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Fast Computation of Cuts With Reduced Support by
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We present a technique to efficiently compute optimal cuts required to solve 3-D eddy current problems by magnetic scalar
potential formulations. By optimal cuts, we mean the representatives of (co)homology generators with minimum support among
the ones with a prescribed boundary. In this paper, we obtain them by starting from the minimal (co)homology generators of the
combinatorial two-manifold representing the interface between conducting and insulating regions. Optimal generators are useful
because they reduce the fill-in of the sparse matrix and ease human-guided basis selection. In addition, provided that the mesh is
refined enough to allow it, they are not self-intersecting. The proposed technique is based on a novel graph-theoretic algorithm to
solve a maximum circulation network flow problem in unweighted graphs that typically runs in linear time.

Index Terms— (Co)homology, eddy currents, maximum circulation network flow problem, thin and thick cuts.

I. INTRODUCTION

WHEN solving eddy-current problems containing topo-
logically non-trivial conductors with a magnetic scalar

potential formulation, the first cohomology group genera-
tors of the complex Ka that represents the insulators are
required [1]– [3] to get a well-posed problem. The avail-
ability of unprecedented efficient numerical methods, as the
Dłotko–Specogna (DS) algorithm based on lazy cohomology
generators [3], [4], allows the practical use of cohomol-
ogy in everyday industrial problems arising in computational
engineering. The generality of these algorithms have been
proved mathematically, therefore robustness is guaranteed for
every possible input, no matter how complicated the problem
is. Nonetheless, other requirements that the representatives of
cohomology basis should fulfill have been pointed out recently
[4]–[6]. These can be classified in three categories.

R1 (Automatic or Human-Guided Basis Selection): The user
should select the basis that suits his needs. To this aim,
the representatives should be simple enough to allow the
user of the electromagnetic software to easily relate a
representative to the relevant constraint on the boundary
value problem (BVP).

R2 (Minimization of Fill-In): The representatives of coho-
mology generators with compact support usually reduce
the fill-in of the linear system matrix, with obvious
advantages in the solution stage.

R3 (Avoid Self-Intersections): Self-intersections are not a
problem when using H 1(Ka, Z) cohomology generators
(i.e., thick cuts) in formulations based on edge basis
functions [1]–[4], [7], [8]. Yet, they go against require-
ment R1 in the sense that the constraints on the BVP
due to self-intersecting cuts are in general complicated
to grasp. On the contrary, we remark that avoiding
self-intersections is a prerequisite for the construction
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of relative H2(Ka, ∂Ka, Z) homology generators that
can be used with formulations based on nodal basis
functions [9]–[11] (i.e., thin cuts.) A time consuming
technique to avoid self-intersections based on solving
one non-physical Poisson problem for each generator is
proposed in [9], [10], and [11]. As a matter of fact, this
render the formulations based on thin cuts practically
unattractive.

Most of these requirements would be satisfied, if one
were be able to minimize the support of representatives of
generators, at least—as it happens in practice—if the mesh
is refined enough to allow R3 to be fulfilled.1 While for
2-D problems this is easy [6], in 3-D this seems to be—as
mentioned in [5]—quite a hard problem.

There are various ways to minimize the support of the
representatives of generators.

S1 (Minimal (Co)Homology Basis): In this case, one asks
to minimize the whole basis, i.e., to find a set of
representatives of generators, whose supports have a
minimum total area or a minimum total number of
(primal or dual [12]) faces. There are two reasons, why
not to pursue this idea. First, minimal (co)homology
basis is very often not an optimal choice. For example, to
ease the source enforcement, it is wise to guarantee that
the current flowing in each torus-shaped conductor is in
one-to-one correspondence with a generator. In addition,
R1 requires the basis to be fixed by the user not
necessarily to the minimal one. Second, it has been
proved to be a NP-hard problem [13], whose solution
is likely not to be practical in the context addressed in
this paper.

