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SUMMARY

This paper describes a systematic geometric approach to solve magneto-quasi-static coupled field–circuit
problems. The field problem analysis is based on formulating the boundary value problem with an
electric vector potential and a scalar magnetic potential. The field–circuit coupling and the definition of
potentials are formally examined within the framework of homology theory. Copyright q 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In the design of complicated electromagnetic systems, some subsystems often admit successful
analysis with the circuit-theoretical model, while others require detailed analysis of their electro-
magnetic fields. The computational efficiency of the circuit model should always be exploited in
these situations—as it is often critical to the solvability of the problem—and this suggests the
coupling of the two different mathematical models. What results is the so-called coupled field–
circuit problem [1]. We propose a systematic, generally applicable way to pose coupled electric
circuit–T–� formulated eddy-current problems using a discrete geometric approach.

The questions will be addressed in the context of homology and cohomology theory, due to the
inherence of the boundary operator and exterior derivative in Maxwell’s equations: the two are
studies on domains of integration (chains) under the boundary operators and fields under exterior
derivatives, and they enable automated treatment of problems whose geometry is too complicated
to allow for successful problem setup by hand.
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A detailed analysis of electromagnetic fields is performed in the appropriate subsystem, spatially
modeled by domain D of electromagnetic fields—technically, a 3D subset of the 3D Euclidean
space that is compact everywhere, with at least piecewise smooth closed surface as the boundary.
The domain D contains two subdomains of similar type, a conducting subdomain Dc and an
insulating subdomain Da , and they are subject to the following requirements: (i) Dc∪Da = D and
(ii) Da ∩ Dc is their 2D common boundary. For simplicity, we consider only cases where D is
topologically trivial.‡ We assume the fields in D to be magneto-quasi-static. The complement C
of D with respect to the 3D Euclidean space represents the circuit region.

2. COMPUTATIONAL FRAMEWORK FOR FIELDS

The numerical computation of fields in domain D aims at an approximate solution for the magneto-
quasi-static Maxwell’s equations. This requires some computational framework.

The exterior calculus, operating on differential forms, is gradually becoming more popular in the
electromagnetic modeling community, and undergraduate texts with explicit application to physics
[2–6] have been available for a long time. We adopt this formalism, because of its benefits over
vector calculus: it keeps metric notions encapsulated, classifies fields with degrees, and unifies
notations of various field differentiations into an exterior differentiation and boundary terms into
a trace operator.

The field quantities of an eddy-current problem can therefore be represented with differential
p-forms, [6, 7], such as the electric field 1-form e, the induction field 2-form b, the magnetic field
1−form [8] h, and the current density 2-form j . The media in the field domain are characterized
by means of constitutive equations e= � j and b= �h, which are mappings from 2- to 1-forms and
from 1- to 2-forms, respectively. They may exhibit abrupt changes only at the material interfaces,
which we assume to be piecewise smooth surfaces.

The coupling between voltages on �D and currents across �D occurs only at a number of
connector domains �i , simply connected, disjoint subdomains. We denote the set of connectors
�i by � and require that �= �D ∩ Dc holds. The rest of the boundary �D, including ��, is
denoted by �0 (� ∩ �0 = �� is 1D). The field problem in D must be a legitimate circuit element
when seen from C ; hence, it needs to comply with the basic requirements of circuit theory [9].
The field problem has to be magnetically isolated, meaning that the flux out of any part of the
component’s boundary �D must be null. Consequently, the electric field on the boundary �D and
outside it is conservative, i.e. the Kirchhoff voltage law (KVL) can be applied for the component.
Current may escape the component’s boundary through the connectors only, and the quasi-static
Ampère’s law enforces zero net current at the terminals, i.e. the Kirchhoff current law (KCL) for
the component. Finally, we require the tangential electric field on the connectors to vanish. We
use the trace operator t to denote what would be the tangential and normal components of vector
fields on the surfaces: for the 1-forms (e, h, t) it corresponds to the tangential component and for
the 2-forms (b, j) to the normal component. Using this operator, we can summarize the boundary
conditions as follows:

t b = 0 holds on �D

‡That is, no cavities in or tunnels through D. For problems arising from more complicated D, see [1].
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t j = 0 holds on �0, and

te = 0 holds on �

These conditions enable the analysis of the field problem in D as a multiterminal [10].

