazy cohomology generators [9]. It is
certainly possible to produce a cohomology basis with the DS
algorithm (see details in [9]), but this requires an additional
computational time and coding effort. Instead of doing so, the
very idea of lazy cohomology generators is that they may be
directly employed in eddy-current formulations [9].

The second aim of this paper is to introduce the use of
minimal boundary generators in the DS algorithm to ease
human-based basis selection and to obtain representatives of
generators with compact support. This way, the user of the
electromagnetic software would be able to easily relate a repre-
sentative of the cohomology basis to the relevant constraint on
the boundary value problem [7]. Therefore, basis selection is
fundamental, for example, to impose source current constraints
or to perform some postprocessing.

This paper is structured as follows. In Section II, the DS
algorithm is recalled. In Section III, it is intuitively explained
why one may safely use lazy generators instead of cohomology
basis in the EM computations. Section IV addresses how
to obtain minimal generators on the boundary of conductor.
Finally, in Section V, some numerical results are presented.
They clearly show the superiority of the proposed technique
over any other method.

II. DS ALGORITHM

Let K be a homologically trivial polyhedral cell complex
in R

3 representing the domain of the eddy-current problem.
Let us consider two subcomplexes Kc and Ka that contain
elements belonging to the conducting and insulating regions,
respectively. Both Kc and Ka are combinatorial manifolds with
boundary [9]. We denote the value of the cochain t on a cell
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Fig. 1. (a) Two cohomology generators c1 and c2 for the boundary of a solid
two-torus. Support of the thinned currents (b) t1 and (c) t2 corresponding to
c1 and c2, respectively. (d) Two-chain D(h1) on the complex dual to Ka is
the dual with respect to the cohomology generator h1.

E by 〈t, E〉, the genus of a surface C by g and the incidence
between the cells A and B by κ(A, B). The DS algorithm
is presented in Algorithm 1. For a more detailed explanation,
please refer to [9].

Fig. 1(a) shows the representatives c1, c2 of the two
cohomology H 1(C, Z) generators, C being the boundary of
a solid two-torus. The corresponding t1, t2, called thinned
currents [9], are shown in Figs. 1(b) and (c). Fig. 1(d) shows
the two-chain D(h1) on the complex dual to Ka is the dual
with respect to the cohomology generator h1, where by D(·),
we denote the dual map [9].

It is clear that the cocycles obtained by Algorithm 1 are
not a cohomology H 1(Ka, Z) basis, since they are twice the
cardinality of such a basis. Since the cocycles obtained from
the DS algorithm are indeed able to span H 1(Ka, Z), they are
lazy cohomology generators [9]. It is clear from the example
in Fig. 1 that the thinned current t1 provides the standard
generator h1, whereas the thinned current t2 may be eliminated
since its corresponding lazy generator h2 is cohomologically
trivial. Since decide whether to remove or not a lazy generator
is costly and complicated,1 we bypass this additional step.

Let n denote the number of connected components of
Kc ∩ Ka . Finding c1, . . . , c2g is performed in O(card(Kc ∩
Ka)g) time.2 In the practical implementation, the ESTT algo-
rithm is vectorialized, i.e., the ESTT algorithm is applied to
all t1, . . . , t2g thinned currents produced for all n connected
components of Kc ∩ Ka at the same time. Algorithmically,
it means performing the operations with a vector of 2gn real
numbers instead of a scalar in the ESTT algorithm. In this case,
the typical complexity of ESTT algorithm is O(card(K)gn).
If the genus g and the number of connected components
n is bounded by O(1), as it happens always in practical
problems, the average complexity of the DS algorithm is linear
O(card(K)) when standard surface generators are used and
O(card(K) log(card(K))) when minimal surface generators
are used, as described in Section IV.

1A cohomology basis may be obtained by computing linking numbers and
a SNF of a small matrix. Since routines to perform these two steps are not
available in FEM codes, they require a considerable coding effort.

2When using not minimal boundary generators. The complexity is
O(card(Kc ∩ Ka) log(card(Kc ∩ Ka))g) when using minimal generators
starting from a constant number of boundary triangles chosen with random
or maxmin strategy. For details, refer to Section IV.

Algorithm 1 DS Algorithm
Input: Topologically trivial complex K = Kc ∪ Ka ;
Output: Lazy cohomology generators of Ka ;

L — list of 1-cocycles being lazy generators of H 1(Ka);
for every C, connected component of Kc ∩ Ka do

Compute c1, . . . , c2g , the generators of H 1(C, Z), as
described in [11] (or in Section IV once minimal gen-
erators are needed);
t1, . . . , t2g — 2-cocycles in K initialized to zero;
for i = 1 to 2g do

for each 1-cell E ∈ C such that 〈ci , E〉 �= 0 do
for each 2-cell T ∈ Kc with E in the boundary do

〈ti , T 〉+ = 〈ci , E〉κ(T, E);
Solve in K the integer systems C h j = t j , j ∈ {1, . . . , 2g},
C being the face-edge incidence matrix, using a vectori-
alized version of ESTT algorithm [12]. In this way, 2g
1-cocycles h1, . . . , h2g in K are obtained;
Restrict {h1, . . . , h2g} to Ka ;
L = L ∪ {h1, . . . , h2g};

Return L;

III. LAZY COHOMOLOGY GENERATORS IN

EDDY-CURRENT FORMULATIONS

Surprisingly, the use of lazy cohomology generators in
electromagnetic modeling has not been explored in the litera-
ture. On the contrary, the procedure of removing redundant
generators has been always deemed as necessary. Instead,
lazy cohomology generators may be safely used in FEM or
geometric formulations as if they were a standard cohomology
basis [9].

