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SUMMARY

The simultaneous use of a pair of complementary discrete formulations for electrostatic boundary value
problems (BVPs) allows to accurately compute electromagnetic quantities, such as capacitance or electro-
static force with a minimum computational effort. In fact, the two formulations provide the upper and lower
bounds for these quantities and their averages result quite close to the exact solution even for extremely
coarse meshes. Despite the potential benefit to the many three-dimensional large-scale applications,
taking advantage of this feature is not exploited in practice due to theoretical difficulties in the potential
design.

The aim of this paper is to fill this gap by rigorously introducing a pair of three-dimensional comple-
mentary geometric formulations to solve electrostatic BVPs on domains covered by conformal polyhedral
meshes. In particular, an original formulation based on a vector potential is introduced by using coho-
mology theory with integer coefficients. It is shown how the so-called thick links are needed, which are
representatives of the second cohomology group generators of the dielectric region. Two easy-to-implement
graph-theoretic algorithms to automatically find such a basis with optimal computational complexity
are described. Some benchmark problems are presented to show how the simultaneous use of both
formulations yields to a sensible computational advantage. Therefore, solvers based on complementary
formulations should be embedded in the next-generation of electromagnetic Computer-Aided Engineering
(CAE) softwares. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A remarkable interest in the techniques for efficient numerical simulation of three-dimensional
large-scale electrostatic problems exists. In recent years, for example, the accurate extraction of
parasitic circuit parameters for the analysis of the performance and the signal integrity of semi-
conductor devices and interconnections in integrated circuits (IC) has become fundamental, see
for example [1–4]. The strong industrial interest is demonstrated by the number of papers and
commercial tools dedicated to this purpose [5–12]. In this context, electromagnetic field solvers
play a fundamental role, since they take into account the three-dimensional effects together with
the typical multi-layered structures with heterogeneous dielectric material properties and ‘floating
metal fills’, see for example [3, 4, 13, 14]. In recent years, there has been also an increasing interest
in solving the Poisson–Schrödinger coupled equations to predict the electronic states in innovative
semiconductor devices as quantum dots, see for example [15]. An iterative scheme is frequently
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used to solve this coupled problem [16]. The Poisson solver computes the potential distribu-
tion with the knowledge of the electron concentration derived from the Schrödinger solver, until
the convergence is reached. Also the accurate evaluation of electrostatic force for the prediction
of the mechanical behavior of electrostatic micro electro-mechanical systems (MEMS) requires
a number of accurate solutions for large-scale three-dimensional electrostatic boundary value
problems (BVPs), see for example [17–19]. The shape optimization of electromagnetic devices—
high-voltage insulators for gas-insulated transmission lines [20, 21], just to give an example—or
the imaging based on electrical capacitance tomography (ECT) require a considerable computa-
tional effort as well. In fact, in these applications, thousands of three-dimensional electrostatic
BVPs have to be solved, each time with a different geometry or different parameters of the
materials.

Recently, the so-called Discrete Geometric Approach (DGA), see for example [22–37], has
become an attractive alternative method to solve Maxwell’s equations with respect to the widely
used finite element method (FEM). Thanks to the exploitation of the topological nature of Maxwell’s
equations together with the geometric structure behind them [24], the DGA framework presents
pedagogical and computational advantages with respect to the widely used FEM. With the DGA,
in fact, an algebraic system of equations is directly obtained by combining the physical laws of
electromagnetism, enforced exactly by using incidence matrices, together with the constitutive
relations, which are approximated on a given mesh by means of the so-called constitutive matrices
[24]. The constitutive matrices, also called discrete counterparts of the Hodge star operator [31],
encode the metric (namely, the geometry of the problem) and the material’s parameters.

We would like to mention other methods that try to discretize field theories in different ways:
the mimetic discretizations, see for example [38–41], and the mixed-hybrid approaches, see for
example [42, 43].

The DGA has already been applied as an efficient numerical method to solve various classes of
physical problems ranging from the already discussed electromagnetism to elasticity [44–47]. In
particular, to solve electrostatic problems, the formulation based on the electric scalar potential is
widely used, see for example [18–21] [24, p. 49–53]. However, it is known that a complementary
electrostatic formulation based on a vector potential exists and that the simultaneous use of both
formulations has the advantage of providing complementary energy bounds, which allows global
quantities—such as capacitance or electrostatic force—to be obtained with high accuracy and
minimum computational cost [48–52]. In addition, the use of complementary formulations provide
a natural error estimate for adaptive solutions, see for example [53]. Nevertheless, in the literature,
little attention is given to the vector potential-based formulation, because it presents theoretical
problems in the potential design. In the FEM framework, a formulation based on a vector potential
has been presented in [54], where a heuristic solution to the potential design is proposed by
introducing appropriate cutting regions. The properties that these regions have to fulfill and how
to automatically obtain them are issues left unaddressed in [54].

The aim of this paper is to rigorously introduce a new geometric formulation based on a vector
potential by taking advantage of the fundamental tools for the analysis and design of potentials:
homology and cohomology theories [55]. A large mathematical literature exists about algebraic
topology, which unfortunately is usually far from the theoretical background available to physicists
and especially to engineers. For this reason, an informal approach is used in this paper to attract
a larger audience. For the sake of brevity, only a minimal description of the essential tools of
algebraic topology is included in the paper. The reader not familiar with this topic is invited
to consult [56] or [57] for a concise and informal introduction to (co)chain, (co)boundary, and
(co)homology. For a more formal presentation, please refer to [55].

The originality of the approach presented in this paper lies in the fact that the design of potentials
is tackled directly within a topological setting. In fact, thanks to the reformulation of Maxwell’s laws
by using incidence matrices, homology and cohomology with integer coefficients are employed
for the potential design in place of the standard de Rham cohomology, see for example [58]. This
approach, although not strictly necessary, presents several advantages. First of all, the integer-based
topological solution enables a straightforward development of a graph-theoretic algorithm for the
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automatic potential design. Moreover, new physical insights into the formulation can be presented
by exploiting this approach together with the dualities arising when, as in the DGA framework,
two interlocked cell complexes—one dual of the other—are employed. For example, using the
FEM framework, the so-called non-local basis functions have to be added to the set of usual basis
functions to be able to span the de Rham second cohomology group. Employing the DGA, the
physical interpretation of the non-local basis functions as non-local Faraday’s equations becomes
apparent.

The paper is structured as follows. In Section 2, the domain of interest of the electrostatic problem
and its discrete model are described. The concepts of (co)chain, evaluation of a cochain on a chain,
and (co)boundary operator are informally introduced. In Section 3, the electrostatic geometric
formulation based on a scalar potential and suitable with a polyhedral mesh is reviewed. In Section 4,
the original geometric formulation based on a vector potential and suitable with a polyhedral mesh
is introduced by using homology and cohomology theories with integer coefficients. It is shown
how a set of the so-called thick links is needed to obtain a well-posed BVP. Two algorithms to
automatically generate such thick links for a polyhedral cell complex are described. These graph-
theoretic algorithms have optimal complexity and are easy to implement. Using these algorithms,
cohomology computations by means of the classical Smith Normal Form [55, 59] are avoided,
being computationally extremely expensive. Section 5 deals with the reduction of the computational
domain in electrostatic problems with symmetries. Section 6 shows how the performances obtained
by using both complementary formulations simultaneously largely motivate the investment in the
more complicated and time-consuming vector potential formulation. Finally, in Section 7, the
conclusions are drawn.

To summarize, the main contributions of the present paper are the following. First, both founda-
tions and technical aspects of complementary geometric formulations for electrostatics suitable with
a general polyhedral mesh are rigorously presented. It is shown how the representatives of gener-
ators of second cohomology group basis with integer coefficients—called thick links—are needed
dealing with the formulation based on the vector potential. Finally, two easy-to-implement graph-
theoretic algorithms to automatically find such a basis with optimal computational complexity are
introduced.