2.1. Cell complexes

We approximate D with a pair of interlocked oriented finite cell complexes: The primal K and
its dual K̃ [11, 12, p. 136]. The p-cells of K̃={Ñ, Ẽ, F̃, Ṽ} are simplices, such as dual nodes
ñ ∈Ñ, dual edges ẽ∈ Ẽ, dual faces (triangles) f̃ ∈ F̃, and dual volumes (tetrahedra) ṽ ∈ Ṽ. The
p-cells of K={V,F,E,N} are obtained from K̃ according to the barycentric subdivision [8].
The pair {K, K̃} forms the mesh M. The mutual interconnections of the dual cell complex K̃

are described by the incidence matrices: G̃ between edges ẽ and nodes ñ, C̃ between faces f̃ and
edges ẽ, and D̃ between volumes ṽ and faces f̃ . The matrices G= −D̃T,§ C= C̃T, and D= G̃T

describe the mutual interconnections of K.

2.2. Chains, integrals, and degrees of freedom

Maxwell’s equations impose relations between certain integrals in the domain. With tessellation
into cells, we deliberately limit the domains of integration to aggregates of the cells. The ap-
proximate solution we seek for the equations—and hence, for the field problem—is equivalent to
the knowledge of these integrals over the cells of the mesh. We wish to make the domains of
integration additive, because this enables piecewise description.¶ To this end, we introduce integer
combinations of p-cells, called p-chains cp, and define the integration of a p-form over a p-chain
as ∫

cp
f p =

∫
∑n

i=1 ci ki
f p =

n∑
i=1

ci

∫
ki

f p (1)

Here, ki are the appropriate cells of the mesh; for example, ki are primal edges in the case of
1-forms. Chains can be added, can be added, and therefore the primal and dual chains constitute
chain groups Cp(K) and Cp(K̃).

In order to express the integrals of the field quantities over the chains, we need to store the
chain coefficients ci and the integrals over the cells. We call the integrals over the cells degrees
of freedom (DoF) associated with the corresponding p-cells of mesh M.

Thus, U is the array of fluxes on primal faces f , U is the array of e.m.f.s on primal edges e, F
is the array of m.m.f.s on dual edges ẽ, and I is the array of currents on dual faces f̃ (Figure 1).
The DoF arrays are regarded here as functions of time. Maxwell’s laws governing an eddy-current
problem can now be written exactly for the primal and dual chain complexes as follows:

CU=−dtU (a), D̃I= 0 (c)

DU= 0 (b), C̃F= I (d)
(2)

§The minus sign comes from the assumption that n is oriented as a sink, whereas the boundary of ṽ is oriented by
the outer normal.
¶The results of small-scale measurements can be added to deduce the results in larger entities.
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Figure 1. Dual and primal cell complexes for the case of a single tetrahedron. The attribution of DoFs to
the corresponding geometric elements is also shown.

where (a) and (b) are Faraday’s and Gauss’ magnetic laws, respectively, and (c) and (d) are
continuity and Ampère’s laws, respectively. Equation (d) directly implies (c); hence, (c) is not
imposed separately. In addition, we need some discrete counterparts of the constitutive laws

U= lF (a), U= qI (b) (3)

where l and q are some square mesh- and medium-dependent matrices, respectively.

3. CONSTITUTIVE MATRICES

We will construct the constitutive matrices l and q using the discrete Hodge technique based on
Whitney maps, described in [13]. We will consider the elementary case of a single tetrahedron,
assuming permeability � and resistivity � elementwise constants. For a mesh of tetrahedra, we
will add the contributions element by element.

3.1. Ohm’s matrix

Ohm’s matrix relates the currents Ik on dual faces f̃k with the e.m.f. Ui on primal edges ei . We
use Whitney’s map [7] to express the current density field j = ∑

kw
f
k Ik , where w f

k is the vector
proxy of the Whitney function associated with face f̃k [14]. Because of the continuity law (2c)
the field j is elementwise a constant [15], and using Ohm’s law in terms of fields e= � j we may
compute Ui as

Ui =
∫
ei

� j =
6∑

k=1
�w f

k (p) · ei Ik (4)

where ei is the edge vector associated with edge ei and p is any point in the considered tetrahedron.
Then, the entry qṽik of a possible Ohm’s matrix qṽ for tetrahedron ṽ is qṽik = �w f

k (p) · ei .
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3.2. Permeance matrix