In this paper, an intuitive explanation is presented by
showing the relationship between the lazy cohomology gener-
ators and gauging. The system of equations to solve before
adding nonlocal Faraday’s equations is already rank defi-
cient [2], [3], [13], but consistent. Indeed, adding an arbitrary
1-coboundary GW to the electric vector potential T does
not alter the current I, since I = CT = C(T + GW) and
CG = 0 [3], where W is an arbitrary 0-cochain and G is the
edge-node incidence matrix. Even though a full-rank system
may be obtained by a tree-cotree gauging (i.e., by setting the
electric vector potential on a tree of one-cells in the interior
of Kc to zero [13] and by eliminating the corresponding local
Faraday’s equations), it is widely known that with iterative
linear solvers ungauged [13] formulations are much more effi-
cient. Ungauged formulations work because, even if the vector
potential is not unique, its curl—i.e., the current density—
is. Since the solution in terms of induced currents does not
depend on the representatives of the fixed cohomology basis,
one may use any representative of the given basis. Therefore,
any cohomologically trivial lazy generator may be expressed
by a 1-coboundary GW in K that does not alter the solution in
term of induced currents for the same reasons why ungauged
formulations work.

Let us now see the other possible case, namely when lazy
generators are dependent but nontrivial in H 1(Ka, Z). To this
aim, let us assume, for example, that ĉ1 = c1 and ĉ2 = c1 +c2

in Fig. 1(a) are the representatives of H 1(Kc ∩Ka, Z) genera-
tors. Thus, by starting from the corresponding thinned currents,
a standard H 1(Ka, Z) generator ĥ1 is obtained together with
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another lazy generator ĥ2 in the same class. Then, since
the coboundary of the magnetomotive force F = T + G�
is the current, I = CF = C(T + G� + î1ĥ1 + î2ĥ2) =
C(T+(î1+ î2)h1), where we used the standard generator h1 in
place of the two lazy generators in the same class. Since with
the standard basis I = C(T + i1h1) and from Ampère’s law
i1 = î1 + î2 implicitly, the two solutions in term of induced
currents are again the same.

To conclude, the use of lazy cohomology generators does
not introduce any inconsistency in the formulation and does
not yield to any penalties in the computational time required
to solve the eddy-current problem by the linear system solver.

IV. GLOBALLY MINIMAL COHOMOLOGY GENERATORS

FOR HUMAN-BASED BASIS SELECTION

This section introduces an algorithm to compute minimal
(with respect to length of dual cycles) representatives of
H 1(Kc ∩ Ka) generators on the conductor boundary. The
Algorithm 2 presented in this paper is inspired by [14], but
some new ideas introduced in this paper provide a significant
improvement.

The algorithm iterates through all the triangles of every
connected component C of Kc ∩ Ka . For each triangle v, the
minimal distance spanning tree on D(C) rooted at v is pro-
vided by Dijkstra algorithm [15]. Then the algorithm computes
the h1, . . . , h2g being a H 1(C) basis. Since for large meshes,
it is not possible to store the h1, . . . , h2g obtained for every
triangle, for every cohomology generator hk we store only:

1) the length of hk ;
2) its coordinates, i.e., the index of the triangle v in the

connected component C and k, the number of the
generator hk rooted in v;

3) dot product of hk with a fixed H1(C) basis.
One can prove using the universal coefficient theorem for
cohomology [10] that the intersection of hk with the fixed
H1(C) basis uniquely determines the cohomology class of
the cocycle.

Finally, the set of all triples representing generators
(obtained from every triangle in Kc ∩ Ka) is sorted from the
shortest to the longest one. Then, by starting from a void list G
of shortest generators, all generators are considered from the
shortest to the longest. A generator is added to the list G only
if it is independent from the generators already in G. This
may be performed by testing the rank of the nonsquare matrix
M containing the evaluations on the homology basis of the
generators in G plus the ones of the considered generator, or
by testing if one of the eigenvalues of the square symmetric
matrix MMT is zero. Since the dimensions of these matrices
are quite small, this part takes a negligible time in practice.

We remark that there is a lot of room for parallelization of
the presented algorithm. First of all, each connected compo-
nent C of Kc ∩ Ka may be processed independently. Second,
provided suitable data structures are used to store primal
and dual trees on C , each triangle in C may be processed
independently from any other triangle in C .

