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We introduce a novel technique—lean complementarity—that attempts to eliminate any waste of computational resources occurring

during the pursuing of complementarity. First, contrarily to the widely used practice of solving the problem two times with a pair
of complementary or complementary-dual formulations, lean complementarity requires just one solution with the computationally
cheap formulation based on the scalar potential. This result is enabled by a novel and explicit flux equilibration technique that
produces tight bounds and is computationally inexpensive, because no system has to be solved. Second, the systems arising during
the adaptive mesh refinement procedure are solved inexactly on purpose, by stopping the iterations of the iterative solver when the
algebraic error gets negligible with respect to the discretization error. The discretization error is bounded with complementarity,
whereas the algebraic error is computed very accurately with a novel and cheap technique.

Index Terms— Adaptive stopping criterion for iterative solvers, complementarity, explicit flux equilibration, finite-elements (FEM),
fully computable error bounds, hypercircle method, Poisson problem.

I. INTRODUCTION

COMPLEMENTARITY is a rigorous technique to obtain
fully computable and guaranteed upper error bounds

for system energy [1]—and its related electromagnetic global
quantities—in static electromagnetic problems. Such error
bounds, which differ from most error estimates presented in
the numerical analysis literature by the absence of any generic
constant, provide a meaningful stopping criterion for a mesh
adaptive refinement, and a robust and physically grounded
error indicator—the constitutive error [2]—that suggests where
the mesh should be refined. Yet, the standard way of exploiting
complementarity is quite costly as it requires to solve the
problem two times, for example, with the scalar potential finite
element (FEM) formulation [3] and any of its complementary
or complementary-dual [4]–[6] counterparts.

It is, therefore, wise to wonder whether faster methods
to exploit complementarity exist. Some steps toward this
direction, surveyed in Section II, have been already performed.
The aim of this paper is to present a cost-effective answer
to this question that we call lean complementarity. Lean
complementarity is rooted on two novel ideas devised in
Section III. First, an explicit flux equilibration technique able
to obtain a solenoidal current density from the irrotational
electric field produced by the scalar potential formulation V
of a steady-state electric conduction paradigm problem
is introduced. Such solenoidal current density is used to
bound the error in the dissipated power—i.e., the discretization
error—by the classical hypercircle method [1], [7]. Second, we
propose an effective method to estimate the algebraic error,
which consider that the linear system is not solved exactly
at a given iteration of the iterative solver. The idea is to stop
iterating with the iterative solver as soon as the algebraic error
gets negligible with respect to the discretization error. Finally,
Section IV shows some numerical results that demonstrate the
effectiveness of lean complementarity.
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II. STATE OF THE ART ON COMPLEMENTARITY

Taking electrokinetics as a paradigm problem, complemen-
tarity requires an irrotational electric field eh = −gradvh

and a solenoidal current density j h satisfying boundary
conditions [1], [7], [8]. One may use any j h and vh that fulfill
the aforementioned constraints; however, the resulting bounds
would be in general too loose to be of any use. In the literature,
in most cases, vh is obtained by the FEM scalar potential V
formulation, whereas j h is obtained by the vector potential or
the mixed-hybrid H FEM formulations (see [2], [4], [6], [9]).
However, we remark that the same results hold irrespectively
of the numerical method used to produce vh and j h . On the
one hand, the obtained bounds are the tightest possible
for a given mesh, as FEM minimizes the energy of the
error [3, p. 40] which, in turn, implies that the constitutive
error � = (1/σ)| j h − σeh |2 is minimized [2], where σ is
the conductivity assumed elementwise uniform. On the other
hand, obtaining j h , this way is computationally extremely
costly, in most cases at least an order of magnitude more
costly than obtaining vh (see [4], [7], [8]). This renders
complementarity less attractive in engineering practice.
One stroke complementarity [8] saves the computation of vh ,
since vh may be reconstructed from the complementary
solution using least squares [4], but the total effort is still
dominated by finding j h .

A. Toward One Stroke Complementarity for V Formulation

One stroke complementarity is also an option for the cheap
V formulation that provides directly vh , whereas the current Ĩ
is defined on the faces of the dual complex K̃ [10] and is
there conservative [10], i.e., D̃Ĩ = 0, where D̃ = −GT and
G is the edge-node incidence matrix [10]. Therefore, the ques-
tion is whether it is possible to construct, by local manipula-
tions only, a solenoidal current I defined on the faces of the pri-
mal complex K that produces—once interpolated by face basis
functions—a solenoidal current density as close as possible to
the one computed by the complementary formulation. A tech-
nique to construct such I is called flux equilibration [11].