The permeance matrix links the circulations Fj of the magnetic field on dual edges ẽ j with the
magnetic fluxes �i on primal faces fi . Using the Whitney map, we may express the magnetic field
h as h = ∑

jw
e
j Fj , where we

j is the vector proxy of the Whitney function associated with edge e j .
It is an affine field, and, from b= �h, we obtain the following expression for �i :

�i =
∫
fi

�h =
4∑
j=1

�we
j (mi ) · fi Fj (5)

where fi is the area vector associated with fi , and mi is the center of mass of face fi . Finally, the
entry lṽi j of the permeance matrix lṽ for tetrahedron ṽ is lṽi j = �we

j (mi ) · fi .

4. CHOICE OF POTENTIALS

Potentials are auxiliary quantities that impose some of Maxwell’s equations implicitly. We define
an operator d, the exterior derivative of differential forms, as the unique differential operator that
makes generalized Stokes identity

∫
c d f = ∫

�c f hold for any c and f of appropriate degrees
[14]. It corresponds to grad, curl, and div of classical vector analysis, and the primary quantity
is expressed as the exterior derivative of the potential. Potentials often enable formulations with
modest number of DoFs, and this implies computationally efficient solution. Where possible, we
wish to express the magnetic field h with a scalar potential, one DoF per node. The electric vector
potential t is additionally used where needed.

4.1. Tools for analysis of potentials

Analysis of potentials requires concepts of homology and cohomology. The central concepts
of homology are the groups of p-cycles and p-boundaries supported in a given subdomain S.
The group of p-cycles consists of chains with zero boundary; it is denoted by ZP(S) and de-
fined by {z ∈Cp(S) : �z = 0}. The everyday parlance terms ‘loop’ and ‘closed surface’ refer to
1- and 2-cycles, respectively. The group of p-boundaries is denoted by BP(S) and defined by
{b∈Cp(S) : b= �c for some c∈Cp+1(S)}. All boundaries are cycles, but not all cycles are nec-
essarily boundaries. This motivates the classification of cycles into classes whose elements differ
only by a boundary. The classes constitute the quotient group Hp(S)= Z p(S)/Bp(S), which is
the pth homology group.

The concepts of homology are reflected in the space of p-forms supported on S, denoted
by C p

dR(S). The space of closed p-forms supported on S is denoted by Z p
dR(S) and defined by

{� ∈C p
dR(S) : d�= 0}. These forms correspond to curl-free and div-free vector fields. The space of

exact p-forms is denoted by B p
dR(S) and defined by {� ∈C p

dR(S) :� = d� for some � ∈C p−1
dR (S)},

and hence these forms are expressible by a potential. We may analogously classify the closed p-
forms such that elements of a class differ by an exact field. The quotient group H p

dR(S) = Z p
dR(S)

/B p
dR(S) is the pth de Rham cohomology group. The theorem of de Rham states that this group is

isomorphic with the pth homology group when the chain coefficients are real numbers [16], and
this inherently connects the expressibility by a potential to the homology of the field domain.

If all fields are known to be zero over a subdomain U , the integrals of that field over chains
that differ only at U are identical, and we can disregard the difference. This leads to the concept

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 74:101–115
DOI: 10.1002/nme



106 R. SPECOGNA, S. SUURINIEMI AND F. TREVISAN

of relative p-chains, which are chain classes whose elements’ differences belong to Cp(U ). This
group is denoted by Cp(S,U ), and it analogously leads to the relative cycle, boundary, and
homology groups.

4.2. Conductor domain Dc and boundary �D

In magneto-quasi-statics, the electric field is considered in the conducting domain only, here
contained in Dc and C . However, the common interface �D of D and C plays a special role: given
the electric field in a precisely known conductor geometry, it would be possible to completely
express the influence of C on the electric field in D by all e.m.f.’s on �D and ignore C . Because
the circuit model does not describe a precise conductor configuration, the boundary conditions on
�D are weaker—only a subset of e.m.f’s on �D [9]. We include �D into the domain Dc∪�D,
where relevant e.m.f.’s reside (c2 in Figure 2 suggests the relevance).

