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Comparison Between Pseudospectral and Discrete Geometric Methods for
Modeling Quantization Effects in Nanoscale Electron Devices

Dimitri Breda�, David Esseni�, Alan Paussa�, Ruben Specogna�, Francesco Trevisan�, and Rossana Vermiglio�

Dip. di Matematica e Informatica, Università di Udine, Via delle Scienze 208, I-33100, Italy
Dip. di Ingegneria Elettrica, Gestionale e Meccanica, Università di Udine, Via delle Scienze 208, I-33100, Italy

This paper aims at comparing the pseudospectral method and discrete geometric approach for modeling quantization effects
in nanoscale devices. To this purpose, we implemented a simulation tool, based on both methods, to solve a self-consistent
Schrödinger–Poisson coupled problem for a 2-D electron carrier confinement according to the effective mass approximation model
(suitable for FinFETs and nanowire FETs).

Index Terms—Discrete geometric approach (DGA), pseudospectral method, Schrödinger–Poisson problem.

I. INTRODUCTION

T HE success of the metal–oxide semiconductor (MOS)
technology over the last 30 years has been determined

by its scaling capability. These days, the silicon technology is
approaching the physical limits of the traditional bulk MOS
devices; therefore, new device architectures, such as silicon (Si)
nanowire field-effect transistors (FETs) and fin-shaped FETs
(FinFETs) could represent a valid alternative to conventional
bulk planar metal–oxide semiconductor field-effect transistors
(MOSFETs) [1]. Thus, an accurate and yet computationally
efficient description of the carrier quantization in these de-
vices is an important modeling target. In the electron device
community, the numerical modeling of such a problem is
frequently tackled by solving a coupled Schrödinger–Poisson
problem, using finite-difference (FD) or finite-elements (FE)
methods. The simulation of arbitrarily shaped domains, such
as those like real electron devices, is problematic with FD
methods; on the contrary, FE methods provide an accurate
geometric representation but lead to a discrete counterpart of
the Schrödinger problem in terms of a computationally heavy
generalized eigenvalue problem.

The aim of this paper is to explore more efficient discretiza-
tion approaches with respect to FD and FE, such as Pseudospec-
tral methods (PS) [2], [3] and the discrete geometric (DG) ap-
proach [4], [5] for self-consistent solution of the Schrödinger-
Poisson coupled problem in the case of a 2-D carrier confine-
ment, relevant for nanowire FETs and FinFETs. The PS and DG
methods are here benchmarked in terms of geometric modelling
capability, by inspecting their accuracy in terms of not only sub-
band energies but also of electron concentration distributions.

II. QUANTIZATION IN NANODEVICES

The geometry of interest for a cylindrical nanowire FET is
shown in Fig. 1(a). The quantization problem occurs on a bidi-
mensional domain on a plane normal to
the transport direction , where and denote the channel
and oxide domains, respectively [see Fig. 1(b)]; the surrounding
gate electrode is modeled as an equipotential domain. In order
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Fig. 1. On the left: device coordinate system ��� �� �� for a cylindrical
nanowire FET. On the right: device cross section normal to the transport
direction �, where the domain of interest � � � �� is depicted.

to compute the electron density in narrow nanowires and Fin-
FETs, the effective mass approximation (EMA) model is typi-
cally adopted to describe the quantization phenomena in [6];
this leads to the following 2-D Schrödinger equation in

(1)

where is the valley1 index, is the position vector of a point
; denotes the wave function corre-

sponding to the th eigenvalue , and is a double tensor,
whose Cartesian components in are the inverse of effective
masses for each valley index . Finally, the potential energy
of an electron can be expressed as

(2)

where is the electric scalar potential describing the elec-
trostatic behavior of the nanodevice, is the absolute value of
electron charge, and is the prescribed medium-dependent
energy affinity of the electron in . The Interface condition in

and boundary conditions on must be added to (1), in order
to well pose the problem.

The electrostatic behavior of nanodevices can be modeled by
coupling to the Schrödinger problem (1) a Poisson problem for
the electric scalar potential

(3)

where denotes the medium permittivity double tensor;
denotes the concentration of ionized acceptor atoms,

1A valley denotes a conduction-band energy minimum.
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that is null in ; and denotes electrons concentration in
the conduction band. Again, boundary and interface conditions
must be added to close the Poisson problem (3).

The coupling between Schrödinger (1) and Poisson (3) prob-
lems is two fold. On the one hand, the electric scalar potential

determines potential energy in (2). On the other hand,
concentration of electrons in the conduction band in (3) is
given by

where is a known prescribed function of eigenvalue
[7].