For 3-D problems, tight enough bounds are obtained
in [12] by solving non-linear programming problems
and local systems. Tighter bounds are obtained in [7]
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by exploiting the conservativity of Ĩ, that is, each dual volume
is tessellated with a new (finer) simplicial mesh, and the local
corrections are found by solving a Neumann problem on such
a refined mesh with a complementary or complementary-dual
formulation [7]. This remarkable idea seems to be rediscovered
by the numerical analysts [11], and it has become the state of
the art nowadays [13]. However, the great majority of papers
evaluate the efficiency of this technique by considering 2-D
problems. As noticed in [7], for 3-D problems, local systems
are not that small, and even if solved in parallel, they require
too much time.

A different method, based on an iterative tree technique
applied on the primal complex, assumed topologically trivial
by hypothesis, has been proposed in [14]. Although computa-
tionally efficient, we verified that the obtained bounds are not
satisfactory and depend heavily on the choice of the tree.

III. LEAN COMPLEMENTARITY

Let us call v the potential solution of the continuous
problem, V is the exact solution of the discrete problem with
a given mesh, and V (k) is the solution of the discrete problem
after the kth iteration of the linear iterative solver. The total
error η = v − V (k) can be clearly written as the sum of the
discretization error ηd = v − V and the algebraic error at the
kth iteration η

(k)
a = V − V (k), which vanishes if the system

is solved exactly. We neglect the oscillation error term by
assuming sources and boundary conditions piecewise uniform
in each element.

The stopping criterion for iterative solvers used in lean
complementarity is

|||η(k)
a ||| = ||η(k)

a ||K < d|||ηd ||| (1)

where d � 1, ||| · ||| is the energy norm, K is the stiffness
matrix, || · ||K is the K-norm or discrete energy norm, and
η

(k)
a = V − V(k), where V and V(k) are the arrays containing

the nodal potentials obtained, respectively, as the exact and
approximate solutions of the discrete problem. The proposed
stopping criterion clearly attempts to balance the two sources
of error, as insisting in reducing ||η(k)

a ||K down to zero would
not improve the total error significantly. We have found good
results by setting d = 0.01. A smaller d would just require a
few more solver iterations and would provide only a slightly
improved solution.

||η(k)
a ||K and |||ηd ||| in (1) are estimated as follows.

A. Effective Evaluation of the Algebraic Error

The stopping criterion should not be defined—as happens
in the usual practice—with the Euclidean norm of the residual
r(k) = b − KV(k), where b is the right-hand side of the system,
or the relative residual ||r(k)||/||r(0)||. The reason why this
prescription based on experience may be far from optimal is
clear after looking at the relation between η

(k)
a and r(k)

η(k)
a = V − V(k) = K−1(b − KV(k)) = K−1r(k). (2)

This paper introduces a computationally inexpensive tech-
nique to obtain a remarkably precise estimation of η

(k)
a .

Let us assume to have just performed the kth iteration of the

Fig. 1. (a) Tetrahedron v . Current I f associated with face f (highlighted
in the picture). (b) v is partitioned in four dual volume portions. (c) I f over
face f is obtained as I 1

f + I 2
f + I 3

f .

linear solver, which means that V(k) is known. Let us run
the solver for additional ν iterations, where ν is not fixed but
adaptively chosen as the first positive integer for which

r(k+ν) < cr(k) (3)

holds, where c � 1. Then, let us consider the difference of
the systems at these two stages

K(V(k+ν) − V(k)) = r(k) − r(k+ν). (4)

Since r(k+ν) is negligible with respect to r(k) thanks to (3),
(4) becomes (2), and therefore, the solution η

(k)
a of (2) can be

approximated by V(k+ν) − V(k).
At iteration k, also the discretization error ηd is estimated,

as proposed in Section III-B. Then, if stopping criterion (1)
is fulfilled, solver iterations are stopped. Otherwise, k is set
to k + ν, and solver iterations continue until (3) is verified
again. We have found good results by setting c = 0.1. For
such c, ν turned out to be always 2 in the example presented
in Section IV. A smaller c would just slightly improve the
accuracy of η

(k)
a at the price of increasing ν.

