A Discrete Geometric Approach to Solving 2-D Non-Linear Magnetostatic Problems

Paolo Bettini, Ruben Specogna, and Francesco Trevisan

Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica (DIEGM), Università di Udine, Udine, Italy

The aim of this paper is to introduce a Discrete Geometric Approach to solving 2-D non-linear magnetostatic problems. In particular, an efficient algorithm will be presented to solve magnetostatics in isotropic non-linear media by means of a Newton-Raphson scheme, in which the Jacobian is calculated analytically. Results on a reference configuration (TEAM Workshop Problem 25) are reported and discussed.

Index Terms—Cell method, discrete geometric approach, finite integration technique, non-linear magnetostatics, TEAM Workshop Problem 25.

I. INTRODUCTION

In this paper, we focus on a Discrete Geometric Approach (DGA), based on the geometric structure behind Maxwell’s equations [1]–[7], to solving non-linear magnetostatic problems in two-dimensional domains.

In particular, an efficient Newton-Raphson scheme will be presented in which the elements of the Jacobian matrix can be calculated analytically in the case of isotropic non-linear media, thanks to a proper choice of the magnetic constitutive matrix, which is constructed in a pure geometric way, by particularizing for triangles the ideas developed in [8]–[12] for tetrahedra.

As an application, a 2-D non-linear benchmark problem (TEAM Workshop Problem 25) has been considered, which consists in the numerical optimization of the shape of a die press, used for producing anisotropic permanent magnets, [13]. The optimal design is achieved by means of a search algorithm which combines a parallel genetic algorithm for global minimum search [14] with a deterministic algorithm for local refinement [15], coupled to the DGA algorithm which evaluates the objective function by solving the 2-D non-linear magnetostatic problem and return the relevant parameters to the search algorithm until a stop condition is reached.

II. DISCRETE GEOMETRIC APPROACH

In a domain of interest D, a pair of interlocked cell complexes $(\mathcal{K}, \mathcal{K}^*)$ is introduced, [5], [16], where \mathcal{K} is simplicial and \mathcal{K}^* is obtained from it using the barycentric subdivision, see Fig. 1.

The interconnections between the pairs (edge e, node n), (face f, edge e) of \mathcal{K} are described by the incidence matrices G, C respectively; we denote with \tilde{C} the incidence matrix between pairs (dual faces \tilde{f}, dual edges \tilde{e}) of \mathcal{K}^* and $\tilde{C} = C^T$ holds. The edge and face vectors will be denoted in roman type (e, f).

Since TEAM Workshop Problem 25 is two dimensional, magnetic H and flux density B vector fields lying in a plane, we consider the projection on a plane of such a pair of interlocked grids, so the primal volumes coincide with the triangles of the mesh and the primal faces coincide with the edges of the mesh, see Fig. 2.

Next, we consider the integrals of the field quantities involved in the magnetostatic problem with respect to the oriented geometric elements of \mathcal{K} and \mathcal{K}^* [17]. We denote by Φ the array of magnetic fluxes associated with primal faces f, by \mathbf{F} the array of magneto-motive forces (m.m.f.s) associated with dual edges \tilde{e} by \mathbf{I}_e the arrays of electric source currents across dual faces \tilde{f}, and by \mathbf{A} the array of circulations of the magnetic vector potential on primal edges e.

Maxwell’s laws can be written exactly as topological balance equations between DoFs arrays, as

\[
(C^T \mathbf{F})_e = (\mathbf{I}_s)_e, \quad e \in D
\]

\[
(\Phi)_f = (CA)_f, \quad f \in D
\]
where (1) is the Ampère’s Law, (2) involves the array \(\mathbf{A} \) in such a way that Gauss’ Law \(\mathbf{D} \Phi = 0 \) is satisfied identically (since \(\mathbf{DC} = 0 \)). The discrete counterpart of the constitutive law \(\mathbf{H} = \mu \mathbf{B} \) can be written as

\[
\mathbf{F} = \nu \Phi
\]

(3)

where the matrix \(\nu \) is a square symmetric matrix which can be efficiently constructed in a pure geometric way, by particularizing for triangles the ideas developed in [7]–[11] for tetrahedra.

Considering the cell \(\eta_k \) in Fig. 2, \(f_1 + f_2 - f_3 = 0 \) holds and the Gauss’ law is always verified for an element-wise constant field \(B \)

\[
\Phi_1 + \Phi_2 - \Phi_3 = B \cdot f_1 + B \cdot f_2 - B \cdot f_3 = 0.
\]

(4)

Therefore the three fluxes are dependent and only two are used to produce the field \(B \) by

\[
\begin{bmatrix}
 f_{1x} \\
 f_{2x}
\end{bmatrix}
\begin{bmatrix}
 f_{1y} \\
 f_{2y}
\end{bmatrix}
\begin{bmatrix}
 B_x \\
 B_y
\end{bmatrix}
=
\begin{bmatrix}
 \Phi_1 \\
 \Phi_2
\end{bmatrix}
\]

(5)