S2 (Finding the Minimal Support of Each Representative
Taking the (Co)Homology Basis As Fixed): Even though
this can be solved in polynomial time, for example,
with standard optimization techniques based on linear

1Self-intersecting thin or thick cuts cannot be always avoided. In fact, the
mesh could be too coarse to allow the surface to fold the necessary number
of times. This is the reason why we advocated in the past the use of thick
cuts [8], [1], that work on arbitrary meshes, in place of standard thin cuts that
need some assumptions on the input mesh that are hard to check in practice.
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Fig. 1. (a) Thick edges: support of a cohomology generator of the boundary
of Kc, a solid two-torus. Dark triangles: support of the thinned current.
(b) Dual edges dual to thinned current faces are the boundary of a two-chain
on the dual complex. (c) Such two-chain, restricted to Ka , is the dual of
the cohomology generator of Ka . (d) Thick edges: support of a homology
generator of the boundary of Kc, a solid two-torus. (e) Edges belonging
to the support of the homology generator of ∂Kc are the boundary of a
two-chain on the primal complex. (f) Such two-chain, restricted to the interior
of Ka , is the relative homology generator of Ka .

programming [13], it still requires too much compu-
tational resources to be practical in the computational
electromagnetics context.

S3 In this paper, we introduce, for the first time, quite a
different technique with respect to the ones analyzed
before. This novel technique, described in Section II,
is able to reduce the supports of both H 1(Ka, Z) and
H2(Ka, ∂Ka, Z) generators.

This paper is structured as follows. Section II proposes
a novel idea to produce optimal thin or thick cuts suit-
able to solve eddy-current problems. Section III presents
the idea behind the algorithm to minimize the support
of the representatives of generators keeping their bound-
aries as fixed. Section IV introduces a novel algorithm
to minimize the support of H 1(Ka, Z) generators. If one
needs minimal H2(Ka, ∂Ka, Z) generators instead, then the
complex dual to K should be provided at the input of
the algorithm. The elements dual to the output form the
desired H2(Ka, ∂Ka, Z) basis (see the Lefschetz duality
in [2]). Section V shows the numerical results on a num-
ber of practical benchmarks. The conclusions are drawn
in Section VI.

II. DS ALGORITHM AND OPTIMAL CUTS

The material presented in this paper strongly relies on con-
cepts from algebraic topology. An informal presentation can be
found in [2] and [3]. The idea behind the algorithm to find opti-
mal thin or thick cuts is tightly linked on the use of the recently
introduced DS algorithm [3], [4]. This algorithm finds (thin or
thick) cuts in two steps. First, it finds in linear time worst case
complexity the (co)homology generators of the combinatorial
two-manifold S = Kc ∩ Ka , where Kc is the complex
that models the conductors [Fig. 1(a) and (d)].2 We assume

2Namely, relative homology generators H1(S, ∂S) for thin cuts and coho-
mology generators H 1(S) for thick cuts.

K = Kc ∪ Ka is homologically trivial by hypothesis.3

For thin cuts, we put a unity current on relative homology
generators of S [Fig. 1(d)], whereas for thick cuts, the thinned
currents are found as described in [3] [Fig. 1(a)]. Then, a
vectorialized version of the extended spanning tree technique
(ESTT) algorithm [14] is run on the whole complex K. The
ESTT algorithm is a general version of the Webb–Forghani
iterative algorithm [15] to obtain a field whose curl is assigned.
Its typical complexity is linear (actually, for all tested prob-
lems), even though there is no proof yet that its worst case
complexity is better than cubical. Once the ESTT algorithm
is run on the primal complex with the cohomology generators
of S as input, it outputs one-cochain on primal complex. If
one runs it on the dual complex [12], one gets two-chains
on the primal complex as output [16]. Their supports may be
interpreted as (in general, self-intersecting) discrete surfaces
[Fig. 1(b) and (e)]. In addition, the output contains the required
(co)homology generators, as shown in Fig. 1(c) and (f), and
demonstrated formally in [3].

The DS algorithm has various advantages over compet-
ing algorithms. First, it is easy to implement in every in-
house finite-element-like software, being based on span-
ning trees and not on linear algebra over integers. Sec-
ond, it outperforms standard approaches based on reducing
the input complex and performing the Smith normal form
computation [17], [18] both in memory consumption and
computational time.