We remark that Galerkin orthogonality [3, p. 40] does not
hold at a given iteration of the linear solver, which means that
the energy of the algebraic error is not the error in energy
(or, as in our problem, in the dissipated power).

B. Bounding the Discretization Error With an
Explicit Flux Equilibration Technique

We use the classical hypercircle method [1], [7], [13] to
produce a guaranteed bound for |||ηd ||| through a novel and
fast flux equilibration technique.

Let us first assume that the system is solved exactly, i.e.,
D̃Ĩ = 0 holds. Let us consider an element v of the mesh
[see Fig. 1(a)]. Let us also define the portion τ v

n of dual
volume ṽ (dual to node n) inside the element v as τ v

n = v ∩ ṽ
[see Fig. 1(b)]. The idea is to construct a current that is
solenoidal in each portion of dual volume. If so, it is solenoidal
also in the initial tetrahedral mesh, as the current continuity
law on v is a linear combination of continuity laws on its four
dual volume portions. Then, I is constructed by assembling
exactly three contributions for each face [see Fig. 1(c)].

To obtain a solenoidal current in dual volume portions, one
may solve a Neumann problem on the refined mesh of ṽ with
a current conservative formulation. Even if such local systems
are smaller than the ones in [7], their solution requires an



SPECOGNA: LEAN COMPLEMENTARITY FOR POISSON PROBLEMS 7206904

Fig. 2. (a) Dual volume ṽ and a dual face f̃ ∈ ∂ṽ . (b) Portion of dual face
f̂ ∈ ∂ṽ and its associated current I f̂ . Edge ˜̃e f̂ dual to f̂ is also shown.

(c) If n ∈ ∂K, ṽ is closed by the additional dual face f̃ a .

unacceptable amount of time, and it is, therefore, mandatory
to devise an explicit technique.

The key idea at the ground of the novel flux equilibration
technique is that ṽ is a polyhedron whose (flat) faces are
the portions of dual faces. Let us consider a portion of dual
face f̂ ⊂ ∂ṽ ( f̂ also denotes the face vector of the portion
of dual face) [see Fig. 2(b)] and let us call I f̂ the current

associated with f̂ . Such currents are constructed element by
element by multiplying the edge elements mass matrix by the
vector of electromotive forces on the primal edges (see [7]).
By considering such a polyhedron, one has

|ṽ|I3 =
∑

∀ f̂ ∈∂ṽ

˜̃e f̂ ⊗ f̂ (5)

see [15], where ⊗ denotes the tensor product of two vectors,
I3 is the identity matrix of dimension three, |ṽ| is the volume
of ṽ , and ˜̃e f̂ is the edge vector of an edge dual to f̂

[see Fig. 2(b)]. We remark that edges as ˜̃e f̂ are not classical

dual edges, but they are dual of dual face portions as f̂ . Let us
now multiply both sides of (5) by a current density J, uniform
in ṽ by hypothesis

|ṽ |J =
∑

∀ f̂ ∈∂ṽ

˜̃e f̂ ⊗ f̂ J =
∑

∀ f̂ ∈∂ṽ

˜̃e f̂ ( f̂ · J). (6)

We require J to be uniform, because then it is also solenoidal
in ṽ. The normal component of J (i.e., I f̂ = f̂ · J) is
continuous across ∂v. Thus, J inside ṽ shall be constructed as

J = 1

|ṽ|
∑

∀ f̂ ∈∂ṽ

I f̂
˜̃e f̂ . (7)

We remark that J in (7) can be computed by assembling
contributions elementwise. Thanks to the divergence theorem,
the current obtained by integrating J on the faces in the
boundary of each dual volume portions is solenoidal.

Dual volumes dual to nodes n ∈ ∂K are treated in the same
way, but they require two additional details. First, there is
the need to assign in the best possible way the flux on the
additional boundary dual face f̃ a [see Fig. 2(c)], which is
part of ∂ṽ. That is, if a Neumann boundary condition has to
be applied on a portion of f̃ a , its flux is computed by inte-
grating the Neumann data. Otherwise, in the case of Dirichlet
boundary condition, the flux is obtained by integrating σeh .
Second, the node used for the construction of ˜̃e edges cannot

Fig. 3. Geometry of the square resistor and convergence of the conductance
value with respect to an increasing number of mesh elements.

be n anymore, since n is on the boundary of the polyhedron.
Therefore, in this case, the center of the polyhedron ṽ is used.