2. DISCRETE MODELS OF THE COMPUTATIONAL DOMAIN
AND PHYSICAL VARIABLES

Let us consider a number Nc of conductors {Ci }Nc
i=1, which are defined as disjoint compact connected

subsets of the three-dimensional Euclidean space with connected boundary. Each conductor—
which can contain holes, see Figure 1(a)—is ‘perfect’ by hypothesis, meaning that each Ci , and
in particular its boundary �i =�Ci , is equipotential. A set of dielectrics {D j }Nd

j=1, composed of

materials of permittivities {ε j }Nd
j=1, may be present, see Figure 1(a). A permittivity ε0 is considered

in the other regions.

(a)
(b)

Figure 1. (a) A possible set of conductors {Ci }2i=1 involved in an electrostatic problem. The conductor C1
is topologically trivial, being homeomorphic to the three-dimensional ball. The conductor C2 is a torus,
thus it has a hole (the first Betti number �1 is 1) and (b) The surrounding surface �0 and the domain of

interest D for the electrostatic problem.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
DOI: 10.1002/nme



R. SPECOGNA

Figure 2. Geometric elements of K and B for a simplicial complex K.

The computational domain D is bounded by the surface �0
‡, which contains all the previ-

ously defined conductors and dielectrics, see Figure 1(b). In practical problems, the surface �0 is
considered to be homeomorphic with a sphere§.

The domain D is partitioned into a conductive region Dc, formed by
⋃Nc

i=1Ci , and a dielectric
region Dd. The dielectric region Dd is a connected subset of the three-dimensional Euclidean space
whose boundary is formed by the union of the Nc connected components {�i }Nc

i=0. Moreover, each
conductor represents a cavity for Dd, hence the second Betti number �2 of Dd is Nc.

2.1. Primal and dual cell complexes

The domain of interest D is covered by a polyhedral conformal mesh, whose incidences are
encoded in the cell complexK [24–30]. It is assumed that the generated mesh reflects the topology
of the domain of interest, i.e. the mesh is adequately refined in such a way that all topological
features of D are captured. The subcomplexes of K relative to geometric elements belonging to
the conducting and dielectric regions are denoted by Kc and Kd, respectively. A dual barycentric
complex B is obtained from K by using the barycentric subdivision [27], [56, Section 3]. The
elements ofK are denoted by n for a node, e for an edge, f for a face, and v for a cell, whereas the
geometric elements of the barycentric complexB are denoted by nB, eB, fB, and vB, respectively,
see Figure 2. The incidence matrices [27] specify how the oriented nodes, edges, faces, and cells
of the cell complex K are connected. The incidence matrix between edges and nodes is called
G. By C the incidence matrix between faces and edges is denoted and by D the incidence matrix
between cells and faces. As there is a one-to-one correspondence between a geometric element
of dimension d in K and a geometric element of dimension 3−d in B, the matrices G̃=DT,
C̃=CT, and D̃=−GT represent the incidence matrices of the dual barycentric complex [27], [56,
Section 3].

2.2. Useful tools from algebraic topology

A k-chain [27, 55] with integer coefficients in a cell complex K is a formal integer combination
of all oriented k-dimensional cells in the considered cell complex

c= ∑
Ski ∈K

ai S
k
i , ai ∈Z, (1)

where Ski denotes the i th k-dimensional cell inK. k-chains are added by adding the corresponding
coefficients. The set of all k-chains in K form a group with addition called the kth chain group

‡If an interior BVP is considered, �0 usually represents the inner surface of a conductive shell. If an exterior BVP
is considered, �0 represents a non-physical surface introduced to artificially limit the extent of the computational
domain. In the latter case, the surface �0 is supposed to be placed far enough with respect to the conductors, in
such a way that a zero potential over such a surface approximates the regularity condition of the scalar potential
at infinity. The regularity condition, in fact, prescribes that the potential approaches zero when the distance from
the sources tends to infinity. More sophisticated techniques, which are extensively described in the literature, may
be used to solve exterior BVP. The most efficient technique is probably to map the infinity at a finite distance
through a geometrical transformation, see [60].
§For problems arising when more complicated domains of interest D are considered, see [61].
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Ck(K). It is straightforward to see that the set of all k-dimensional cells with a chosen orientation
form a basis of Ck(K) [55, p. 28], hence every element of Ck(K) can be obtained in a unique
way as an integer combination of the k-dimensional cells. In this paper, let us suppose that the
orientation of all the cells is fixed. Then, an arbitrary chain can be represented by an integer array
having the corresponding coefficients {ai } as entries. The support |c| of c∈Ck(K) is defined as
the set of k-dimensional cells with non-zero coefficient: |c|={Ski ∈K|ai �=0}. A k-dimensional
cell Ski is a particular case of k-chain—called elementary k-chain—whose coefficients are ai =1
and a j =0,∀ j �= i . In the paper, by abuse of notation, we denote—for example—by the edge e not
only the oriented one-dimensional cell, but also the corresponding elementary 1-chain.

A k-cochain [27, 55] with coefficients in the group G∈{Z,R} is a linear map d :Ck(K)→G.
Also cochains can be added and the group of all k-cochains of the complex K is called k-cochain
group Ck(K,G). For each k-dimensional cell Ski , let us define the map dSki :Ck(K)→G, such

that dSki (Ski )=1 and dSki (Skj )=0 for j �= i . This set of maps, called elementary k-cochains, forms

a basis [55, p. 252] of Ck(K,G) which is dual with respect to the standard basis chosen for the
chains. It is worth noting that, due to the bijective correspondence between the standard bases
of Ck(K) and Ck(K,G), a one-to-one¶ correspondence between a chain and a cochain exists.
Similarly to the chains, an arbitrary cochain can be expressed as a combination of the basis with
coefficients in G

d= ∑
Ski ∈K

bid
Ski , bi ∈G. (2)

If Z is assumed as the group G, the cochain can be represented by an integer array, whereas if the
group R is chosen, the cochain can be represented by a real-valued array. In the latter case, the
cochain is called real-valued. In the following, if the group is not explicitly specified, the group
of reals is assumed.

Lemma 1
The evaluation 〈d,c〉 of a k-cochain d=∑

Ski ∈K bidSki ∈Ck(K,G) on a k-chain c=∑
Ski ∈K ai Ski ∈

Ck(K) is the value

〈d,c〉= ∑
Ski ∈K

bi ai . (3)

Proof

〈d,c〉=〈d,
∑

Ski ∈Kai Ski 〉=
∑

Ski ∈K ai 〈d, Ski 〉=
∑

Ski ∈K ai 〈
∑

Skj∈K b jd
Skj , Ski 〉=

∑
Ski ∈K

∑
Skj∈K

(aib j 〈dSkj , Ski 〉)=
∑

Ski ∈K
∑

Skj∈K(aib j�ij)=
∑

Ski ∈K(aibi ), where �ij is the Kronecker delta. �

Given a k-dimensional cell of K, its boundary is a (k−1)-chain that can be found by using
the information contained in the corresponding incidence matrix. Then, after that the boundary
has been defined on the standard basis of Ck(K), the boundary operator � :Ck(K)→Ck−1(K)
is extended to a chain c∈Ck(K) by linearity

�c=�
∑

Ski ∈K
ai S

k
i = ∑

Ski ∈K
ai�Ski .

In addition, one can verify that � ◦ �c=0,∀c∈Ck(K), holds. As the boundary operator is a linear
map between Ck(K) and Ck−1(K) and the bases for Ck(K) and Ck−1(K) are fixed, it can
be represented as a matrix, which turns out to be the transpose of the corresponding incidence
matrix [27].

¶Formally, the chain and cochain groups are isomorphic: Cp(K)∼=C p(K).
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The coboundary operator � :Ck(K)→Ck+1(K) can be defined as dual with respect to the
boundary operator by means of the Generalized Stokes Theorem

〈�d,c〉=〈d,�c〉. (4)

Since the dual standard bases are used, matrices representing dual operators are one the transpose of
the other, hence the coboundary operator is represented by the corresponding incidence matrix [27].