The idea of this paper is to use again minimal (co)homology
generators on S, as in [4], but also to minimize the sup-
port of the representatives of generators produced by the
ESTT algorithm. This is performed by bringing into prac-
tice the ideas introduced in [19] about the computation of
minimal discrete surfaces with a given boundary. We are not
aware about any detailed pseudocode or implementation of
these ideas. The same conclusion was reached in [20]: it is
unclear if his (Ed. Sullivan) approach was ever implemented
or compared with numerical methods. In addition, due to
the amount of difficult machinery employed, this paper has
remained somewhat inaccessible and unfortunately unappre-
ciated…. Section IV of this paper describes in detail the
graph-theoretic algorithm inspired in [19, Sec. II] to compute
discrete minimal surfaces, while Section III outlines the very
idea behind it.

III. DISCRETE MINIMAL SURFACES

Given a one-boundary b in K, our aim is to find a
two-chain s in K such that ∂s = b and the support |s| of
s has a minimal area or the minimum number of faces. The
idea, inspired from [19], is to consider a two-cochain I subject
to two constraints. First, DI = 0, where D is the volumes-faces
incidence matrix. The cocycle I is then called a flow. Second,
the coefficients of I are bounded by the capacity given by the
area of the corresponding faces. Namely, the absolute value
of the i th coefficient Ii of I is bounded by the area Ai of
the i th face of K: |Ii | ≤ Ai . Since I is a two-cocycle, the
flux F = 〈I, s〉4 is the same for all two-chains s sharing
the same boundary b. The key observation is that the flux

3In computational electromagnetism K is usually topologically trivial,
therefore we can assume this without loss of generality. This assumption can
be relaxed as described in [3].

4〈a, b〉 denotes the dot product of a and b.
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F—because of previous constraint b)—cannot be greater than
the area 〈A, abs(s)〉 of |s|, where A is a vector containing the
area of the faces of K. Therefore, one has

〈I, s〉 ≤ 〈A, abs(s)〉 (1)

where abs(s) simply means that one has to take the absolute
value of the integers in the array that represents s.

Because of the well-known maxflow-mincut theorem [13],
the equality in (1) holds when the left-hand side represents the
maximum possible flow (or maxflow) fulfilling the aforemen-
tioned constraints and right-hand side represents the minimal
surface spanned by b. The minimal surface is thus obtained by
finding the minimal cut set (or mincut) that can be interpreted
as the flow bottleneck, which is formed by saturated faces,
i.e., the minimal set C of faces, whose flow Ii uses all
the corresponding capacity Ai and such that C blocks any
circulation.

What was just illustrated is the main contribution in [19]:
produce a discrete minimal surface by solving a graph-
theoretic maximum circulation problem. As far as we are
aware, the details and implementation of algorithms to solve
maximum circulation problems are not documented in any
paper.

On the contrary, maximum flow problems between a source
and sink nodes are standard, for example, the Ford–Fulkerson
or the Edmonds–Karp algorithms in [13]. This paper covers
this gap in the literature in Section IV.

The other aim of this paper is to apply the idea just exposed
to minimize the support of thick cuts. To this aim, we assume
that all edges have a unit weight (or the dual faces have a unit
area). We do not minimize the total area of the support since
it requires much more computational effort, [19]. In addition,
a minimal support is more convenient in our context since it
usually reduces the fill in of the system matrix.

IV. SOLVING MAXIMUM CIRCULATION PROBLEMS

As it was more convenient to explain the idea of this
paper in Section III using H2(Ka, ∂Ka), it is easier to present
the algorithm for H 1(Ka). We remind that, to minimize the
support of H2(Ka, ∂Ka) generators, one can minimize the first
cohomology basis on the dual complex (in which the external
two-cells of K are joined with the unique external three-cell.
Their capacity is 1.) In this case, the dual to the obtained
cochains are the desired surfaces.

We now present Algorithm 1 that brings into practice
Sullivan’s ideas [19]. δ and ∂ are (co)boundary operators
(see [2] for an informal introduction). The input of the
presented algorithm is the one-cochain c obtained from the
ESTT algorithm [Fig. 1(b)]. Let us take an edge E = [v0, v1]
such that E is non-zero in c. For an edge E = [v0, v1],
〈c, E〉 denotes its value in the cocycle c. By the first node
of E , we mean v0 if 〈c, E〉 > 0 and v1 in the other case.
The second node of E is the one which is not first. Note
that the concept of first and second node depends on c, which
changes during the algorithm run. An edge E is saturated if a
flow through it cannot be increased. Analogously, a path p is
said to be saturated if it contains at least one saturated edge.
If 〈c, E〉 �= 0, by 〈c, E〉[v0, v1], we mean [v0, v1] if 〈c, E〉 > 0
and [v1, v0] if 〈c, E〉 < 0.

