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A Discrete Geometric Approach to Solving
2-D Non-Linear Magnetostatic Problems
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The aim of this paper is to introduce a Discrete Geometric Approach to solving 2-D non-linear magnetostatic problems. In particular,
an efficient algorithm will be presented to solve magnetostatics in isotropic non-linear media by means of a Newton-Raphson scheme,
in which the Jacobian is calculated analytically. Results on a reference configuration (TEAM Workshop Problem 25) are reported and
discussed.

Index Terms—Cell method, discrete geometric approach, finite integration technique, non-linear magnetostatics, TEAM Workshop
Problem 25.

I. INTRODUCTION

I N THIS PAPER, we focus on a Discrete Geometric Ap-
proach (DGA), based on the geometric structure behind

Maxwell’s equations [1]–[7], to solving non-linear magneto-
static problems in two-dimensional domains.

In particular, an efficient Newton-Raphson scheme will be
presented in which the elements of the Jacobian matrix can be
calculated analytically in the case of isotropic non-linear media,
thanks to a proper choice of the magnetic constitutive matrix,
which is constructed in a pure geometric way, by particularizing
for triangles the ideas developed in [8]–[12] for tetrahedra.

As an application, a 2-D non-linear benchmark problem
(TEAM Workshop Problem 25) has been considered, which
consists in the numerical optimization of the shape of a die
press, used for producing anisotropic permanent magnets,
[13]. The optimal design is achieved by means of a search
algorithm which combines a parallel genetic algorithm for
global minimum search [14] with a deterministic algorithm for
local refinement [15], coupled to the DGA algorithm which
evaluates the objective function by solving the 2-D non-linear
magnetostatic problem and return the relevant parameters to
the search algorithm until a stop condition is reached.

II. DISCRETE GEOMETRIC APPROACH

In a domain of interest , a pair of interlocked cell complexes
is introduced, [5], [16], where is simplicial and is

obtained from it using the barycentric subdivision, see Fig. 1.
The interconnections between the pairs (edge , node ),

(face , edge ) of are described by the incidence matrices
respectively; we denote with the incidence matrix

between pairs (dual faces , dual edges ) of and
holds. The edge and face vectors will be denoted in roman type

.
Since TEAM Workshop Problem 25 is two dimensional,

magnetic and flux density B vector fields lying in a plane, we
consider the projection on a plane of such a pair of interlocked
grids, so the primal volumes coincide with the triangles of the
mesh and the primal faces coincide with the edges of the mesh,
see Fig. 2.
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Fig. 1. Restriction of the primal and dual cell complexes is shown within a
single volume �.

Fig. 2. In a 2-D domain, the primal volumes � coincide with the triangles of
the mesh and the primal faces � coincide with the edges � of the mesh.

Next, we consider the integrals of the field quantities involved
in the magnetostatic problem with respect to the oriented geo-
metric elements of , yielding the Degrees of Freedom
(DoF) arrays. There is a precise association between the DoFs
and the geometric elements of and [17]. We denote by
the array of magnetic fluxes associated with primal faces , by

the array of magneto-motive forces (m.m.f.s) associated with
dual edges , by the arrays of electric source currents across
dual faces , and by the array of circulations of the magnetic
vector potential on primal edges .

Maxwell’s laws can be written exactly as topological balance
equations between DoFs arrays, as

(1)

(2)
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where (1) is the Ampère’s Law, (2) involves the array in such
a way that Gauss’ Law is satisfied identically (since

). The discrete counterpart of the constitutive law
can be written as

(3)

where the matrix is a square symmetric matrix which can be
efficiently constructed in a pure geometric way, by particular-
izing for triangles the ideas developed in [7]–[11] for tetrahedra.