2.3. Degrees of freedom

Physical variables can be modeled by real-valued cochains, see for example [27]. Their coefficients,
usually called Degrees of Freedom (DoFs), are defined by using the so-called de Rham map [62].
They are the integrals of electromagnetic scalar and vector fields on oriented geometric elements
of the pair of cell complexes K and B.

For example, the 1-cochain voltage U can be represented by a real-valued array of DoFs, one
DoF for each edge of the considered complex. The DoF 〈U,e〉—the voltage associated with the
edge e—is defined by using the de Rham map as the integral of the electric field E on the edge e

〈U,e〉=
∫
e
E· t dl.

3. SCALAR POTENTIAL FORMULATION

3.1. Choice of DoFs and their association

According to the Tonti’s classification of physical variables [24], there is a unique association
between a physical variable and the corresponding oriented geometric element.

In order to formulate an electrostatic BVP by using the scalar potential formulation, the following
DoFs are introduced, see Figure 3:

• Voltage 〈U,e〉, associated with all e∈Kd;
• Electric flux 〈W, fB〉, associated with all fB∈Bd;
• Induced electric charge 〈Q,vB〉, associated with all vB one-to-one with n∈�Kd;
• Source electric charge 〈Qs,vB〉, associated with all vB one-to-one with n∈Kd/�Kd;
• Electric scalar potential 〈V,n〉, associated with all n∈Kd.

The electric field E is known to be zero inside the conductors. For this reason, the cochains are
defined in the subcomplex Kd only.

3.2. Definition of the scalar potential V and related formulation

In electrostatics, the electric field E is curl-free by definition. Hence, Faraday’s law, in the discrete
setting, translates into

〈CdU, f 〉=〈U,� f 〉=0 ∀ f ∈Kd. (5)

Figure 3. Association of the DoFs with the oriented geometric elements.
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Let us denote by the subscript d the incidence matrices relative to geometrical elements belonging
to the subcomplex Kd. The algebraic constraints (5) on the voltages are enforced implicitly by
using the electric scalar potential V

U=−GdV, (6)

since CdGd=0 holds.
The discrete counterpart of the electric constitutive relation D=εE—the permittivity constitutive

matrix E [24]—links the array of voltages U with the array of electric fluxes W as

W=EU. (7)

The permittivity constitutive matrix E encodes both the information about the material’s properties
and the metric. It is constructed in such a way that (7) holds for an element-wise uniform electric
field E and electric flux density D in each polyhedron and a permittivity ε assumed element-wise
constant.

Classical ways to construct E for a tetrahedral mesh are the Discrete Hodge techniques based
on Whitney’s maps, described in [31] and [63], or the so-called Galerkin Hodge [64], which is a
reinterpretation of FEM with edge element basis functions. Another original solution is to use the
piecewise-uniform edge and face vector basis functions defined in [65] for tetrahedra and triangular
prisms. As proven in [65], these basis functions assure that symmetry, positive-definiteness, and
consistency‖ properties are satisfied for these constitutive matrices.

Since in this paper a formulation suitable for a general polyhedral mesh is sought, the symmetric,
positive-definite, and consistent constitutive matrices described in [66] are used (alternatively, one
can use that described in [67]). The possibility of using general polyhedral elements, enables the
rigorous use of subgridding [68]. These constitutive matrices can be constructed by using only the
vectors associated with the geometric elements of the cell complexes K and B, which yields to
simple and computationally efficient solutions.

Gauss’s balance law is enforced by means of the following algebraic constraints:

〈D̃dW,vB〉 = 〈−GT
dW,vB〉=〈Qs,vB〉 ∀vB dual to n∈Kd/�Kd,

〈D̃dW,vB〉 = 〈−GT
dW,vB〉=〈Q,vB〉 ∀vB dual to n∈�Kd.

(8)

By substituting (7) and (6) in (8), the following algebraic linear system of equations, having the
scalar potentials (V)n in the nodes n∈Kd as unknowns, is obtained

〈K,vB〉V = 〈Qs,vB〉 ∀vB dual to n∈Kd/�Kd,

〈K,vB〉V = 〈Q,vB〉 ∀vB dual to n∈�Kd,
(9)

where K=GT
dEGd. The equations relative to vB one-to-one with n∈�Kd depend on the desired

boundary conditions. This issue is the subject of Section 3.3.
The process of forming the final algebraic linear system of equations can be conveniently

visualized by using Tonti’s diagram [24, p. 52] for electrostatics, represented in Figure 4(b).
Following the path 1-2-3-4 in the diagram, the equations are derived.

3.3. Non-local quantities and boundary conditions

3.3.1. Dirichlet boundary conditions. Let us call by {V i
c }Nc

i=1 and {Qi
c}Nc
i=1 the electric scalar poten-

tial and the charge supported by each conductor {Ci }Nc
i=1, respectively. The potential and the electric

‖A precise definition of the notion of consistency for constitutive matrices is given in [33].
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Figure 4. Tonti’s diagram for the electrostatic formulation in terms of V.

charge associated with the conducting shell �0 are denoted by V 0
c and Q0

c, respectively. Let us fix
the potential V 0

c to zero. Each conductive region is equipotential by hypothesis, hence the resulting
electric field E will result orthogonal to the conductor’s boundaries.

To define a consistent excitation for the electrostatic BVP, a set of Nc of independent non-local
quantities have to be fixed. In practice, the typical situation is to fix, for each conductor, its potential
or alternatively its charge. If the value of the potential V i

c is fixed, the corresponding value can
be imposed on all nodes n∈�i by means of the Dirichlet boundary conditions. On the contrary,
if the conductor Ci is isolated—meaning that Ci is not connected to any electrical generator—V i

c
is an unknown of the electrostatic problem, since V i

c can ‘float’. This is the reason why this kind
of constraint is usually called floating potential constraint. What has to be fixed in this case is the
electric charge Qi

c supported by the conductive region Ci .
Let us suppose that the potential of the first N conductors is known, whereas the others are

subject to floating potential constraint. Let us order the node’s labels in such a way that the
nodes n∈Kd/�Kd come first, followed by the nodes n∈⋃N

j=0� j , and finally by the nodes

n∈⋃Nc
k=N+1�k . Consequently, the array V is partitioned into three subarrays V′, V̄, and V′′,

whether the nodes belong to Kd/�Kd,
⋃N

j=0� j or to
⋃Nc

k=N+1�k , respectively. By partitioning
the matrix K and the array Q accordingly, the linear system of equations can be written as

⎡
⎢⎣
K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤
⎥⎦

⎡
⎢⎢⎣
V′

V̄

V′′

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
Qs

Q̄

Q′′

⎤
⎥⎥⎦ . (10)

The values of the potentials in V̄ are known and they can be substituted into (10) and moved on
the right-hand side. The equations corresponding to the nodes n∈⋃N

j=0� j are not needed to solve
the problem, but they may be used in the post-processing stage to compute the charges induced
on the first N conductors with (20). Hence, the system becomes

[
K11 K13

K31 K33

][
V′

V′′

]
=

[
Qs

Q′′

]
−

[
K12

K32

]
V̄. (11)
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Let us introduce a family of column arrays {ni}Nc
i=0 such that the array V̄ relative to the known

potentials can be obtained by

V̄=
N∑
j=0

V j
c n j , (12)

whereas the array V′′ relative to the floating unknown potentials can be obtained by

V′′ =
Nc∑

k=N+1
V k
c nk . (13)

Hence, for i =0, ...,N , the array ni can be defined as

〈ni ,n〉 = 1 ∀n∈�i

〈ni ,n〉 = 0 ∀n∈
N⋃

j=0, j �=i
� j ,

(14)

and for i =N+1, ...,Nc as

〈ni ,n〉 = 1 ∀n∈�i

〈ni ,n〉 = 0 ∀n∈
Nc⋃

k=N+1,k �=i
�k .

