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I. INTRODUCTION

I N ELECTROMAGNETIC nondestructive methodologies,
based on eddy-currents, it is usual procedure to detect the

presence of a defect in a conducting medium from the differ-
ence between a pair of field configurations, where the defect
is present (defected configuration) and absent (undefected con-
figuration), respectively. Since the effect of the defect modifies
only slightly the defected configuration, the abrupt difference
between the numerical solutions from a defected and an unde-
fected field configurations yields to cancellation errors; To avoid
this problem, perturbation methods have been developed and
they are profitably used in finite elements, [1], [2].

In this paper, we will develop a perturbation method within a
discrete formulated eddy-currents problem, where a fi-

nite dimensional system of equations involving the circulation
of the electric vector potential and a magnetic scalar po-
tential is deduced by means of the so called discrete geo-
metric approach (DGA) [3]–[6]. This method provides an al-
ternative with respect to the classical Galerkin method in fi-
nite elements. DGAs put the emphasis on the geometric struc-
ture behind Maxwell’s equations and they made visible how
the basic laws of eddy-currents—and in general of electromag-
netism—can be stated directly in algebraic form, in terms of
circulations and fluxes of the related field quantities, plus the
discrete counterparts of the constitutive relations.

As an application of remarkable industrial interest, we will
apply the discrete perturbation method for formulation
to the detection of surface defects that can be present during
the hot mill rolling process of the steel bars with circular cross-
section (with a diameter from 8 to 80 mm, a speed from 5 to
100 m/s and a temperature from 800 C to 1200 C). The defects
considered have a depth ranging from 0.1 mm to 2 mm and, even
though they have quite different shapes and sizes, they generally
correspond to an interruption of the material continuity (also
from the electrical point of view) and lay along an almost radial
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direction. We will concentrate on long surface defects having an
axial length from a meter to tens of meters, where, so far, only
few practical working solutions have been proposed.

II. GEOMETRIC FORMULATION

The domain of interest of the eddy-current problem, has
been partitioned into a source region , in a passive conductive
region , and the air region .

We cover the domain with a tetrahedral mesh forming
the primal simplicial complex whose oriented geometric el-
ements are nodes , edges , faces and volumes . The in-
terconnections of complex are described with incidence ma-
trices: between edges and nodes , between faces and
edges and between volumes and faces .

By means of the barycentric subdivision of , a dual complex
is constructed [3], whose geometric elements are volumes ,

faces , edges and nodes in a one-to-one correspon-
dence (duality) with the geometric elements of , respectively.
The matrices , and describe
the mutual interconnections between the geometric elements of

.
Next, we consider the integrals of a field quantity with respect

to an oriented geometric element of and ; The arrays they
form are referred to as degrees of freedom (DoF) arrays [3], [5]
and they will be denoted in boldface type:

• denotes the array of magnetic induction fluxes, where
each flux is associated with a face ;

• is the array of magneto-motive forces (m.m.f.s) associ-
ated with ;

• is the array of electric currents associated with ;
• is the array of electro-motive forces (e.m.f.s) along

edges ;
• Finally, in the source region , the array of known

source currents is considered.
With symbol , with , we denote the
component of an array indexed by .

According to the DGA, Maxwell’s laws can be written ex-
actly as balance equations involving the Dofs arrays of the com-
plex or . Therefore, in the frequency domain, Gauss’ mag-
netic law and Faraday’s law can be written, respectively, as

(1)
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with respect to . With respect to the restrictions of in and
, in order to satisfy continuity law identically

(2)

we introduce the arrays and of the circulations of the elec-
tric vector potential T along the edges and , re-
spectively, such that

(3)

hold;1 matrices and account for the incidence between
the pairs in and , while and account for the
incidence between the pairs in and , respectively.
The array is assumed here as known. Ampère’s balance law
at discrete level yields

(4)

where subscripts , and denote a subarray or a submatrix
associated with the geometric elements , in , and

, respectively. From the definition of , , (4) is equivalent2

to

(5)

where we introduced an array of magnetic scalar potentials
associated with the nodes whose restrictions to ,
and yield the subarrays , and , respectively; Sub-
scripts , and denote a subarray or a submatrix associated
with the geometric elements , in , and , respec-
tively. The interface conditions that avoid the current to flow
outside region are taken into account by considering ,

. In this way, , holds.
For the sake of simplicity, we assume that the region does

not contain holes.3 In the case contains holes, the m.m.f.s
along cycles contained in cannot be described completely
by the magnetic scalar potential alone. In this case, the thick
cuts [8], [9] have to be found and for each thick cut a nonlocal
Faraday’ law [8], [9] has to be written. One additional unknown
per thick cut is added and all of them represent a set of linearly
independent currents in .

The discrete counterparts of the constitutive laws must be
considered in addition to the discrete formulated laws

(6)

where the square matrices and can be efficiently calculated
in a pure geometric way for the pair of complexes , as de-

1We recall that� � � � hold for � � ��� ��.
2We recall that � � � � holds for � � ��� �� ��.
3Namely, the first Betti number of the � region is zero. Thus, � is simply-

connected or contains cavities.

Fig. 1. The geometric elements of� or� are shown for a single tetrahedron � .
The association of integral variables to the corresponding geometric elements
is shown in addition. Resistivity and permeability �� 	 are uniform in each � .

scribed in [10] under the hypothesis of element wise uniform
distributions of the fields and of the permeability and resis-
tivity within each tetrahedron of ; Moreover, the linearity of
all the media is assumed.