Due to the condition t j = 0 on �0, only Dc can support non-zero current densities. This
introduces a non-zero curl to h in Dc and prohibits its representation with scalar potential only.
Equation (2c) together with the boundary conditions implies that the net current through every
2-cycle of Z2(Dc∪�D) is zero. Therefore, we may express the current density with electric vector
potential t , subject to condition j = dt . Then, the expression

∫
c j = ∫

�c t gives the current through
any 2-chain c in Dc∪�D, and the array of currents crossing the dual faces can be written as

I= C̃T (6)

According to (6) and (2d), the curls of t and h are equal in Dc∪�D; hence, they differ there by
a curl-free field only. The space of the curl-free fields Z1

dR(Dc∪�D) (closed 1-forms) splits up; it
contains as a subspace the space of the gradient fields B1

dR(Dc∪�D) (or exact 1-forms d� with
�, a 0-form referred to as scalar potential). The integrals of the gradient fields vanish over any
1-cycle. In addition, Z1

dR(Dc∪�D) contains fields with non-zero circulations over 1-cycles. Due
to Stokes’ theorem, integrals over all 1-boundaries vanish, but not over the 1-cycles that do not
bound a 2-cycle.

Figure 2. Shaded connectors reside on �D.
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This motivates the classification of 1-cycles into homology classes whose elements differ by
a boundary only; consider the integral

∫
z+�s h = ∫

z h + ∫
�s h = ∫

z h, which does not depend on
additions of boundaries, due to

∫
�s h = ∫

s dh = 0 for a curl-free h. Then, all chains of the form
z + b, where b is a 1-boundary, belong to the same homology class [z], which is an element of
the homology group H1(Dc∪�D) = Z1(Dc∪�D)/B1(Dc∪�D).

Getting back to the fields, de Rham theorem [16] states that when the space of the curl-free
fields Z1

dR(Dc∪�D) (or closed 1-forms) is similarly classified into field classes whose elements
differ by a gradient field—or the de Rham cohomology group H1

dR(Dc∪�D) = Z1
dR(Dc∪�D)/B1

dR
(Dc∪�D) is constructed—then, for each chain class in H1(Dc∪�D), there is a field class in
H1
dR(Dc∪�D). More practically, an element of de Rham cohomology group H1

dR(Dc∪�D) is
uniquely identified by its integrals over the 1-cycles in the elements of the homology group
H1(Dc∪�D) [17–19]. Hence, we may express the difference t − h with a gradient field when they
belong to the same cohomology class, i.e. they have (i) equal curls and (ii) equal integrals over
the elements of H1(Dc∪�D). This allows us to present the m.m.f.’s over the edges of Dc∪�D as

F=T + G̃X (7)

What does the requirement of equal circulations of t imply in practice? Figure 2 shows a non-
bounding cycle c1, which belongs to a generator of H1(Dc∪�D). Ampère’s law (2d) in the whole
domain D states that the integral

∫
c1
h contains the contribution I , and because

∫
c1
t = ∫

c1
h must

hold if we wish to use formulation (7),
∫
c1
t depends on I as well. Our formulation must impose

contributions to certain integrals of t , and these values depend on total currents in the branches
of the conductors.

4.3. Insulating domain Da

The current density is zero in the insulating domain Da , and, if the sums of m.m.f.’s over all
1-cycles of Z1(Da) were zero, we could express these m.m.f.’s completely with a scalar potential
[16, 19]. The expression F= G̃X would hold. However, there are always non-trivial elements in
the homology group H1(Da) (see c1, c2 in Figure 3), and the non-bounding 1-cycles in its elements
may have non-zero m.m.f.’s over them. The elements of H1(Da) encircle, and therefore depend on
linearly independent total currents in the branches of the conductors.‖ Hence, the magnetic field
ha in Da cannot be described completely by a scalar potential alone, but only partially, and we
have to add some curl-free fields to the space of gradient fields BdR1(Da).

There are different techniques to add closed but not exact fields of ZdR1(Da) to BdR1(Da).
They usually try to retain the speed of the scalar potential formulation and avoid (i) filling up the
system matrix, and (ii) introducing many new unknown variables to the system [20]. We adopt a
classic technique of thick cuts [21, 22] in Da and extend the domain of the vector potential into