Yet, the proposed approach is, in general, not resolutive, as
the obtained current I is, in general, only quasi-equilibrated.
This happens always in the first iterations of the iterative
solver, as D̃Ĩ = 0 does not hold yet. This may also happen
when ṽ is not star shaped (in the few places where the
domain has a sharp reentrant corner), since (5) holds only
for star-shaped polyhedra. Both issues are solved by applying
a technique similar to [14] to the quasi-equilibrated current.
Thus, at the end, the resulting current is solenoidal up to
machine precision.

IV. NUMERICAL EXPERIMENTS

We present the results on a benchmark consisting of a square
resistor [see Fig. 3] (h = 1 m, d = 4 m, and l = 2 m) and [4].
We considered this simple benchmark because a reference
solution is available, and because it exhibits strong corner
singularities that yield to a poor convergence if adaptivity is
not used. Various formulations to solve each electrokinetic
problem arising during the adaptive mesh refinement have
been compared. V and H indicate the results obtained by FEM
scalar potential and mixed-hybrid formulations, respectively,
whereas L the ones obtained with the novel flux equilibration
technique. The novel stopping criterion has been implemented
in the AGgregation-based algebraic MultiGrid solver [16], and
all simulations have been performed on a laptop with 16 Gb
of RAM.

Fig. 3 compares how the conductance computed by the
various techniques converges to the exact solution (reference)
when the number of elements is adaptively increased. In Fig. 3,
(V + H)/2 and (V + L)/2 represent the conductance values
obtained by averaging the conductances produced by
V and H or V and L, respectively.

To better investigate the effectiveness of lean
complementarity, let us consider the last and most expensive
simulation solved during the adaptive mesh refinement.
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Fig. 4. Continuous lines: exact values of ||η(k)
a ||2K , |||ηd |||2, and |||η|||2 in

logarithmic scale for the final adapted mesh. Bigger marks: same quantities
estimated by lean complementarity at iterations 3, 5, and 7. The residuals
||r(k) || and the relative ones are also shown.

Fig. 5. Total wall time required to simulate the problem on the final adapted
mesh. Solver represents the time in seconds spent in the solution of the linear
system. Other considers the time spent in all other parts as matrix assembling
and pre- and post-processing.

The mesh is formed by 889 350 tetrahedra and 157 239 nodes.
Continuous lines in Fig. 4 represent the exact values
of ||η(k)

a ||2K, |||ηd |||2, and |||η|||2. The exact value of

η
(k)
a = V − V(k) has been computed using the solution V

obtained with the direct solver Intel MKL PARDISO. Bigger
marks represent the same quantities estimated very accurately
by lean complementarity at iterations 3, 5, and 7. Therefore,
flux equilibration and the estimation of ||η(k)

a ||K have been
performed only three times. The picture also shows the
absolute residuals ||r(k)|| and the relative ones. Always by
considering the last and most expensive simulation, the multi-
grid solver is stopped at iteration 7 by stopping criterion (1),
whereas the classical stopping criterion (relative residual set to
10−8) performs 15 iterations. Since it requires half multigrid
iterations, lean complementarity results slightly faster than the
V formulation with the classical stopping criterion [see Fig. 5]
even though the latter cannot exploit complementarity.
We also remark that the AGMG solver is always much faster
than direct solvers as PARDISO. On the considered mesh,
PARDISO is 2.2 times slower (1.2 versus 2.6 s), but the
difference grows fast with mesh density. In the proposed

benchmark, PARDISO is about 6.3 times slower for a mesh
consisting of ∼1.7 million nodes (16 versus 100 s) and
14 times slower for 2.7 millions nodes (25 versus 351 s).
Moreover, the memory required by PARDISO grows rapidly,
and it becomes an insurmountable obstacle for solving
industrial-sized problems.

The efficiency of lean complementarity on more compli-
cated benchmarks and a thorough cost-effectiveness analysis
with respect to high-order methods is an ongoing work.
For 2-D problems, the evaluation performed in [17] shows that
even the standard way to exploit complementarity (i.e., solving
two global systems for each mesh) compares favorably with
respect to the second-order FEM, especially if corner singu-
larities are present and if one does not require an accuracy
much greater than the uncertainty of material parameters.
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