III. PSEUDOSPECTRAL METHOD

A first approach to discretize the Schrödinger (1)–Poisson (3)
coupled problem is based on the pseudospectral method [2],
[8]. The method approximates the unknown function of a dif-
ferential problem or of an eigenvalue problem by using alge-
braic or trigonometric polynomials. If the unknown function is
sufficiently smooth, the PS method leads to an extremely fast
decrease of the approximating error with respect to the degree
of the interpolating polynomial . In particular, the resulting
error decays exponentially with like if the function
is of class , , or even like with if it
is analytic. This behavior, known as spectral accuracy, results
in extremely efficient and fast solvers for differential eigenvalue
problems, such as the Schrödinger’s Problem (1).

The basics of the PS method are hereafter recalled for a 2-D
Cartesian domain, where the unknown function , defined
in the square , is approximated by

(4)

where and are and -degree Lagrange basis
polynomials in the and directions, respectively. Since the
and dependence of in (4) is separately given by
and , the matrix representative of a partial differential
equation can be expressed in terms of differentiation matrices
with respect to and . As an example, if the discretization
points are sorted according to the lexicographical order, so that
the column vector of the unknown function values reads
[8]

(5)

then the differentiation matrix for the second derivative
reads

(6)

where the sign denotes the Kronecker product [8], and
is the so-called differentiation matrix. The en-

tries of can be expressed as

(7)

and (7) shows that the differentiation matrices are dense for the
PS discretization scheme.

For the circular domain considered in this paper (see Fig. 1),
it is convenient to use polar rather than Cartesian coordinates,
so that the unknown function has been approximated by using
a combination of Chebyshev and Fourier expansions [2]. The
transformation to polar coordinates leads to a singularity at

0. To overcome this difficulty, we followed the so-called diam-
eter approach described in [8].

The basic idea behind the PS method of substituting the un-
known function with an interpolating polynomial can
also be used to approximate any definite integral of with
the integral of the polynomial (Clenshaw–Curtis formula) [8].
This is useful because the same vector can thus be em-
ployed to calculate different quantities.

In order to preserve all of the advantages of the PS approach
for problems with noncontinuous parameters, it is necessary to
revisit the method under a piecewise point of view, where the
appropriate continuity conditions at the boundaries between dif-
ferent subdomains must be enforced.

IV. DISCRETE GEOMETRIC APPROACH

A second methodology to discretize the Schrödinger
(1)-Poisson (3) coupled problem puts the spotlight on the
geometrical structure behind a physical theory [5], it is often
referred to as the DGA. We will focus here on the discretization
of the Schrödinger problem (1), since the discretization of the
Poisson problem (3) in electrostatics according to DG is well
established [9].

Now, we will reformulate in a slightly different way the left-
hand side of (1), in terms of the following relations:

(8)
(9)

(10)

where we introduced the vector fields2 a(r), b(r), and the scalar
field , respectively; due to the plane symmetry of the
problem, the vector and scalar fields introduced before are in-
variant for any plane normal to the axis. Besides, we rewrite
the right-hand side of (1) as

(11)

Of course, (8)–(10) and (11) are equivalent to (1). We note that
(9) and (11) play the role of constitutive relations between a pair
of vector and scalar fields, respectively, with q(r) and
being the medium characteristics.

A. Domain Discretization

We introduce in the same discretization for the Schrödinger
and Poisson problems. The discretization consists of a primal
simplicial cell complex , whose oriented ge-
ometrical elements are nodes , edges , faces

, and volumes (triangular prisms), [5] (Fig. 2).
The cardinality of each set is denoted by , ,

, and , respectively. From the primal cell complex , we
can construct a barycentric dual complex ,
whose oriented geometrical elements are dual nodes ,
dual edges , dual faces , and dual volumes .
Finally, we need the incidence matrix of dimension
of incidence numbers between orientations of pairs
and describing the incidences between the orientations of
pairs .

B. Integral Variables and Their Association with the Elements
of

We introduce the array of dimension , whose th entry
is the value assumed at the posi-

2A vector is always denoted in roman type.
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Fig. 2. Oriented geometric elements of the primal complex � and of the dual
complex �� restricted, for clarity, to a single triangular prism � which is in a
one-to-one correspondence with the triangular surface � .

tion of the node , with . The circulation
of the vector a(r) along a primal edge

is associated with primal edges, with ; the array
they form has dimension . Similarly, but at a different geo-
metric level, the flux of the vector b(r) across

a dual face is associated with dual faces, with
and the array they form having dimension . Finally, we in-
troduce the integral quantity , associated with
a dual volume , with , and we denote with the
corresponding array that they form, of dimension . The arrays

, , , and of integral variables are often referred to as de-
grees of freedom (DoF).

C. Balance Equations and Constitutive Relations

Now, according to algebraic topology [5], we can straight-
forwardly construct exact discrete counterparts of (8) and (10),
respectively, in terms of the introduced DoF arrays with respect
to the topology of the pair of cell complexes and we obtain

(12)

These relations are independent of the media and metric of the
pair of cell complexes in .