The presented algorithm provides the globally shortest set
of H 1(Kc ∩Ka) generators. Of course, in practice it is enough
to consider in Algorithm 2 just a small, uniformly distributed,
subset of all triangles in C (instead of using all of them.)
Doing so, probably one would not get the absolute minimal
generators, but a set of generators quite close to the minimal
ones that are surely good enough for the purpose of ease the
basis selection. In the experiments, 5g triangles are usually

Algorithm 2 Computing Minimal Length Cohomology
Generators of Kc ∩ Ka

Input: Kc ∩ Ka ;
Output: Shortest basis of H 1(Kc ∩ Ka);

A = ∅ — constructed minimal length basis of H 1(Kc ∩Ka);
for every connected component C of Kc ∩ Ka do

Compute h1, . . . , h2g — a basis of H1(C) with a tree-
cotree technique presented in [14];
Let M be a matrix of the length m × 2g (m is the number
of triangles in C). Each entry is a triple: a real number
(called dist), a pair of integers called coef and a vector
of 2g integers called intersect;
i = 0;
for every triangle v in C do

With Dijkstra algorithm construct minimal distance
spanning tree T ′ on D(Kc ∩ Ka) rooted in v;
Construct any spanning tree T on Kc ∩ Ka such that
T ∩ T ′ = ∅;
Based on T and T ′ construct h1, . . . , h2g , a H 1(Kc∩Ka)
basis as described in [11];
for j = 1 to 2g do

for k = 1 to 2g do
M[i ][ j ].intersect[k] = 〈h j , hk〉;

M[i ][ j ].dist =length of D(h j );
M[i ][ j ].coef = (i, j);

i = i + 1;
Let SM be a vector of all elements of M;
Sort all the generators in SM according to dist parameter
from the shortest to the longest one;
G = ∅ — a vector of triples (as above) representing the
constructed minimal length H 1(Kc ∩ Ka) basis;
for i = 1 to 2gm do

Let N be the matrix constructed based on
G[k].intersect for k ∈ {1, . . . , card(G)};
Let N ′ be the matrix constructed based on
G[k].intersect for k ∈ {1, . . . , card(G)} and
SM[i ].intersect;
if rank(N) �= rank(N ′) then

G = G ∪ SM[i ];
if card(G) = 2g then

Break;
for k = 1 to 2g do

(i, j) = G[k].coef ;
hk = recompute the j th cocycle for i th triangle of C;
A = A ∪ hk ;

Return A;

sufficient, where g is the genus of C . To choose the subset of
triangles one may employ the following two methods. Both
are inspired by strategies of choosing the so-called landmark
points in topological data analysis [16].

1) Random Selection: Aims at randomly picking 5g tri-
angles from the set of all triangles in C . This simple
strategy usually gives good results and it is easy to
implement.

2) Maxmin Selection: Aims at obtaining a set of triangles
evenly distributed in the boundary of the conductors.
Algorithm 3 shows the details of this technique.
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Algorithm 3 Maxmin Selection
Input: T — the set of all triangles in C;
Output: Set of 5g triangles uniformly distributed in C;

Let M be empty set of triangles;
Pick a random triangle T ∈ T . M = {T };
while cardinality of M ≤ 5g do

Choose T ∈ T such that T �∈ M and T maximizes
the function T ′ → minT ′′∈M {d(T ′, T ′′)}, where distance
between two triangles is the Euclidean distance of their
barycenters;
M = M ∪ T ;

Return M;

TABLE I

TIME REQUIRED (IN SECONDS) FOR COHOMOLOGY COMPUTATION

Fig. 2. (a) Mesh of a conductor with 25 holes. Support of the cohomology
H 1(Kc ∩ Ka) generators representatives obtained with (b) one random
basepoint, (c) globally minimal length cohomology basis, and (d) 5g = 125
basepoints (shown in the picture) selected with maxmin strategy.

V. NUMERICAL EXPERIMENTS

Table I shows the comparison in term of computational
timing of the best algorithms available in the literature in
computing generators for six different eddy-current problems
(For more information about the benchmarks, please refer to
[8]). As one can observe from the timings, the DS algorithm
outperforms all of its competing algorithms.

To test the idea of using minimal boundary generators in
problems requiring human-based basis selection, a conductor
with 25 holes is considered [see Fig. 2(a)]. Fig. 2(b) shows the
support of H 1(Kc ∩ Ka) generators representatives obtained

using one random basepoint in a few tens of milliseconds (this
is the default of the DS algorithm). It is easy to observe that
the basis is quite complicated and this may be a problem in
case one requires to select a particular generator, for example,
for the sake of enforcing some current. In Figs. 2(c) and (d),
it is possible to observe the globally minimal generators—
retrieved in less than 5 min—and the ones—computed in 2
s—obtained using 125 basepoints selected with Algorithm 3,
respectively.

VI. CONCLUSION

The DS algorithm, even though general and straightforward
to implement and parallelize, outperforms all competing state-
of-the-art algorithms for first cohomology group computations,
being the typical computational time in the order of seconds
even for huge meshes. Therefore, we expect that the DS algo-
rithm and the lazy cohomology generators will be observed as
a major step forward in low-frequency computational electro-
magnetics since they allow to effectively solve what has been
considered an open problem for more than 25 years.
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