‖Currents through the generators of the relative homology group H2(D, Da), to be more precise. This is exactly the
same situation as with the circulations of the curl-free component of t in the previous section—and, as it turns out,
can again be treated with the same means. The number of independent currents equals the rank of H1(Da) when D
is topologically trivial. The generators of H2(D, Da) are classes of 2-chains whose boundaries reside completely in
Da , and their boundaries in D are non-bounding in Da . They establish a basis for H1(Da); hence, the isomorphism
H2(D, Da)∼=H1(Da) holds. (More formally, in the long exact homology sequence of pair (D, Da) [17, 18], the
groups Hi (D) are trivial for i>0, because D is topologically trivial. This chops the long exact homology sequence
into pairs of groups, a family of isomorphisms Hi+1(D, Da)∼=Hi (Da) for i>0.)
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Figure 3. Two generators of H2(D, Da), one with boundary c1 and another with boundary c2 + c3. The
intersections of the surfaces with Dc are highlighted and their boundaries are shown. The currents through

these surfaces are linearly independent.

the thick cuts, where it is denoted by ta . The cuts offer a relatively local support of ta—avoiding
serious fill-up—and introduce the minimal number of extra variables, one per thick cut. Again,
we have to impose current-dependent integrals of ta , now over the edges of the thick cut. The
information about the currents must, of course, be conveyed from Dc to Da somehow. The ta in
the thick cuts make this rather straightforward, as seen in Section 5.2.

4.4. Electromotive forces

In the domain Dc∪�D, the e.m.f. over any 1-boundary can be obtained directly from Faraday’s
law concerning b in the domain itself. However, just like the non-zero m.m.f.’s over the generators
of H1(Da) depend on the currents in the generators of H2(D, Da) according to Ampère’s law, the
e.m.f.’s over the generators of H1(Dc∪�D) depend on the time derivatives of the magnetic fluxes
over the generators of H2(D, Dc∪�D) (which partially reside in Da) according to Faraday’s law.
This is not a complication, because the thin cuts of H2(Da, �Da) have to be found anyway to
produce the thick cuts, and they generate the group H2(D, Dc∪�D).∗∗ The boundaries of the thin
cuts provide a maximal linearly independent set of e.m.f.’s that depend on magnetic fluxes in Da ,
i.e. establish generators for the group H1(Dc∪�D).††

5. GOVERNING EQUATIONS

As soon as the cuts are available and the boundary conditions are imposed in terms of the potentials,
we are ready to summarize the governing equations and technically state the problem in D.

5.1. How to obtain the thick cuts?

The thin cuts in Da are, as described in 4.4, a collection of local-support 2-chains from each
generator of the relative homology group H2(Da, �Da). They can be either set by hand in simple

∗∗The relative homology group H2(D, Dc∪�D) disregards differences of chains at Dc∪�D. Therefore, we can omit
the interior of Dc∪�D from both Dc∪�D and D without essentially altering the relative homology group. The
rigorous argument involves excision axiom [17, 18]: both H2(D, Dc∪�D) and H2(Da,�Da) can be obtained from
H2(D∪C, Dc∪C) by excision.

††Follows again from a long exact homology sequence argument.
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cases or computed from the cell complex: algorithms are found from e.g. [19, 23]. The cuts are a
universally applicable method to span fields of the elements of H1

dR(Da).‡‡A thick cut is easily
constructed from a thin cut—it is the dual 1-chain of the thin-cut 2-chain.

5.2. Assembling the pieces—conditions on �Da

The conditions on �Da consist of the typical interface conditions of electromagnetic fields on
�Dc ∩ �Da , the boundary condition tb= 0 on �0, plus a current flow ban into the insulating
domain, i.e. t j = 0 on �Da . We shall address the last statement first, because it is intrinsically
linked with the topological considerations in Section 4.3.

The current flow ban states that the integral of j over any 2-chain of C2(�Da) is zero, or the
integral of h over any 1-boundary of B1(�Da) is zero. We denote the magnetic scalar potentials
in Da and Dc by �a and �c, respectively. The integrals of gradient functions d�a and d�c vanish
over 1-cycles, including the ones in B1(�Da). Because ha = ta + d�a holds, the integrals of ta
and tc over any 1-boundary of B1(�Da) are zero. It is important that the current flow ban does not
require the integrals of t to vanish over all 1-cycles, but over the 1-boundaries only: if non-zero
integrals over all 1-cycles were prohibited, no net current would flow through the conductors.