(15)

By using the arrays just defined, the system can be written as

K11V′+
Nc∑

k=N+1
(K13 nk)V k

c = Qs−
N∑
j=0

(K12 n j )V
j
c ,

K31V′+
Nc∑

k=N+1
(K33 nk)V k

c = Q′′−
N∑
j=0

(K32n j )V
j
c ,

(16)

where the potentials {V k
c }Nc

k=N+1 are used as unknowns in place of the DoFs V′′ relative to nodes

n∈⋃Nc
k=N+1�k .

In (16), there are more equations than unknowns, but the equations relative to the nodes n∈⋃Nc
k=N+1�k can be grouped into buckets relative to conductors k∈{N+1, ...,Nc} pre-multiplying

by {nTk }Nc
k=N+1,

(nTkK31)V′+(nTkK33nk)V k
c =nTkQ

′′−
N∑
j=0

(nTkK32n j )V
j
c , k=N+1, . . . ,Nc, (17)

where nTk Q
′′=Qk

c. We note that, in practical problems, a mesh is very likely to be refined in such
a way that two conductors are separated by much more than just one layer of three-dimensional
cells. With this assumption, (nTkK32n j )=0, ∀k∈{N+1, . . . ,Nc} and ∀ j ∈{1, . . . ,N}.

The final symmetric linear system of equations becomes

K11V′+
Nc∑

k=N+1
(K13 nk)V k

c = Qs−
N∑
j=0

(K12 n j )V
j
c ,

(nTk K31)V′+(nTk K33nk)V k
c = Qk

c, k=N+1, . . . ,Nc.

(18)

The electric scalar potential in all the nodes n∈Kd can be recovered in the post-processing stage
by using

〈V,n〉 = 〈V′,n〉 ∀n∈Kd/�Kd

〈V,n〉 = V i
c ∀n∈�i , i =0, . . . ,Nc.

(19)

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
DOI: 10.1002/nme



R. SPECOGNA

The charges induced on the conductors {C j }Nj=0 can be computed with

Q j
c =nTj (K21V′+K22V̄+K23V′′), j =0, . . . ,N. (20)

The formulation presented in (18) is different from the well-known technique of treating the
floating potential constraint in the corresponding FEM formulation [69]. In fact, the approach
used in the FEM electrostatic formulation, recalled also in [70], is based on the definition of
non-local nodal basis functions. In this paper, nodal basis functions are not used at all, and the
floating potential constraint is imposed by using only the topological information contained in the
integer-valued arrays ni , enabling a straightforward implementation.

4. VECTOR POTENTIAL FORMULATION

4.1. Choice of DoFs and their association

In order to formulate an electrostatic BVP by using the vector potential formulation, the DoFs
are associated with the geometrical elements dually with respect to that introduced in the scalar
potential formulation, see Figure 5:

• Voltage 〈U,eB〉, associated with all eB∈B;
• Electric flux 〈W, f 〉, associated with all f ∈K;
• Induced electric charge 〈Q,v〉, associated with all v∈Kc;
• Source electric charge 〈Qs,v〉, associated with all v∈Kd;
• Electric vector potential 〈P,e〉, associated with all e∈Kd.

4.2. Potential design

If one introduces an electric vector potential P by using the preliminary definition

W=CP, (21)

since DC=0, the following inconsistency in the Gauss’s law holds DW=DCP=0 �=Qs. A similar
inconsistency due to the induced charges exists. To solve these inconsistencies, there is the need
to modify the definition of potential (21) in such a way that Gauss’s law holds implicitly in
Kd. In the following, to solve this issue, we take advantage of a branch of algebraic topology
called cohomology theory, see for example [55, 56]. In Section 4.2.1 we describe how to fix the
inconsistency due to source charges, in Section 4.2.2 a minimal introduction to (co)homology
is provided, and in Section 4.2.3 the focus is given on fixing the inconsistency due to induced
charges.

4.2.1. Taking into account source electric charges. The source charges can be taken into account
by constructing a 2-cochain S such that

〈DS,v〉=〈S,�v〉=〈Qs,v〉 (22)

Figure 5. Association of the DoFs with the oriented geometric elements.
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and by defining

W=CP+S. (23)

By using (23), Gauss’s law holds implicitly since DW=D(CP+S)=DS=Qs. Of course, S is not
unique. In fact, if two 2-cochains S1 and S2 differ by the coboundary of a 1-cochain R, then
DS1=D(S2+CR)=DS2 holds. An efficient technique to build a 2-cochain S that satisfies (22) is
described in Section 4.5.

4.2.2. (Co)homology theory in brief. The boundary operator gives rise to a classification of chains.
k-chains whose boundary is zero belong to the cycles group of K, denoted as Zk(K). k-chains,
which are boundary of a (k+1)-chain, belong to the boundary group of K, denoted by Bk(K).
Elements of Zk (K) are called k-cycles and elements of Bk(K) are called k-boundaries in K. It
is straightforward to convince oneself that all k-boundaries are k-cycles, but the converse is not
true. In particular, the homology group is defined as the following quotient group:

Hk(K)= Zk(K)/Bk(K),k∈N. (24)

Given a cycle z belonging to the kth homology group, adding any k-boundary b to it does not
make z+b a boundary. Regarding homology theory, z and z+b are equivalent, which motivates
the following equivalence relation. Two k-cycles z1 and z2 are homologous if their difference is a
boundary

z1∼ z2⇔ z1−z2∈ Bk(K).

The homology is an equivalence relation that divides the cycles into equivalence classes, which are
called homology classes. A set of homology classes exist such that any other homology class can
be written in a unique way as a combination of these classes with integer coefficients. Such a set
of homology classes are referred to as homology generators. From homology generators one can
generate the whole homology group and the set of all homology generators is called a homology
basis. Only one representative z from each class is needed, being possible to obtain all other cycles
in the class by adding a boundary chain to z. When it is not confusing, for brevity, by homology
generators we refer to both the equivalence classes of the presented relation and the cycles that
represents the equivalence class.

An analogous classification can be stated regarding the cochains. The group of k-cocycles Zk(K)
contains the k-cochains whose coboundary is zero, whereas the group of k-coboundaries Bk(K)
contains k-cochains which are the coboundary of a (k−1)-cochain. The cohomology group is the
quotient group

Hk(K)= Zk(K)/Bk(K), k∈N, (25)

which contains k-cocycles that are not k-coboundaries. It is demonstrated, for example in [55],
that the following isomorphisms exist Hk(K)∼=Hk(K) for complexes embeddable in R3, which
implies that the homology and cohomology generators can be put in one-to-one correspondence.

4.2.3. Taking into account induced electric charges. To focus on induced charges, let us suppose
in this section that there are no source charges, henceQs=0. With this assumption,W has to verify

〈DW,v〉=〈W,�v〉=0 ∀v∈Kd. (26)

It follows that W is a 2-cocycle in Kd: W∈ Z2(Kd).
Let us analyze now what happens when the Gauss’s law is not enforced locally as in (26)

(namely on a cell v and its boundary faces), but involve a 3-chain �—whose support is a set of
cells in K—and its boundary 2-cycle s=��. In particular, let us assume that the support |s| of s
is contained in Kd. The resulting Gauss’s law, referred to as non-local, is written as

〈W,s〉=〈Q,�〉. (27)
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If s is a 2-boundary in Kd, the Gauss’ law holds even by using the potential P alone. In fact,
the following Lemma holds.

Lemma 2
The evaluation of the 2-cocycle W∈ Z2(Kd) on a 2-boundary s∈ B2(Kd) is zero.