Considering the cell in Fig. 2, holds and
the Gauss’ law is always verified for an element-wise constant
field B

(4)

Therefore the three fluxes are dependent and only two are used
to produce the B field by

(5)

Inverting this linear system and using the fact that and
(see Fig. 2)

(6)

where is the area of . The local constitutive matrix , for
an isotropic medium, can be obtained by

(7)

Substituting (2) and (3) in (1), the set of algebraic equations
governing the magnetostatic problem can be derived

(8)

A. Non-Linear Case

In the presence of non-linear (ferromagnetic) media, the fol-
lowing set of non-linear equations has to be solved:

(9)

An iterative scheme is needed to nullify the vector

(10)

At the -th step of the iterative process we get

(11)

where is the correction vector used to determine the new
estimate and is the Jacobian matrix or a non-sin-
gular matrix which approximates it, if a Newton-Rapshon or a
Broyden method are adopted respectively. The advantage of the
Broyden method is that the Jacobian matrix needs not to be re-
computed at each iteration; on the other hand the order of con-
vergence is lower (in between 1 and 2).

B. Computation of the Jacobian

The element in the Jacobian matrix can be written as

(12)

For the primal edges not belonging to the ferromagnetic region
the second addendum of (12) vanishes while the first one is inde-
pendent of . It is convenient to compute the contribution
to the Jacobian due to the cell . For isotropic non-linear
media, the reluctivity matrix is scalar and the constitutive ma-
trix can be rewritten as , where is
the matrix calculated by swapping the reluctivity with the
pure number 1. The contribution of to the Jacobian becomes

(13)

where is a constant matrix. The derivative in
(13) becomes

(14)

where is the amplitude of the induction field in
is the slope of the permeability curve.

By writing (2) for magnetic fluxes and associated with
primal faces of the cell in Fig. 2, and substituting it in
(6), the components of B can be expressed in terms of as

(15)

By defining two vectors and , such that

(16)

the amplitude of the flux density can be computed by

(17)

Using these equations, the term can be calculated
analytically as

(18)

where and represent the values in the -th column of
and respectively.

Finally (18) can be rewritten as

(19)

III. NUMERICAL RESULTS

The proposed approach has been applied to a magnetostatic
non-linear benchmark problem (TEAM Workshop Problem 25),
which consists in the numerical optimization of a die press, used
for producing anisotropic permanent magnets, [13].

A. Problem Description

An overall view of the die press model is shown in Fig. 3.
The die molds are set to form the radial flux distribution. The
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Fig. 3. TEAM Workshop problem 25: Sketch of the die press with the electro-
magnet; The draw is not to scale. Dirichlet BCs on a-b-c-d and Neumann BCs
on d-a are imposed, respectively.

Fig. 4. TEAM Workshop problem 25: The B-H curve of steel used in the model
for the die press and the electromagnet.

magnetic powder is inserted in the cavity. Both the die press and
the electromagnet, for orientation of magnetic powder, are made
of steel. The B-H curve used in the model is shown in Fig. 4;
The B-H curve has been interpolated by using as interpolant a
cubic spline. Dirichlet boundary conditions (BCs) are imposed
on path a-b-c-d and Neumann BCs on path d-a, see Fig. 4.

The model can be assumed as two-dimensional and only one
symmetric quarter of the structure is modeled. A detail of the
benchmark geometry is shown in Fig. 5.

The shape of the inner die mold is assumed as a circle; The
inside shape of the outer die mold is represented by the com-
bination of an ellipse and a segment of a line parallel to the

-axis. Then, the radius of the inner die, the long and short
axes of ellipse and the dimension are chosen as
design variables, namely geometric constraints with specified
upper and lower bounds.

In this paper we focus on the so-called Small Ampere-Turns
reference case (4253 AT, dc current). The required induction
field has radial direction, with and components along
the line e-f in the cavity specified as follows

(20)

where is the angle measured from the -axis in Fig. 5.

Fig. 5. TEAM Workshop problem 25: Enlarged view of a quarter of the struc-
ture. Numbers denote the given dimensions, whereas � � � � � � � labels
denote the design variables.

