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Abstract
An eddy currents based procedure for the 3D image reconstruction of defects
in metallic plates from multi-frequency data is presented. In particular,
we exploit the collection of data at different probe positions as well as at
different excitation frequencies in order to improve the amount of information
content, the accuracy of the inverse methodology and its robustness against
the experimental noise. The identification tool we developed, exploits the
geometric A − χ formulation for the solution of the eddy-current forward
problem together with a full nonlinear iterative inversion algorithm based on
the total variation regularization.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The eddy currents non-destructive technique (ECT) relies on the capability of a low-frequency
electromagnetic field to penetrate and interact with conductive materials. For prescribed
sources, measurements of field component values and of impedance variations allow us to
image the conductivity inside materials. In this paper, we address the problem of 3D defects
identification in metallic structures by ECT. This finds a wide application in the energy,
automotive, marine, aeronautic and manufacturing industries.

The identification of the conductivity profile inside a material is seriously hampered by
the inherently ill-posed and nonlinear nature of the eddy currents inverse problem (see [1–3]
for mathematical issues); several techniques have been developed to solve it. Among them,
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for the sake of completeness, we mention linear and quadratic models for approximating the
forward problem, deterministic and stochastic algorithms, pre-calculated database, statistical
methods, etc (see [4–15] and references therein).

In the present work, we tackle the inverse problem by combining the Gauss–Newton
iterative method with the total variation (TV) by assuming that the anomalies are well
approximated by a piecewise constant electrical conductivity distribution (see [16–21] for
the application of the GN method and TV regularization, respectively). TV is a type of
edge-preserving regularization and it is well suited to reconstructing blocky images; as quoted
in [22] ‘ . . . although Tikhonov-type regularization provides a good method to reconstruct
smooth parameters both in terms of contrast and shape, it fails to reconstruct the sharp edges
and absolute values for the high contrast case. TV regularization is a more suitable method for
both sharp edges and high contrast’. This is the case for the specific applications considered
in this paper, where it is reasonable to assume that the anomalies are modeled by a piecewise
constant electrical conductivity.

Applications of TV to eddy-current imaging have been considered by several authors
(e.g. [22–24] and references therein); the main problem highlighted in these works concerns
the choice of the regularization parameter α. Either search-and-trial procedures or extensive
numerical simulations [25] have been carried out to properly choose α. In addition, [23, 24]
propose to include the TV regularization term in the multiplicative form �TV(x) = �(x)TV(x)

instead of the usual additive form �TV(x) = �(x) + αTV(x) (x being the unknown, � and
�TV being the discrepancy before and after regularization, TV denotes the total variation
regularization term and α denotes the regularization parameter). The multiplicative approach
allows us to overcome the problem of the choice of the regularization parameter, as evidenced
by theoretical arguments and numerical examples.

In the present work, we adopt a different strategy consisting of applying the TV
regularization to each single step of the GN method. In addition, in order to attain a full
automation of the inverse procedure, we introduce a heuristic criterion for the choice of a
proper regularization parameter α∗.

Together with the choice of a suitable regularization parameter α, the speed and accuracy
of the forward solver are also of utmost importance: the (forward) modeling of signals from
3D defects (see, for instance, [7, 8, 12, 13, 28–30]) needs to be fast and accurate because
inversion algorithms require the solution of a large number of forward problems and at the
same time numerical errors may corrupt the information content of the data. In this paper,
the forward problem solver ‘embedded’ in the imaging algorithm and used to generate the
synthetic data is a full 3D formulation of the eddy-current problem based on a novel approach,
i.e. on a reinterpretation of the finite element method in geometric terms. Such an approach,
denoted as a discrete geometric approach, shifts emphasis from the Galerkin technique directly
on the Maxwell equations and on the discrete counterparts of the constitutive relations. As a
result, it becomes visible how the finite element kind of techniques solve approximately the
basic equations of electromagnetism in terms of circulations and fluxes. (For a background of
the discrete geometric approach, see [31–43]). The forward problem has also been validated
against numerical and experimental data in [44].