With the thick cuts available, we require the integrals of tc and ta to be (i) zero over all edges
which do not cross any thick cut and (ii) equal across the interface. The edges of a thick cut
which reside on �Da are called the ribbon of the cut [24] (Figure 4). The integral of t over each
ribbon edge is determined by some current(s) in a conductor and determines the integral of t
over the cut(s) the edge belongs to. This is a typical non-local boundary condition [9, 25] and
makes the observation about the non-local interdependence of j and t at the end of Section 4.2
easy to implement. With these requirements, (i) the condition ‘

∫
c t = 0 over every c∈ B1(�Da)’ is

3

2

1

Figure 4. A complete set of ribbons in the model problem. The integral of t over ribbon 1 equals the
total current in the horizontal conductor (which corresponds to c1 in Figure 3). Ribbon 2 accounts for the
current in the vertical conductor, and ribbon 3 accounts for the difference in currents in the branches of

the horizontal conductor. Ribbon 3 corresponds to c2 in 3.

‡‡The group H2(Da,�Da) is isomorphic with H1
dR(Da) due to the Lefschetz duality [17, 18].
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satisfied, (ii) tt is continuous over �Da , (iii) ha is curl-free, yet (iv) integrals of ha over the 1-cycles
of H1(Da) may be non-zero, and (v) integrals of t are additionally zeroed over the appropriate
1-cycles of Z1(�Da). Each thick cut corresponds to a linearly independent current, and ‘no ribbon’
therefore implies ‘no linearly independent current’.

The normal component of j is continuous, because it is zero at the boundary. The tangential
component of h should also be continuous. On the interface, this implies that

∫
c t+d�c = ∫

c t+d�a

must hold for every edge c of �Da . We required the vector potential t to be tangentially continuous;
hence, the gradient of � must also be continuous. This is satisfied if �c = �a holds on all dual
nodes of �Da ; thus, hereunder we will drop the subscript in the magnetic scalar potential.

The continuity of the tangential component of the electric field at �Da is not a relevant question,
because in magneto-quasi-statics it is not defined in the insulating domains at all (see the beginning
of Section 4.2). The normal component of b is zero by the boundary conditions at �0, and it is
continuous at the interface between Da and Dc since we will use (2b), (3a), and (7) with t
continuous on every dual edge and � at every dual node at �Da∪�Dc (see (9)).

5.3. Problem statement in D

The vector potential’s support is restricted to Dc∪�, where � is the support of the thick cuts. In
this domain, we obtain the following formula from (2b) and (3a) using (7):

DlG̃X+ DlT= 0 (8)

In magneto-quasi-static problems, electric field is defined only in the conductors, and we express
Faraday’s law in Dc as

CqC̃T + i�l(T + G̃X) = 0 (9)

Additionally, one has to take into account the flux of the magnetic induction field outside Dc. Let
�i denote the dual chain of the i th thick cut (consisting of primal faces), Figure 6. We have to
impose Faraday’s law as

∫
��i

� dt = −i�
∫

�i

�(t + d�) (10)

The boundary ��i resides in Dc∪�D.
In the insulating domain Da , outside the thick cuts, we impose Gauss’ law as

DlG̃X= 0 (11)

Ampère’s law is imposed by the vector potential formulation, and the equal circulations of h
and t , required at the end of Section 4.2, are imposed by the thick cuts. The t over an edge crossing
a ribbon is dictated by the t of the cut(s) it belongs to, and this in turn is related to the currents
in the conductors.

The current flow into Da is prohibited by the zero-t condition on the edges of �Da outside the
interior of the ribbons.

To prohibit magnetic flux through �D, we impose zero integral of �(t + d�) over each primal
2-chain of �D. This makes e curl-free on �D, enabling a scalar potential representation for e.
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Figure 5. In Faraday’s law −d� f /dt =∑4
i=1

∫
ei
e, we set

∫
e4
e= 0 according to te= 0

and arrive at −d� f /dt =∑3
i=1

∫
ei
e.

Therefore, the free parameters at the boundary are the voltages between the connectors and current
densities through the dual facets of the connectors.

Finally, the condition te= 0 is imposed on the connectors. This implies one condition per interior
primal edge of the connectors (see e4 in Figure 5). These edges are one-to-one with the interior
dual edges ẽ of the connectors, yielding one condition for t associated with each. Technically, we
impose the condition for the corresponding primal faces ( f in Figure 5); we evaluate the negative
time derivative of the magnetic flux associated with f and assign this value to the sum of e.m.f.’s
over all edges not on the boundary. This imposes the te= 0 condition along e4 for connectors due
to Faraday’s and Gauss’ laws in the rest of the model.