A crucial point of the discretisation process is the computa-
tion of approximated discrete counterparts of the constitutive
relations (9) and (11), which can be written, respectively, as

(13)

where and are square matrices of dimension and ,
respectively, depending on metric and media properties of the
pair of cell complexes [4].

D. Discrete Formulated Schrödinger Problem

By substituting (12b) and (13a) for , (12a) for and (13b)
for , a discrete counterpart of (1) becomes

(14)

The global stiffness matrix is obtained by assembling
the contributions from the local stiffness matrices of each tri-
angle , with . The entry of a local
symmetric stiffness matrix can be expressed efficiently [4] in a
pure geometric way for the triangle as

(15)

where is the area of , and is the area vector3 associated
with the lateral face of .

Similarly, the global matrix is obtained by assembling the
local matrix contributions from each triangular element ,
with ; according to [4], can be written as the
sum of a pair of local diagonal matrices

(16)

whose entries are , , respectively,
where is the uniform value assumes in .

From (14), we obtain the final global generalized eigenvalue
problem

(17)

where and are the global diagonal matrices corre-
sponding to the local ones in (16). Since is diagonal and
positive definite, then (17) can be easily transformed into a
standard one and we may write

(18)

where we set .

V. NUMERICAL RESULTS AND DISCUSSION

We solved the coupled problem for a cylindrical nanowire
with 10 nm and a transport orientation along the direc-
tion using the DG and the PS methods. In order to obtain an ef-
ficient convergence of the Schrödinger–Poisson iterative loop,
both for DG and the PS methods, we employed the so-called
nonlinear formulation of the Poisson equation described in [7].
A doping density , an equivalent oxide
thickness of 0.7 nm, and a gate work function equal to the
electron affinity 4.05 eV of silicon have been consid-
ered in the simulations. A gate voltage 1 V is used to
specify the Dirichlet boundary conditions on for the Poisson
problem, while 0 for is assumed for the
Schrödinger problem. The diagonal entries of tensor are

for and for , with being the
vacuum permittivity. In our problem, tensor is anisotropic
with diagonal4 entries depending both on the index , being
proportional to , with
the free electron mass. Fig. 3 compares the convergence of the
first and second valley minimum eigenvalues for an increasing
number of nodes, computed by means of the DG and PS ap-
proaches, respectively; moreover, the electron concentration
along the axis computed with the DG and PS method for an
increasing number of nodes is shown in Fig. 4. For complete-
ness, Fig. 5 shows the anisotropic charge density distribution in
the cylindrical nanowire on a plane normal to the transport di-
rection; the computation with the PS or DG methods yields to
graphically indistinguishable results.

Even though the PS method ensures spectral accuracy, it is
limited to simple shape geometries such as the circular one of
the specific device considered here or the rectangular one; more-
over, it always yields to full (but smaller) differentiation ma-
trices. On the other hand, the DG approach shows a slower
convergence compared with the PS method, being based on an
element-wise uniform field approximation; however, DG can
handle complicated geometries like those of the real devices.
In addition, the proposed DG approach straightforwardly yields

3It is normal to the lateral face � of the prism and it points outward � ;
moreover, due to the plane symmetry, �� � � �� � holds.

4For the detailed expression of the tensor � ���, see [2].
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Fig. 3. Convergence of the first and second valley minimum eigenvalues is
compared for an increasing number of nodes, computed by means of the DG
and PS approaches, respectively.

Fig. 4. Electron concentrations � along the � direction, computed with the DG
and PS methods for a � �10-nm cylindrical nanowire.

to a standard eigenvalue problem since the matrix in (17) is
diagonal; on the contrary, in finite elements, the matrix corre-
sponding to in (17) is not diagonal, having the same spar-
sity pattern of the matrix on the left-hand side of (17). This fact
makes, by construction, DG computationally more efficient then
FE since the memory occupation is about one half. We observe
that there is no need to compute the matrix products in (18); it
is enough to multiply each nonzero entry of the sparse matrix

by with ,

where denotes the th diagonal element of .
Moreover, the generalized eigenvalue problem produced by FE
requires solving a linear system at each step of the iterative so-
lution in place of a simple matrix-vector product needed by the
standard eigenvalue problem of DG. Finally, the finite-differ-
ence method has not been tested deliberately for our specific
problem since it is not adequate to handle accurately circular
geometries.

Fig. 5. Electron concentration � in the cylindrical nanowire. The computation
with the PS or DG methods yields to graphically indistinguishable results.

VI. CONCLUSION

A comparative analysis confirmed that pseudospectral
methods can achieve the spectral accuracy but are mainly suit-
able for simple geometries. On the contrary, the DGA allowed
handling more complex and general 2-D and 3-D geometries.
Both techniques yield a discrete counterpart of the Schrödinger
problem in the form of a standard matrix eigenvalue problem,
instead of a generalized one like in finite elements.
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