By substituting (6a), (6b), and (5) in (1a), the algebraic equa-
tions corresponding to the nodes in are obtained. By substi-
tuting (6a), (6b), and (5) in (1b) the algebraic equations corre-
sponding to edges in are derived. The final algebraic system,
having and as unknown DoFs arrays, can be written as

(7)

The system (7) is singular and, to solve it, a conjugate gradient
method without gauge condition is used.

III. DISCRETE PERTURBATION METHOD FOR

Let us suppose that the presence of a defect in the conductive
domain , corresponds to a perturbation of its resistivity. To
this aim we modify the resistivity of a tetrahedron
from to , where is a perturbation of the resistivity.
Correspondingly, we modify the constitutive matrix from to

.
From (6b), the e.m.f. associated with dual edge in

the undefected configuration is , where is
the array of eddy currents in when the resistivity in is .
It can be equivalently rewritten as

(8)

where, using (3) for , the term

(9)
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Fig. 2. The superposition for the tetrahedron � : the defected and perturbed
configurations yield the undefected configuration.

can be interpreted as an array of compensation e.m.f. gen-
erators connected in series to each dual edge of .

Next, by applying the superposition of effects, we consider
the following pair of configurations labeled with a superscript
to denote the defected configuration or to denote the perturbed
configuration, Fig. 2:

• The source currents array is active, the compensation
e.m.f.s array is switched off. This is the defected con-
figuration, where the resistivity in is and the eddy
currents account for the presence of the defect; From (9),
we have that

holds, where is the array of e.m.f.s in this configuration.
• The source currents array is switched off, the compen-

sation e.m.f.s array is active. This is the perturbed con-
figuration, where

holds. The sources are represented by given by (9)
and , are the arrays of e.m.f.s and currents in this
configuration.

A. Analysis of the Perturbed Configuration

From the above described superposition of effects, Fig. 2, the
e.m.f.s and currents arrays , computed from an eddy-cur-
rent analysis of the perturbed configuration, coincides with the

Fig. 3. Solid model of the entire geometry of the defect detection device.

opposite of the difference between e.m.f.s and currents arrays in
the undefected and defected configurations, yielding

(10)

Now, we focus on the analysis of the perturbed configuration.
We denote with the subregion of , where the defect is
present and the resistivity of has been modified with

. Along the dual edges of , we introduce the
e.m.f. generators in the (7) relative to
the edges in obtaining

(11)

It must be noted that the array necessary to construct the term
, has been computed from an independent analysis of the

undefected configuration. Often such an analysis can be quite
simple by exploiting the symmetry of the undefected configura-
tion or it can be even performed as a one- or two-dimensional
case.

IV. APPLICATION TO NONDESTRUCTIVE TESTING

The specific application describes the design of a device for
the detection of long longitudinal defects that can be present
during the hot mill rolling process of the steel bars with cir-
cular cross section, [11]. The bar consists of a conducting AISI
310 steel cylinder (34 mm of diameter, conductivity of 1.236

and linear permeability coincident with ), where a
longitudinal perfectly insulating defect representing the do-
main is assumed, 0.5 mm deep from the surface of the cylinder
and 0.2 mm thick. The geometry of the problem is depicted in
Figs. 3 and 4.

A pair of source coils (30 mm of inner radius, 39 mm of
outer radius, 1 mm height, 7 turns each, 200 mA per turn,

, counter series connected, 30 mm of axial distance be-
tween the coils) encircling the bar are considered and they rep-
resent the source region . A set of 12 evenly spaced circular
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Fig. 4. Geometric data of one-quarter of the geometry concerning the device
for defect detection: The 12 receiving coils are shown together with the pair of
source coils encircling the bar with circular cross section.

Fig. 5. Numerical comparison in terms of induced e.m.f. due to the defect over
the receiving coils between the proposed formulation and an independent inte-
gral formulation (CARIDDI Code [2]).

coils (3 mm of inner radius, 6.5 mm outer radius, 6 mm height,
400 turns each) with axis directed as the radii of the bar, are
considered in between the pair of source coils. The receiving
coils will be placed close (not less then 15 mm) to an hot bar
(about 1000 ); for this reason we deliberately avoided the use
of magnetic cores since, it is well known, that magnetic mate-
rials like ferrites have a permeability strongly dependent with
the temperature.

To have an estimate of the expected e.m.f. variations in the
coils due to the presence of the defect, we computed the e.m.f.
variations between the e.m.f. on the -th coil
in the defected configuration and in the undefected one ,
by means of the discrete perturbation method, Fig. 5.

A mesh consisting of about 1 million of tetrahedra is used
for the computations, both for the undefected and the perturbed
configurations; the solution of the final linear system of equa-
tions required about 160 s of CPU time on a laptop PC with 4
Gb of RAM, 2.4 GHz. The choice of tetrahedra is natural when
curved domains have to be discretized. Moreover, a tetrahedra
mesh is necessary in our geometry, since we have to model also
the case of a cylinder with tilted axis, where an extruded hex-
ahedral mesh is not possible. Of course our geometric pertur-
bation approach remains valid also for a primal grid based on
polyhedra. The value of the perturbation in the induced e.m.f.s
over the receiving coils due to the defect calculated with the pro-
posed formulation is compared (Fig. 5) to the ones computed
with the CARIDDI code [2], [12], which implements an inte-
gral formulation.

V. CONCLUSION

The perturbation method, reducing the cancellation error,
produces accurate results also for small variations in the so-
lution. This is especially required when the tool is used as a
forward solver for an inverse problem. Moreover, the method
yields also to a considerable speedup. The mesh used in the
perturbed problem may be reduced [1], considering only a
limited region surrounding the defect, at a small fraction of the
initial mesh.
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