Inverting this linear system and using the fact that \(f_{yx} = e_{ix} \) and \(f_{xy} = -e_{iy} \) (see Fig. 2)

\[
B = \frac{1}{2S}
\begin{bmatrix}
 e_{2x} & -e_{1x} \\
 e_{2y} & -e_{1y}
\end{bmatrix}
\begin{bmatrix}
 \Phi_1 \\
 \Phi_2
\end{bmatrix}
\]

(6)

where \(S \) is the area of \(\eta_k \). The local constitutive matrix \(\mu^k \), for an isotropic medium, can be obtained by

\[
\mathbf{F}^k = \nu^k \Phi^k
\]

(7)

Substituting (2) and (3) in (1), the set of algebraic equations governing the magnetostatic problem can be derived

\[
\mathbf{C}^T \mathbf{\nu} \mathbf{CA} = \mathbf{I}_s.
\]

(8)

A. Non-Linear Case

In the presence of non-linear (ferromagnetic) media, the following set of non-linear equations has to be solved:

\[
\mathbf{C}^T \mathbf{\nu} \mathbf{(A)} \mathbf{CA} = \mathbf{I}_s.
\]

(9)

An iterative scheme is needed to nullify the vector

\[
\mathbf{f} \mathbf{(A)} = \mathbf{C}^T \mathbf{\nu} \mathbf{(A)} \mathbf{CA} - \mathbf{I}_s.
\]

(10)

At the \(n \)-th step of the iterative process we get

\[
\mathbf{W}^n \mathbf{h}^n = -\mathbf{f} \mathbf{(A)}
\]

(11)

where \(\mathbf{h}^n \) is the correction vector used to determine the new estimate \(\mathbf{A}^{n+1} \) and \(\mathbf{W}^n \) is the Jacobian matrix or a non-singular matrix which approximates it, if a Newton-Rapshon or a Broyden method are adopted respectively. The advantage of the Broyden method is that the Jacobian matrix needs not to be recomputed at each iteration; on the other hand the order of convergence is lower (in between 1 and 2).

B. Computation of the Jacobian

The element \((i,j) \) in the Jacobian matrix can be written as

\[
W_{i,j} = \frac{\partial \mathbf{f}_i}{\partial A_j} = \left[\mathbf{C}^T \mathbf{\nu} \mathbf{(A)} \mathbf{CA} \right]_{ij} + \left[\mathbf{C}^T \frac{\partial \mathbf{A}}{\partial A_j} \mathbf{CA} \right]_{i}.
\]

(12)

For the primal edges \(e \) not belonging to the ferromagnetic region the second addendum of (12) vanishes while the first one is independent of \(\mathbf{A} \). It is convenient to compute the contribution \(\mathbf{W}^k \) to the Jacobian \(\mathbf{W} \) due to the cell \(\eta_k \). For isotropic non-linear media, the reluctivity matrix is scalar and the constitutive matrix \(\nu^k \) can be rewritten as \(\nu^k \mathbf{(A)} = \mathbf{m}^k \nu^k \mathbf{(A)} \), where \(\mathbf{m}^k \) is the matrix \(\nu^k \) calculated by swapping the reluctivity \(\nu^k \) with the pure number 1. The contribution \(\nu^k \) to the Jacobian becomes

\[
W_{i,j}^k = \left[\mathbf{K}^k \right]_{ij} \nu^k \mathbf{(A)} \mathbf{(A)} + \left(\mathbf{K}^k \mathbf{A} \right)_{i} \frac{\partial \mathbf{K}^k}{\partial A_j} \]

(13)

where \(\mathbf{K}^k = \mathbf{C}^k T \mathbf{m}^k \mathbf{C}^k \) is a constant matrix. The derivative in (13) becomes

\[
\frac{\partial}{\partial A_j} \left(\frac{1}{\mu^k \mathbf{(A)}} \right) = - \frac{1}{\mu^k \mathbf{(A)}} \frac{\partial \mu^k}{\partial A_j} \frac{\partial B^k}{\partial A_j},
\]

where \(B^k \) is the amplitude of the induction field in \(\eta_k \), \((\partial \mu^k) / (\partial B^k) \) is the slope of the permeability curve.

By writing (2) for magnetic fluxes \(\Phi_1 \) and \(\Phi_2 \) associated with primal faces \(f_1 \), \(f_2 \) of the cell \(\eta_k \) in Fig. 2, and substituting it in (6), the components of \(\mathbf{B}^k \) can be expressed in terms of \(\mathbf{A}^k \) as

\[
\frac{B_x^k}{B_y^k} = \frac{1}{2S}
\begin{bmatrix}
 e_{2x} & -e_{1x} \\
 e_{2y} & -e_{1y}
\end{bmatrix}
\begin{bmatrix}
 e_{2x} & -e_{1x} \\
 e_{2y} & -e_{1y}
\end{bmatrix}
\mathbf{A}^k.
\]

(15)