The idea of the algorithm is as follows. As long as there
is a non-saturated edge E in the support of c, pick it. Using

Algorithm 1 Maximum Circulation Network Flow
Input: Topologically trivial K, cochain c;
Output: Minimal support cochain c′ such that δc′ = δc;

Set every edge in K as not saturated;
while there exist not saturated edge E ∈ c do

Queue Q; Q ← second node of E ; bool s = false;
while Q �= ∅ do

node V = pop(Q); Mark V as visited;
if V is the first node of E then

s = true; Break;
for every E ′ ∈ δV such that E ′ is not saturated and in
∂ E ′ there is exactly one visited node do

if 〈E ′, c〉 �= 0 and V is a second node of E ′ then
continue;

else
Push the other node V ′ of E ′ to Q; Remember that
the predecessor of V ′ is V ;

if s is true then
Restore the path by using predecessors of vertices (start-
ing from first node of E) and put an unit flow through
it;

else
Modify c by adding the coboundary of all the visited
vertices to it;

Set all visited vertices as unvisited;
return the current c;

Fig. 2. (a) 2-D example of the maximal circulation problem solution. Gray
rectangles: Kc region. Red lines: initial cochain c. Arrows: circulation from
edge [3, 4] × [3]. (b) Circulation from edge [3, 4] × [4]. (c) Since one cannot
saturate the flow through [4]× [4, 5] or [4, 5]× [5], green nodes represent the
visited vertices and dashed black edges represent the new c. All edges of the
new c are saturated, therefore the algorithm terminates.

a BFS algorithm [13], try to find a non-saturated path from
the first node of E to its second node. Note that during BFS
propagation, one cannot cross the support of the current c in
a direction opposite to its orientation. If such a path from
the first to the second node of E exists, increase the flow
through it (note that this implies that the flow through E is
also increased). When it does not exist, modify the surface by
adding the coboundary of vertices one can reach from E .

The idea of Algorithm 1 is shown graphically in Fig. 2.
The proof that in this way one obtains the minimization of

the surface can be found in [19]. Concerning the complexity
analysis, let us point out that number of not saturated edges in
the surface c always decreases in the algorithm run. The only
place where it can potentially increase is when the surface
is modified. But, since we are adding the coboundary of all
the edges reachable from the edge E ∈ c, all the new edges
in the surface c are saturated. Given this it is straightforward
to demonstrate that the worst case complexity of the whole
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Fig. 3. (a) Support of the self-intersecting thick cut for the knot complement
consisting of 87 000 tetrahedra is made by 5274 edges. (b) Thick cut support is
reduced in ∼5 s to 3434 edges. The obtained surface is non-self-intersecting,
thus it is a Seifert surface.

Fig. 4. (a) Support of the 25 thick cuts for a conducting plate consisting of
95 714 tetrahedra is made by 8394 edges. (b) Thick cut support is reduced in
4.2 s to 3138 edges.

Fig. 5. (a) Support of the thick cut for a microinductor consisting of 306 804
tetrahedra is made by 19 089 edges. (b) Thick cut support is reduced in <1 min
to 9126 edges.

Algorithm 1 is O(Sn), where S is the number of non-zero
elements in the initial c and n is the cardinality of the first
skeleton of the complex. If we assume, as it happens in
practice, that the number of faces in the support of the initial
surface is small, the typical complexity is linear with respect
to the cardinality of the complex.

V. NUMERICAL RESULTS

The practical applicability of the algorithm proposed in this
paper has been tested on a number of benchmarks. In this
paper, we present three of them: 1) a thick knot (Fig. 3);
2) a conducting plate with 25 holes (Fig. 4); and 3) a more
complicated example representing a microinductor (Fig. 5).

VI. CONCLUSION

It has been already proved that combinatorial algorithms
as DS outperform classical algebraic techniques based on
the paradigm of reductions followed by Smith normal form
computation as [17] and [18]. This paper shows how the DS
algorithm can be further extended to produce thin or thick cuts
with strongly reduced support, something that would be really
hard to perform with classical algebraic methods.
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