In this paper, the data are collected at several probe positions and frequencies. The
extension of the conventional multi-probe procedure to include multi-frequency signals,
provides the following advantages [27, 39]:

• it offers the ability to assess profiles at different depths, since any frequency is associated
with a specific skin-depth penetration δ;

• it mitigates the ill-posedness by reducing the under-determination of the inverse
problem.
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The paper is structured as follows. In section 2, we describe the characteristics of
the model adopted, while in section 3, we explain the geometric formulation used to solve
the forward electromagnetic problem. Section 4 presents the inverse algorithm employed,
while section 5 reports the numerical results. In section 6, we draw some conclusions and
perspectives.

2. Model definition

We consider an aluminium plate with nominal electrical conductivity σAl = 37.7 × 106 S m−1

and relative magnetic permeability µr ≈ 1. For the inverse problem, we focus on a restricted
region of the plate modeled with a regular grid of M = Nx × Ny × Nz cubes named ‘active
voxels’ where Nx,Ny and Nz are the number of voxels in the x, y and z directions, respectively;
the edge of each voxel is equal to 1 mm. A voxel represents the basic volumetric element of
conducting material and we assign at each voxel a uniform value of the electrical conductivity.
Real world defect presents a great variability in sizes. In this case, we have chosen the voxel
dimension suitable to model real stress corrosion and cracks, e.g. in pipelines or in aircrafts.

In the following, we also introduce a fictitious division of the plate into Nz layers, where
‘layer 1’ indicates the one at the top, i.e. the scanning surface. Within the active voxel region
we represent the defect as a well-defined number of voxels with a conductivity different from
the background value σAl. We assume the defect homogeneous and well delimited inside
the structure under study thus leading to a blocky conductivity distribution denoted with the
array σ∗, whose kth component σ ∗

k is the actual value of the electrical conductivity of the kth
active voxel. Then the overall conductivity profile of the active region consists of a piecewise
constant distribution of values with abrupt discontinuities in correspondence of the defect.

Our aim is to compute an approximation of σ∗ starting from the knowledge of the array
v̇∗ of the actual complex voltages of the driving-probe coil excited by a sinusoidal current
generator at different positions and frequencies. The coil consists of 200 turns, with an outer
radius of 2 mm, an inner radius of 0.5 mm, a height of 3 mm and a lift-off of 0.5 mm.

Henceforth we deal with two different geometric models:

Model (a): a 3 mm thick plate with M = 14 × 14 × 3 = 588 active voxels;
Model (b): a 4 mm thick plate with M = 16 × 16 × 4 = 1024 active voxels.

To guarantee a proper modeling of the plate mesh under all probe positions, we also consider
a frame of ‘passive voxels’ around the active region. These passive voxels have the same
geometric dimensions of the active ones, and therefore the same mesh refinement, but they
are not processed in the solution of the inverse problem; their conductivity is fixed to the
background value σAl.

The probe–coil assumes Npos distinct positions properly spaced to guarantee a uniform
covering of the active voxels region, while the number Nfreq of excitation frequencies is equal
to the number of layers in the z-direction and their corresponding penetration depths are
linearly spaced and related to the layer depths. In this way, we assure a good trade-off between
the total number of data to invert (N = Nfreq × Npos) and the overall computational time,
contextually providing a linear independence between the measurements, as assessed by a
preliminary SVD analysis. Following the above frequency-choice criterion, in model (a) we
adopt Nfreq = 3 working frequencies of 6000 Hz, 1500 Hz and 670 Hz, with a penetration
depth of δ0, 2δ0 and 3δ0 (with δ0

∼= 1.1 mm), respectively; in model (b) we adopt Nfreq = 4
working frequencies of 6000 Hz, 1500 Hz, 670 Hz and 375 Hz, with the penetration depth of
δ0, 2δ0, 3δ0 and 4δ0, respectively. For both the models we move the probe–coil over Npos = 41
different positions on the top of the plate, just above layer 1 (see figure 1), whose centers build
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Figure 1. View of the probe–coil, the plate and the active voxel grid (model (a)). The red points
represent the positions of the scan of the coil above the active voxel region.

up a regular array of points oriented at 45◦ with respect to the active voxels grid and equally
spaced of 3/

√
2 ∼= 2 mm corresponding to the outer coil radius.