6. COUPLING WITH CIRCUIT EQUATIONS

Let us now broaden the view from the field domain D back to the complete system that also
contains the subsystem C , modeled with a circuit model. Consider, as an example, the simplified
case of Figure 6. The circuit quantities, voltages over branches, and currents through them now
have natural interpretations on the common boundary �D of the two subsystems.

The total current from all circuit branches in C connected to a connector �i must pass in through
�i or ∫

�i

j =−∑
k
Ik

This non-local boundary condition is technically an algebraic constraint on the elements of I corre-
sponding to the facets on �i . These conditions are not independent, because the current continuity
equation implies

∫
�D j =∑N

i=1

∫
�i

j = 0. Hence, one of the output currents is always dependent on
others. This is a typical observation in the multiterminal circuit analysis [9, 10]. However, our case
may differ from the conventional multiterminal where all terminals are assumed to be connected,
i.e. no zero admittances can occur. The boundary condition t j = 0 on the common boundary of Da
and Dc may isolate some of the connectors, such as in a transformer. This is equivalent to splitting
the single field problem multiterminal into smaller conventional multiterminals which may have
only mutual inductances. Correspondingly, the number of dependent output currents equals the
number of disjoint conductors. The disjoint conductors can be found with a forest of spanning
trees [26].

The e.m.f. is the sum
∑

kUk over a path of circuit branches (or e.m.f. over a 1-chain in the
circuit domain C) from connector � j to connector �i plus the e.m.f. on a 1-chain �i j extending
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Σi

Γi

Γj

e~

βij
Dc

Figure 6. Schematic representation of the domain Dc and of a thick cut, whose dual edges are thick lines
like ẽ. The 2-chain �i is the dual chain of the thick cut; the boundary of �i in Dc is the 1-chain �i j .

from �i to � j in Dc—this 1-chain forms part of the boundary of the 2-chain �i—equals the time
variation of magnetic flux on the 2-chain �i , Figure 6. We obtain

∑
k
Uk +

∫
�i j

� dt =−i�
∫

�i

�(t + d�)

The e.m.f.
∑

k Uk corresponds to the potential differences between the terminals of the field
problem multiterminal(s). This non-local boundary condition is an algebraic constraint on the
elements of U= qI; thence the currents crossing the dual faces in Dc pierced by �i j are involved.

7. NUMERICAL RESULTS

As a test coupled problem, we considered in D a fully 3D geometry consisting of a circular coil
placed above an aluminum plate (Figure 7 shows a cross section). In C we considered a sinusoidal
voltage source Us = sin(�t) with a frequency f = 5000Hz. We modeled only one-fourth of the
field problem due to the axial symmetry. The dual complex in domain D consists of 132 519
tetrahedra, 22 923 nodes, 157 268 edges, and the cut contained 295 edges.

To compare the results obtained from the geometric T –� formulation coupled with circuits,§§we
used the finite elements code GetDP [27] as a reference performing both a 2D analysis on a
triangular mesh and a 3D analysis with the A–V formulation [28]. The current density complex
vectors have been computed along a number of points evenly distributed along a sampling line
shown in Figure 7. Figure 8 shows the real and imaginary parts of the amplitude of the current
density along the sampling line in the conductor. The total current at a connector with the T − �
formulation coupled with circuits was I =−1323.9 + i3741.7, while the 2D and 3D reference
values were I2D =−1373.7 + i3758.2 and I3D = −1381.6 + i3774.9, respectively.

§§This formulation is part of the GAME (Geometric Approach for Maxwell’s Equations) code developed by
R. Specogna and F. Trevisan with the partial support of MIUR (Italian Ministry for University and Research).
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Figure 7. On the right-hand side, the cross section of the considered geometry for the filed problem in D
is shown. On the left-hand side the circuit domain is drawn.
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Figure 8. Real and imaginary parts of the current density in the coil are shown along the sampling line.
The discrete approach and a 2D and 3D analyses from GetDP are compared.

8. CONCLUSIONS

In this paper, we obtained a systematic procedure to pose T –� formulated eddy-current problems,
coupled with an external circuit model. The classical thick-cut strategy was adopted to span a
sufficient curl-free function space in the current-free domain while keeping the computational
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cost low. Thick cut also facilitates the couplings between the conducting, insulating, and circuit
domains. A numerical example demonstrates the approach described.
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