Proof
As s∈ B2(Kd), there exists a 3-chain t ∈C3(Kd) such that �t= s. It follows that 〈W,s〉=〈W,�t〉=
〈DW, t〉=〈0, t〉=0. �

If the 2-cycle s encircle some conductors, s is not a 2-boundary in Kd, since it cannot be the
boundary of any 3-chain in Kd (but, of course, can be boundary of a 3-chain in K). Hence, s is
non-trivial in the second homology group H2(Kd) with integer coefficients. It is straightforward
to see that only the 2-cycles which are non-trivial in the second homology group encircle some
conductors and consequently contain a non-zero induced electric charge in general. As we will
see, the inconsistency arises only when Gauss’s law is applied on this kind of 2-cycles.

Let us now focus on the second homology group H2(Kd). It is intuitive that a set of independent
2-cycles that do not bound any 3-chain in Kd is just the set of 2-cycles {�i }Nc

i=1
∗∗ . The number

of the second homology group H2(Kd) generators is the second Betti number �2(Kd), which is
the number of cavities Nc in Kd. Hence, the 2-chains {�i }Nc

i=1 are a maximal set of independent
2-chains and for this reason they can be considered as representatives of generators for the second
homology group H2(Kd). Since this basis is the most natural and no homology computation is
needed to obtain it, we refer to this basis as canonical. In this paper, we always consider the basis
of H2(Kd) fixed to the canonical one.

Once a basis for H2(Kd) is given, all possible 2-cycles c2∈ Z2(Kd) can be obtained by adding
a 2-boundary b∈ B2(Kd) to a linear combination with integer coefficients of the representatives
of the homology generators

c2=
Nc∑
i=1

ai�i +b,b∈ B2(Kd), ai ∈Z. (28)

Example 1
As an example, two conductors—a sphere and a torus—are considered. Kd is the subcomplex
obtained as the complement of the two conductors with respect to a big box, which represents the
surrounding dielectric domain, see Figure 6. A 2-cycle c that encircle both the conductors can be
obtained by adding a 2-boundary b∈ B2(Kd) to �1+�2. �

The following Lemma holds.

Lemma 3
For two 2-cycles s1 and s2 in the same homology class and a 2-cocycle W, 〈W,s1〉=〈W,s2〉 holds.
Proof
As s1 and s2 differ by a 2-boundary, it follows that there exists a 3-chain t ∈C3(Kd) such that
s1= s2+�t . From (26), it follows that 〈W,s1〉=〈W,s2+�t〉=〈W,s2〉+〈W,�t〉=〈W,s2〉. �

This lemma implies that a precise electric flux evaluation is associated with each homology
class of 2-cycles in Kd. The value of such evaluation of W on the representatives of the homology
generators is provided by the non-local Gauss’s law

〈W,�i 〉=Qi
c, (29)

∗∗The 2-cycle �0 has to be excluded, in fact the 2-cycle T =⋃Nc
j=0� j is a 2-boundary, being the boundary of Kd.
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Σ2

Σ1

Σ0

Figure 6. The boundary of Kd is the union of three connected components: �1, �2, and the boundary of
the external box �0 (�0 is only outlined in the figure for the sake of clarity).

where {Qi
c}Nc
i=1 is the set of independent electric-induced charges defined as

Qi
c=〈Q,Ci 〉. (30)

Once the evaluations of the electric flux on the representatives of the homology generators are
known, the electric flux 〈W,s2〉 evaluated on a generic 2-cycle c2, represented by (28), can be
recovered as a linear combination of the {Qi

c}Nc
i=1 as

〈W,s2〉=
Nc∑
i=1

ai 〈W,�i 〉+〈W,b〉=
Nc∑
i=1

ai Q
i
c,b∈ B2(Kd), ai ∈Z, (31)

where 〈W,b〉=0 for Lemma 2. It is important to note that the integer coefficients {ai}Nc
i=1 are

exactly the same as that in (28).
As indicated by (29), the evaluations of W over homologically non-trivial 2-chains have to be

nonzero in general, and such evaluations cannot be represented by using the coboundary of the
vector potential P only—as in (21)—since it always gives zero evaluation over 2-cycles. To solve
this issue, the next theorem is stated.

Theorem 1
A family of integer-valued 2-cochains {Pi }Nc

i=1 is introduced. Each Pi , called thick link††, has to
satisfy the following properties:

1. Pi is a 2-cocycle in Kd: Pi ∈ Z2(Kd,Z).
2. Considering the 2-cycles {� j }Nc

j=1 that are the representatives of generators for the H2(Kd)
homology group,

〈Pi ,� j 〉=�ij (32)

holds.

Moreover, the potential definition in (21) is substituted with

W=CP+
Nc∑
i=1

Qi
cP

i . (33)

Then, the non-local Gauss’s law (31) holds for all 2-cycles c2∈ Z2(Kd), represented by (28).

††The name thick link is borrowed from [71], although its definition is different with respect to that used in this
paper. (In [71] a thick link is defined as a set of tetrahedra.)
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Proof

〈W,c2〉=〈CP,c2〉+
Nc∑
i=1

Qi
c〈Pi ,c2〉=

Nc∑
i=1

Qi
c

Nc∑
j=1

a j 〈Pi ,� j 〉=
Nc∑
i=1

Nc∑
j=1

Qi
ca j�ij=

Nc∑
i=1

ai Q
i
c. (34)

�

The following theorem holds.

Theorem 2
The thick links {Pi }Nc

i=1 are the representatives of generators for the second cohomology group
H2(Kd,Z).

Proof
One can prove that the set of all thick links form a set of representatives of a cohomology basis
by using the Universal Coefficients Theorem, see for example [72]. The authors decided to omit
this proof, since it does not give any new light on the practical aspects of the problem. �

Equation (33) shows that the whole 2-cochain group C2(Kd) can be spanned by the coboundary
of the vector potential CP∈ B2(Kd) together with a linear combination of the representatives of
the second cohomology group H2(Kd,Z) generators using the corresponding induced electric
charges as coefficients.

Concretely, the thick links can be represented as arrays of integer coefficients, one coefficient
for each face f ∈Kd. The coefficients have to fulfill the constraints described in Theorem 1. One
possibility is to choose as the support of the thick link the faces dual to dual edges that form a
path from each �i to �0. By adopting the same complex used in Example 1, a possible set of
thick links constructed by using this technique is shown in Figure 7. Two automatic and efficient
algorithms to compute the thick links are presented in Section 4.6.

4.3. Formulation in terms of P

Once a family of thick links {Pi }Nc
i=1 is obtained and a 2-cochain S representing the source electric

charges Qs is determined, it is possible to represent a general electric flux 2-cochain W by using

W=CP+S+
Nc∑
i=1

Qi
cP

i . (35)

By using (35), Gauss’s law holds implicitly for each 2-cycle in Kd, hence the potentials are
designed. If the i th conductor is isolated, then the induced charge Qi

c is known. On the contrary, if
the electric potential of the i th conductor is known, Qi

c is an additional unknown of the problem.

Π
1

Π
2

Π
1

Figure 7. On the left, a family of possible thick links for the Example 1. On the right, the dual
edges dual to faces belonging to the support of a thick link form a path on Bd. These paths

are used to impose boundary conditions in Section 4.4.3.
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The inverse permittivity constitutive matrix links the electric fluxes W to voltages U

U=gW. (36)

g is constructed in such a way that (36) holds for an element-wise uniform electric field E and
electric flux density field D in each polyhedron and it is the approximate discrete counterpart of the
constitutive relation E=�D at continuous level, �=ε−1 being the inverse of electrical permittivity
assumed element-wise constant. Concerning the construction of g, the same techniques described
for the construction of the permittivity constitutive matrix E in (7) can be used.

Faraday’s balance law,

〈CTU, fB〉=〈U,� fB〉=0 ∀ fB∈Bd, (37)

is enforced by a linear system of equations. By substituting (36) and (35) in (37), an algebraic
equation is obtained for each dual face fB∈Bd as

CTgCP+
N∑
j=1

(CTgP j )Q j
c =−CTgS−

Nc∑
k=N+1

(CTgPk)Qk
c, (38)

where, as in the scalar potential formulation, the conductors j =1, . . . ,N are associated with a
known potential, while the others k=N+1, . . . ,Nc are subject to the floating potential constraint.