By defining two vectors \(\mathbf{k}_x \) and \(\mathbf{k}_y \), such that

\[
\mathbf{k}_x \mathbf{y} = \frac{1}{2S}
\begin{bmatrix}
 e_{2x} & -e_{1x} \\
 e_{2y} & -e_{1y}
\end{bmatrix}
\]

(16)

the amplitude of the flux density \(B^k \) can be computed by

\[
B^k = \sqrt{(\mathbf{k}_x \cdot \mathbf{A}^k)^2 + (\mathbf{k}_y \cdot \mathbf{A}^k)^2}.
\]

(17)

Using these equations, the \((\partial B^k) / (\partial A_j) \) term can be calculated analytically as

\[
\frac{\partial B^k}{\partial A_j} = \frac{(k_x \cdot A^k)k_{xj} + (k_y \cdot A^k)k_{yj}}{(k_x \cdot A^k)^2 + (k_y \cdot A^k)^2}
\]

(18)

where \(k_{xj} \) and \(k_{yj} \) represent the values in the \(j \)-th column of \(\mathbf{k}_x \) and \(\mathbf{k}_y \) respectively.

Finally (18) can be rewritten as

\[
\frac{\partial B^k}{\partial A_j} = \frac{B_x^k k_{xj} + B_y^k k_{yj}}{B^k}, j = 1, \ldots, 3.
\]

III. NUMERICAL RESULTS

The proposed approach has been applied to a magnetostatic non-linear benchmark problem (TEAM Workshop Problem 25), which consists in the numerical optimization of a die press, used for producing anisotropic permanent magnets, [13].

A. Problem Description

An overall view of the die press model is shown in Fig. 3. The die molds are set to form the radial flux distribution. The
magnetic powder is inserted in the cavity. Both the die press and the electromagnet, for orientation of magnetic powder, are made of steel. The B-H curve used in the model is shown in Fig. 4; The B-H curve has been interpolated by using as interpolant a cubic spline. Dirichlet boundary conditions (BCs) are imposed on path a-b-c-d and Neumann BCs on path d-a, see Fig. 4.

The model can be assumed as two-dimensional and only one symmetric quarter of the structure is modeled. A detail of the inside shape of the outer die mold is represented by the benchmark geometry shown in Fig. 5. The shape of the inner die mold is assumed as a circle; The benchmark geometry is shown in Fig. 5. The electric field is modeled as the flux density vector in the cavity and the dimension labels are chosen as design variables. Numbers denote the given dimensions, whereas R_1, L_2, L_3, L_4 labels denote the design variables.

The objective function of the problem is given by

$$W = \sum_{i=1}^{n} \left[(B_{x_1}^c - B_{x_1}^o)^2 + (B_{y_1}^c - B_{y_1}^o)^2 \right]$$ \hspace{1cm} (21)

where $n = 10$ is the number of the control points P_i selected along the path in the cavity; The superscripts “c” and “o” denote the calculated and reference values, respectively.

To assess the global quality of the final (optimal) induction field distribution, the following indexes (maximum error of the amplitude and of the angle θ_{\max} of the flux density vector in P_i, $i = 1, \ldots, n$) are defined:

$$\epsilon_B = \max_i \left| \frac{B_i^c - B_i^o}{B_i^c} \right|$$
$$\epsilon_{\theta} = \max_i \left| \theta_i^c - \theta_i^o \right|$$ \hspace{1cm} (22)

B. Optimization Procedure

The optimization procedure is based on a search algorithm, which combines a parallel genetic algorithm (GA), for global minimum search [14] and a deterministic algorithm (DA), for local refinement [15], coupled to the DGA algorithm, which evaluates the objective function (21) by solving a 2-D non-linear magnetostatic problem.

The final optimal design is achieved by means of an iterative scheme. Each point in the search space represents a different design, and the GA is intrinsically parallel, and thus it has been efficiently compiled for execution on a parallel hardware using the OpenMP library.

The design variables are coded in strings using a Gray standard format and the operators, except minor details, are the classical ones proposed by Holland [18] and revised by Goldberg [14]. In particular, a roulette-wheel selection is adopted, based on string fitness values: the higher the fitness value of strings (individuals), the higher the probability of their copies in next generation; then, if $\{k_1\}$ are strings assigned at least one copy, $\{k_2\}$ are strings assigned at least two copies and so on, the new generation is created arranging first the $\{k_1\}$ strings, then $\{k_{N-1}\}$ strings and so on until the new population is completed. This arrangement is expected to favour the recombination between low performance elements by *crossover* and preserve strings with high fitness values by *selection*.
The main novelty relies in the development of an efficient Newton-Raphson scheme, in which the elements of the Jacobian matrix are calculated analytically for isotropic non-linear media, thanks to a proper choice of the magnetic constitutive matrix. As an application a 2-D non-linear benchmark problem (TEAM Workshop Problem 25) has been considered, which consists in the numerical optimization of the shape of a die press used for producing anisotropic permanent magnets [13].

ACKNOWLEDGMENT

The authors would like to thank F. Versolatto and M. Michelutti for the development of a preliminary version of the optimization algorithms.

REFERENCES