The objective function of the problem is given by

(21)

where is the number of the control points selected
along the path in the cavity; The superscripts “c” and “o” denote
the calculated and reference values, respectively.

To asses the global quality of the final (optimal) induction
field distribution, the following indexes (maximum error of the
amplitude and of the angle of the flux density vector in

) are defined:

(22)

B. Optimization Procedure

The optimization procedure is based on a search algorithm,
which combines a parallel genetic algorithm (GA), for global
minimum search [14] and a deterministic algorithm (DA), for
local refinement [15], coupled to the DGA algorithm, which
evaluates the objective function (21) by solving a 2-D non-linear
magnetostatic problem.

The final optimal design is achieved by means of an iterative
scheme. Each point in the search space represents a different de-
sign, to be submitted from the search algorithm (GA DA) to the
DGA which returns the relevant parameters (fitness measure) to
the search algorithm until a stop condition is reached. The GA
is intrinsically parallel, and thus it has been efficiently compiled
for execution on a parallel hardware using the OpenMP library.

The design variables are coded in strings using a Gray stan-
dard format and the operators, except minor details, are the clas-
sical ones proposed by Holland [18] and revised by Goldberg
[14]. In particular, a roulette-wheel selection is adopted, based
on string fitness values: the higher the fitness value of strings (in-
dividuals), the higher the probability of their copies in next gen-
eration; then, if are strings assigned at least one copy,
are strings assigned at least two copies and so on, the new gen-
eration is created arranging first the strings, then
strings and so on until the new population is completed. This ar-
rangement is expected to favour the recombination between low
performance elements by crossover and preserve strings with
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Fig. 6. TEAM Workshop problem 25: A detail of the die press model is shown.
The distribution of the flux density, obtained with the final (optimal) shape of
die molds, is shown.

best fitness values. As for mutation, a uniform probability dis-
tribution over each string is imposed.

Neither coupling restrictions nor “niche techniques” were ap-
plied, but an exponential fitness scaling mechanism is imple-
mented. If is the objective function, with the design vari-
able array, then the fitness function should be

(23)

being a damping coefficient which can vary through genera-
tions, controlling the selective effect of the exponential function.

The final local minimum refinement is based on a well-es-
tablished package for constrained optimization developed by
Powell [15].

C. Numerical Results

The magnetic flux density distribution, evaluated for the final
shape of the die molds obtained by means of the proposed op-
timization scheme, is shown in Fig. 6. In the cavity a radial dis-
tribution is clearly visible, as required.

A more quantitative assessment of the solution is provided by
(22), which have been calculated on control points
selected in the cavity. The maximum errors of the flux density
in are % in terms of amplitude and
deg in terms of direction.

The overall time of the optimization procedure relies mainly
on the number of mesh elements, design variables, elements
(individuals) of each population, and iterations. The number of
DoFs for each problem, which coincides with the nodes of the
considered mesh, is about 60 000, while the number of elements
is about 130 000. The memory required to store this amount of
unknowns was below 1 Gb for 4 threads simultaneously. The
code, developed in Fortran 90, took approximately 10 seconds
to perform a calculation of the 2-D non-linear magnetostatic so-
lution on a double Dual-Core Intel® Xeon™ 3.2 GHz worksta-
tion with 8 GB RAM.

IV. CONCLUSION

A Discrete Geometric Approach (DGA) to solving 2-D
non-linear magnetostatic problems has been presented.

The main novelty relies in the development of an efficient
Newton-Raphson scheme, in which the elements of the Jaco-
bian matrix are calculated analytically for isotropic non-linear
media, thanks to a proper choice of the magnetic constitutive
matrix. As an application a 2-D non-linear benchmark problem
(TEAM Workshop Problem 25) has been considered, which
consists in the numerical optimization of the shape of a die
press used for producing anisotropic permanent magnets [13].
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