The process of forming the linear system of equations can be conveniently visualized by using
Tonti’s diagram for the formulation in terms of P, represented in Figure 8. Following the path
1-2-3-4 in the diagram, the equations are obtained.

4.4. Non-local quantities and boundary conditions

4.4.1. Dirichlet boundary condition. A Dirichlet boundary condition has to be imposed on the
boundaries of conductors, since the boundary of each conductor is equipotential. The electric field
E will result normal to the considered surface. This condition is simply imposed by considering the
vector potential 〈P,e〉 unknown on each edge e belonging to the considered boundary surface. In
this case, in fact, Faraday’s law (37) is enforced also on a dual face fB one-to-one with the edge e
lying on the considered boundary, see Figure 9(a). As one can see in Figure 9(b), the boundary of
fB also contains the edge l, which lies on the boundary surface. Not considering the contribution
of the voltage associated with the line l in Faraday’s balance law implicitly enforces this voltage
to zero.

4.4.2. Relative homology theory. Relative homology theory [55] is an extension of homology
theory suitable to deal with boundary conditions. Given a subcomplexS ofK, a k-chain z∈Ck(K)
is a relative cycle modulo S, z∈ Zk(K,S), if �z∈Ck−1(S). t ∈Ck(K) is a relative boundary
modulo S, t ∈ Bk(K,S), if t=�x+ y for some x ∈Ck+1(K), y∈Ck(S). The second relative
homology group H2(K,S) is defined as H2(K,S)= Z2(K,S)/B2(K,S).

Figure 8. Tonti’s diagram for the electrostatic formulation in terms of P.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
DOI: 10.1002/nme



R. SPECOGNA

(a)
(b)

Figure 9. (a) The edge e lies on the boundary. The dual face fB, one-to-one with e, is highlighted.
(b) The boundary of fB contains also the edge l .

Σ2

Σ1

Σ0

Figure 10. Three 1-chains are defined on the complex Bd used in Example 1:
b∈ B1(Kd), c∈ B1(Kd,�Kd), and h∈H1(Kd,�Kd).

As a clarifying example, let us concentrate on the complexBd used in Example 1, see Figure 10.
Three kinds of 1-chains are present in the figure. The 1-boundary b∈ B1(Bd) is boundary of a
2-chain s∈Bd. The 1-chain c is a relative boundary, c∈ B1(Bd,�Bd), since the boundary of c lies
on C0(�Bd) and, together with a 1-chain in �Bd, bound a 2-chain t ∈Bd. It is easy to see that this
property holds if the boundary nodes of c lie on the same connected component of �Bd. On the
contrary, if the boundary nodes of a 1-chain h lie on two different connected components of �Bd,
then h together with a 1-chain in �Bd do not bound any 2-chain in Bd, see Figure 10. Chains as
h are non-trivial in the first relative homology group H1(Bd,�Bd).

Next theorem shows how a basis for H1(Bd,�Bd) can be obtained by exploiting the duality
with thick links.

Theorem 3
Let us construct a family of 1-chains {Ki }Nc

i=1 in Bd, where each element of {Ki }Nc
i=1 is called link.

The coefficient of the link Ki relative to the dual edge eB is 〈Pi , f 〉, where the face f ∈Kd is dual
to eB, see Figure 11. The {Ki }Nc

i=1 form a set of representatives for the first relative homology group
H1(Bd,�Bd) basis dual to the basis of the second cohomology group H2(Kd,Z) corresponding
to the thick links.

Proof
The links, as above defined, are clearly non-trivial elements of H1(Bd,�Bd). The independency
can be shown by resorting to the classical Poincaré–Lefschetz duality theorem‡‡ [55]

H2(Kd,Z)�H1(Bd,�Bd), (39)

which shows that links can be put in one-to-one correspondence with the thick links. �

‡‡It is well known that there cannot be torsion [55] in the following homology/cohomology groups Hi (Kd), Hi (Kd),
Hi (Kd,�Kd), and Hi (Kd,�Kd) for complexes embeddable in R3.
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Λ1 Λ2

Figure 11. The two links for Example 1. The boundary nodes of each link
lie on two different connected components of �Bd.

Every 1-chain c1∈C1(Bd) can be represented by a linear combination with integer coefficients
of the links plus a relative boundary c∈ B1(Bd,�Bd)

c1=
Nc∑
i=1

bi Ki +c,c∈ B1(Bd,�Bd), bi ∈Z. (40)

4.4.3. Independent voltages and non-local Faraday’s laws. If Faraday’s law is applied on a 1-
boundary b∈ B1(Bd) or on a 1-chain c∈ B1(Bd,�Bd) which is a relative boundary, see Figure 10,
the evaluation of U is zero. In fact

〈CU,s〉=〈0,s〉=0, (41)

where b=�s or c+ t=�s, t ∈�Bd.
The voltage on a general 1-chain c1∈C1(Bd) can be obtained by using the same coefficients as

the linear combination in (40) as

〈U,c1〉=
Nc∑
i=1

bi〈U,Ki 〉+〈U,c〉=
Nc∑
i=1

biU
i
c ,c∈ B1(Bd,�Bd),bi ∈Z, (42)

where the voltages evaluated over the links represent a set of independent voltages {U j
c }Nc

j=1
defined as

Ui
c =〈U,Ki 〉. (43)

The final algebraic linear system of Equations (38) contains one equation for each edge in Kd.
Nonetheless, it contains as unknowns, in addition to the vector potential 〈P,e〉 on all edges e∈Kd,
the unknown induced electric charges. To close the linear system of equations, a set of non-local
Faraday’s laws have to be added, one for each additional unknown. The non-local Faraday’s laws
can be written on each link Ki §§ as

PiTU=Ui
c .

§§For the sake of parsimony in the notation, since the arrays representing the 1-chain Ki and the 1-cochain Pi are
the same, only the former is used in the following.
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By using (36) and (35), they can be written in terms of unknown DoFs as

(PiT gC)P+
N∑
j=1

(PiT gP j )Q j
c =Ui

c−PiT gS−
Nc∑

k=N+1
(PiT gPk)Qk

c . (44)

It is easy to show that the P DoFs involved in each of (44) are that belonging to a pillar of cells
pierced by the corresponding link, see Figure 12. As a consequence, the more compact the support
of the link is, the fewer fill-in of the system matrix is obtained.

The final algebraic linear system is singular and the so-called gauge condition should be applied,
for example, by using the standard tree-cotree approach [54]. Nonetheless, using an ungauged
solution—i.e. without applying a gauge condition—yields a much better result in terms of conver-
gence speed when a preconditioned conjugate gradient solver is used, see [54].

4.5. Computation of the array S

A Spanning Tree Technique [73, 74] (STT) can be tailored to compute the array S, which represents
the source charges Qs. The algorithm is presented in Table I.

Λ1

Figure 12. Pillar of cells pierced by the link K1.

Table I. The STT algorithm tailored for the computation of the array S representing the source charges.

1. L := all cells v∈Kd in the dielectric region;
2. for every f ∈Kd, set 〈S, f 〉 := UNDEFINED;
3. Find a facet spanning treea B of Kd;
4. Set 〈S, f 〉 :=0 for all faces f ∈B;
5. while( L �=∅ )

(a) Lsize :=card(L);
(b) for every v∈L

i. if for every f ∈|�v|, 〈S, f 〉 �= UNDEFINED, then
A. if 〈S,�v〉=〈Qs,v〉 then L :=L/v;
B. else return FAILURE;

ii. if there exists a unique f ∈|�v| such that 〈S, f 〉= UNDEFINED then
A. Set 〈S, f 〉 to get 〈S,�v〉=〈Qs,v〉;
B. L :=L/v;

(c) if Lsize =card(L) then return INFINITE_LOOP;
6. return S;

aA facet spanning tree is a tree constructed by using as graph that is obtained by the dual edge–dual node
incidence matrix 〈DT,eB〉,∀eB∈Bd.
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Table II. The GSTT algorithm for the thick links computation.

1. Let L := all cells v∈Kd in the dielectric region;
2. for every face f ∈Kd, set 〈Pi , f 〉 := UNDEFINED;
3. Find a facet spanning treea B of Kd, where the faces f ∈⋃Nc

i=1�i are set as tree
faces at the beginning of the formation of the tree;

4. Select one face Fi ∈�i . Set 〈Pi ,Fi 〉 :=1 and 〈Pi , f 〉 :=0 for all f ∈B/Fi ;
5. while( L �=∅ )

(a) Lsize :=card(L);
(b) for every v∈L

ii. if for every f ∈|�v|, 〈Pi , f 〉 �= UNDEFINED, then
A. if 〈Pi ,�v〉=0 then L :=L/v;
B. else return FAILURE;

ii. if there exists a unique f ∈|�v| such that 〈Pi , f 〉= UNDEFINED then
A. Set 〈Pi , f 〉 to get 〈Pi ,�v〉=0;
B. L :=L/v;

(c) if Lsize =card(L) then return INFINITE_LOOP;
6. return Pi ;

aA facet spanning tree is a tree constructed by using as graph that is obtained by the dual edge–dual node
incidence matrix 〈DT,eB〉,∀eB∈Bd.

4.6. Automatic computation of links

While cohomology has been fundamental to derive the new geometric formulation based on a
vector potential, the use of a cohomology computation to generate the links should be avoided,
since it is extremely time consuming. Instead, a couple of more efficient techniques are presented
in the following.

4.6.1. Algorithm based on the Generalized Spanning Tree Technique. The Generalized Spanning
Tree Technique (GSTT) [56, 73, 74] can be tailored to generate the thick links. The GSTT algorithm,
described in Table II, works for each conductive region separately. Let us consider the i th conductor
Ci . By card(L) we denote the cardinality of the set L .

The proposed algorithm is straightforward to implement and it is very efficient, being the running
time linear with the sum of the number of cells and faces in K. It also guarantees, once the
algorithm terminates correctly, to return a valid set of coefficients for the thick links [74]. The
termination of the GSTT algorithm cannot be proved, since some counter examples have recently
been discovered [74]. Nonetheless, if minimal diameter trees are used, which are easily constructed
by using the Breadth-first strategy (BFS) [75], the probability of termination problems is negligible
in practice.

We note that the support of the thick links obtained by this algorithm may be in general far
from minimal. This is not a serious drawback in practice, but the next algorithm allows the most
compact family of thick links to be obtained at a reasonable computational price.

4.6.2. Algorithm based on the shortest path. The most compact family of links can be obtained
by means of the shortest paths¶¶ made of dual edges in Bd between all possible pairs of dual
nodes belonging to each �i and �0, respectively. To find the shortest path between two nodes in a
graph, the well-known Dijkstra algorithm may be used, see for example [75, p. 595]. To find the
shortest path between all pairs of dual nodes belonging to �i and �0, respectively, a trick can be
introduced. Two additional nodes N0 and Ni are added to the graph. The dual nodes belonging
to �0 are connected to N0, while the dual nodes belonging to �i are connected to Ni . Finally,
the shortest path between Ni and N0 is found with a worst case complexity of O(eg+ng log(ng)),
where eg is the number of edges in the graph and ng is the number of nodes in the graph. Each

¶¶Shortest in the sense of number of dual edges, not in the Euclidean norm sense. The weights of the graphs are
set to 1.
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coefficient of the link is recovered as the incidence of the dual edge orientation with respect to the
orientation of the path.

5. TAKING ADVANTAGE OF SYMMETRIES

When the electrostatic problem presents some symmetries, the computational domain can be
reduced by using the Neumann boundary conditions. In this case, different boundary conditions
are imposed on different portions of the external boundary �0, and a generalization is required.
Let us present this generalization by means of an example.

Let us consider a parallel plate capacitor with a conducting sphere placed between the plates.
The computational domain is bounded by means of symmetry boundary conditions to a box, see on
the left of Figure 13. Let us call by S2 the portion of the external surface �0 subject to symmetry
boundary condition and by S1 the complement of S2 with respect to �Kd. In the example, S1
is formed by the two non-connected surfaces belonging to �0, corresponding to the plates of the
capacitor, plus the boundary of the sphere (hence, S1 is composed of three distinct connected
components), see on the left of Figure 13. One connected component of S1, called �′

0, is considered
as the new reference conductor in place of the whole �0 and the other N ′

c connected components

of S1 are considered as boundaries of conductors {Ci }N
′
c

i=1.

5.1. V formulation

The Neumann boundary condition on S2 is simply obtained by assuming the electric scalar potential
V unknown on the nodes lying on S2. In fact, Gauss’s law (8) is enforced also on a dual cell vB,
see Figure 14(a), one-to-one with the node n lying on the considered surface S2. As one can see in

Σ2

Σ1

Σ0

S1

Σ2

Σ1

Σ0

Figure 13. A parallel plate capacitor with a conducting sphere placed between the plates.

(a)

(b)

Figure 14. (a) The dual cell vB lying on the symmetry surface S.
(b) The boundary of vB contains also the surface s.
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Figure 14(b), the boundary of vB also contains the surface s, which lies on S2. Not considering the
contribution of the electric flux through the surface s in Gauss’s balance law, implicitly enforces
this flux to zero. Thus, the electric field E will be tangent to surface S2.

5.2. P formulation

Dealing with symmetries, the thick links can be defined as representatives of second cohomology
group H2(Kd−S2) generators. By exploiting a well-known duality [57, p. 110], [55]

H2(Kd−S2)∼=H1(Bd, S1), (45)

the links are defined as representatives of the first relative homology group H1(Bd, S1) generators.
Hence, once a connected component of S1 has been defined as �′

0, the links can be obtained as the
set of paths formed by dual edges joining �′

0 with each other connected component of S1. In the
considered example, the first link joins the two plates of the capacitor, whereas the second joins
one plate of the capacitor—which was selected as a reference conductor �′

0—to the conducting
sphere, see on the right of Figure 13.

The Neumann boundary condition is simply obtained by imposing the vector potential 〈P,e〉 to
be zero on each edge e belonging to S2. Hence, the electric field E will be tangent to surface S2.

Although it is not possible to demonstrate that in general torsion [55, 57] vanishes for H1(Bd, S1)
(see a counter example in [76]), we conjecture that this is not an issue in practical meaningful
problems.

6. NUMERICAL RESULTS

The pair of complementary geometric formulations for electrostatics has been implemented in
the CELEKTRO research code [77]. A number of benchmarks solved with the CELEKTRO code
are now presented. In the following, by Xr we denote the reference value of the considered
physical quantity X , whereas by XV and XP we denote the value obtained by the V and the P
formulations, respectively. By Xm we denote the value obtained by computing the mean value
Xm =0.5(XV +XP ).

6.1. Benchmark 1: spherical capacitor

The spherical capacitor is composed of two concentric conductive spherical electrodes, see on the
left of Figure 15. The radius of the smaller sphere is a=20m,whereas the radius of the bigger sphere

3 3.5 4 4.5 5 5.5
3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

log10 (number of cells)

C
 [n

F
]

C
r

C
V

C
P

C
m

Figure 15. Benchmark problem 1. On the left, the boundary of Kd and the thick link. On the right,
convergence with mesh refinement of the value of capacitance.
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Table III. Convergence with mesh refinement of the capacitance value for Benchmark 1.

# cells in Kd (meshing time [s]) 1365 (1) 22 253 (14) 166 725 (77)
# DoFs V (solver time [s]) 131 (�1) 3204 (�1) 25 706 (0.3)
# DoFs P (solver time [s]) 1909 (�1) 27 668 (0.5) 201 266 (8)
CV [nF] (error %) 3.967 (7.02) 3.748 (1.11) 3.717 (0.28)
CP [nF] (error %) 3.386 (−8.67) 3.652 (−1.49) 3.693 (−0.37)
Cm [nF] (error %) 3.677 (−0.83) 3.700 (−0.19) 3.705 (−0.047)

Figure 16. Benchmark problem 2. On the left, the boundary of Kd and the thick links. On the right, a
zoom on the neighborhood of the two spheres.
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Figure 17. Benchmark problem 2. On the left, convergence with mesh refinement of
the value of capacitance between the two spheres. On the right, convergence with

mesh refinement of the force between the two spheres.

is b=50m. The reference value is obtained by the formula Cr =4��0/(1/a+1/b)=3.7071nF. On
the right of Figure 15 and in Table III, the results in terms of the convergence of the capacitance
value with mesh refinement are shown.

6.2. Benchmark 2: two conducting spheres

A benchmark composed of two equal conductive spheres is proposed, see Figure 16. The radius
of the spheres is r=25m and the distance between the two centers is d=70m. The potential
V1=−50 V is assigned to the first sphere and the potential V2=50 V is assigned to the second
sphere. The two spheres are placed inside an external cube having an edge length of 10 km. The
value of the capacitance is calculated analytically by means of the method of image charges [78, 79]
C=2.2364×10−9 F. The attractive force acting on the direction identified by the line which
connects the two centers of the spheres is analytically computed by evaluating F= (U2/2)�C/�x =
1.1812×10−7 N. In Figure 17 and in Table IV the results in terms of the convergence of the values
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Table IV. Convergence with mesh refinement of the capacitance value and force for Benchmark 2.

# cells in Kd (meshing time [s]) 4626 (2.3) 27 259 (15.9) 101 183 (53.2)
# DoFs V (solver time [s]) 716 (�1) 4307 (�1) 16 373 (0.3)
# DoFs P (solver time [s]) 5665 (�1) 32 979 (1) 121 311 (10.5)
CV [nF](error%) 2.516 (12.5) 2.316 (3.57) 2.267 (1.38)
CP [nF](error%) 1.886 (−15.67) 2.150 (−3.84) 2.204 (−1.44)
Cm [nF](error%) 2.201 (−1.57) 2.233 (−0.27) 2.236 (−0.032)
FV [�N](error%) 13.88 (17.48) 12.39 (4.91) 11.98 (1.47)
FP [�N](error%) 9.040 (−23.45) 11.10 (−6.01) 11.56 (−2.08)
Fm [�N](error%) 11.46 (−2.98) 11.75 (−0.55) 11.77 (−0.31)

3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
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1.95
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V
 [V

]

V

V

V

V

Figure 18. Benchmark problem 3. On the left, the boundary of Kd and the thick links. On the right,
convergence with mesh refinement of the sphere’s potential value.

of capacitance and force with mesh refinement are shown. The force is computed by using the
technique described in [80].

6.3. Benchmark 3: conducting sphere with floating potential constraint in a uniform electric field

A conducting sphere is placed between two parallel electrodes, see on the left of Figure 18. Let
us assume that the distance of the two electrodes is d=10.5 m and the radius of the sphere is
R=0.1 m. The sphere is placed at a distance of h=0.25 m from the second electrode. Over the
electrodes 1 and 2 the potentials V1=−1 V and V2=0 V, respectively, are applied by the Dirichlet
boundary conditions. Let us fix the potential on the boundary of the conducting sphere, again with
the Dirichlet boundary conditions, at V 1

c =2 V. The closed-form expression for the total charge
Q1

tot on the sphere, described in [81], is

Q1
tot=4��R2

(
k1

∞∑
n=1

1

sinh(na)
+k2

∞∑
n=1

cosh(na)

sinh2(na)

)
(46)

where cosh(a)=h/R, k1= (V 1
c /h) sinh(a)cosh(a), k2= (V0/d) sinh2(a). Evaluating Q1

tot for the
proposed benchmark yields Q1

tot=28.188pC.
The computational domain is truncated by considering an extension of the electrodes equal to

L=10 m and meshed with an unstructured tetrahedral mesh. In this benchmark, to test the floating
potential constraint, a total charge of Q1

tot=28.188pC is assigned on the surface of the sphere
(instead of assigning the potential V 1

c =2 V). The potentials V1=−1V and V2=0V , respectively,
are enforced by the Dirichlet boundary conditions on the electrodes 1 and 2, while a Neumann
boundary condition is imposed on the other external surfaces. The values of V 1

c computed by using
meshes with increasing refinement are visible in Table V and on the right of Figure 18.
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Table V. Convergence with mesh refinement of the sphere’s potential for Benchmark 3.

# cells in Kd (meshing time [s]) 9424 (4.1) 25 415 (15.6) 54 408 (30.2)
# DoFs V (solver time [s]) 1213 (�1) 3550 (�1) 8425 (�1)
# DoFs P (solver time [s]) 12 111 (0.2) 31 969 (0.7) 66 167 (1.9)
VV [nF](error%) 1.824 (−8.77) 1.940 (−2.98) 1.972 (−1.42)
VP [nF](error%) 2.129 (6.43) 2.044 (2.18) 2.023(1.19)
Vm [nF](error%) 1.977 (−1.17) 1.992 (−0.40) 1.997 (−0.12)

Figure 19. Benchmark problem 4: The geometry of the considered electrostatic MEMS.

6.4. Benchmark 4: capacitance of an MEMS switch

As an industrial test case, the capacitive MEMS switch benchmark described in [82] is used,
see Figure 19. The MEMS is composed of a perforated top plate (475�m height, 275�m width,
thickness 4�m) suspended by a set of beams over a bottom plate (485�m height, 285�m width,
thickness 0.5�m, gap 3�m). The bottom plate is coated with a thin dielectric layer (εr =7) of
thickness 0.2�m. The dimension of the holes in the top plate is 25×25�m with a pitch of 50�m.
The MEMS is placed in the center of a cube with edge length of 20mm. The other geometric
parameters can be obtained from Figure 20.

The MEMS capacitance is computed in [82] by using three softwares:

• Femlab (http://www.comsol.com) CF=0.37pF;
• COVENTOR (http://www.coventor.com) CC=0.40pF;
• GetDp (http://www.geuz.org/getdp/) CG=0.36pF.

The results obtained by using the CELEKTRO code are reported in Table VI.

7. CONCLUSIONS

A pair of complementary geometric formulations for electrostatics suitable with polyhedral meshes
has been introduced. The design of the potentials employed in the vector potential-based formulation
has been formally presented by using the tools from homology and cohomology theories with
integer coefficients. It has been shown how a family of thick links is needed, which are the
representatives of generators for the second cohomology group over integers of the dielectric
region. Two automatic and efficient graph-theoretic algorithms to find the thick links have been
introduced. In particular, the second algorithm produces the most compact family of thick links,
minimizing the fill-in of the system of equations sparse matrix. The original non-local equations
arising in both formulations when imposing boundary conditions have been described in detail.

As the numerical results confirm, the values obtained by the two formulations provide the upper
and lower bounds for each electromagnetic quantity and their average results quite close to the
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Figure 20. Geometry of benchmark problem 4. (All dimensions are in �m.)

Table VI. Convergence with mesh refinement of the capacitance value for Benchmark 4.

# cells in Kd (meshing time [s]) 30 456 (36.4) 252 096 (190.0) 573 952 (373.5)
# DoFs V (solver time [s]) 3136 (�1) 34 236 (0.4) 64 876 (0.5)
# DoFs P (solver time [s]) 40 440 (2.4) 316 172 (29.2) 766 396 (77.1)
CV [nF] 0.408 0.390 0.385
CP [nF] 0.316 0.345 0.355
Cm [nF] 0.362 0.368 0.370

exact solution even for extremely coarse meshes. To conclude, complementarity should be always
exploited, since it allows saving at least an order of magnitude of mesh elements maintaining the
same accuracy. This has a big impact on the computational time, since the mesh generation is the
most computationally expensive task.
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