3. Forward problem

In order to solve the eddy-current problem we resort to the so-called discrete geometric
approach [31, 36, 40]. The domain of interest D of the eddy-current problem has been
partitioned into a source region Ds consisting of a current driven coil, and a conductive region
Dc. The complement of Dc

⋃
Ds in D represents the air region Da . In D a pair of interlocked

cell complexes is introduced [31]. The primal complex K is simplicial with inner oriented
cells [36] such as nodes n, edges e, faces f , volumes v (v are tetrahedra).

The dual complex K̃ is obtained from the primal one according to the barycentric
subdivision, with outer oriented cells [36] such as dual volumes ṽ, dual faces f̃ , dual edges
ẽ, dual nodes ñ. For example a dual node ñ is the barycenter of the tetrahedron v, a dual
edge ẽ is the line drawn from the barycenter of f joining the two dual nodes ñ′, ñ′′ in the
tetrahedra v′, v′′ on both sides of f . We define the mesh as M = (K, K̃) (see figure 2). The
interconnections between cells of the primal complex are defined by the usual connectivity
matrices G between pairs (e, n), C between pairs (f, e), D between pairs (v, f ). Similarly, the
corresponding matrices for the dual complex are −GT (the minus sign is due to the assumption
that a dual volume ñ is oriented by the outward normal, while a node n is oriented as a sink)
between pairs (ñ, ẽ), CT between pairs (ẽ, f̃ ) and DT between pairs (f̃ , ṽ).

Next, we consider the integrals of the field quantities, also referred to as global variables,
for an eddy-current problem with respect to the oriented geometric elements of a mesh M,
yielding the degrees of freedom (DoF) arrays (denoted in boldface type); each entry of a DoF
array is indexed over the corresponding geometric element. In this way, there is a unique
association between a global variable and the corresponding geometric element.

Therefore, we denote with:

• Φ is the array of magnetic fluxes associated with primal faces in D;
• F is the array of magnetomotive forces (mmfs) associated with dual edges in D;
• I is the array of electric currents associated with dual faces and U is the array of

electromotive forces (emfs) associated with primal edges; they have non-null entries
only for the dual faces and primal edges in Ds and Dc regions.
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Figure 2. For clarity, the geometric elements of the pair of interlocked cell complexes K, K̃ are
shown for the case of a mesh formed by a single tetrahedron. In particular the dual node ñ is the
barycenter of the tetrahedron v and a dual edge ẽ is a segment drawn between ñ and the barycenter
of a primal face f .

With these definitions the algebraic version of Gauss’ law, Ampere’s law and Maxwell–
Faraday law can be written as

DΦ = 0, (1a)

CT F = I, (1b)

CU = −iωΦ. (1c)

Introducing the magnetic vector potential A, we can define A′ as the array of the
circulations of the magnetic vector potential along the primal edges of M. The circulations A′

can be decomposed with A′ = A + Gχ, where χ is the array of electric scalar potential defined
on the primal nodes of the conducting domain mesh. Using the magnetic vector potential,
we can write Φ = C(A + Gχ) and U = −iωA − iωGχ. Then the Gauss’ law at discrete
level become identically satisfied DΦ = DC(A + Gχ) ≡ 0, since in every mesh complex
DC ≡ 0 and CG ≡ 0 hold. It is easy to see that the Faraday–Neumann law at discrete level is
identically satisfied too: CU = C(−iωA − iωGχ) = −iωCA = −iωΦ.

In addition to the physical laws, we need the discrete counterparts of the constitutive
relations mapping a DoF array associated with a geometric entity of K into the dual geometric
entity of K̃. The discrete constitutive laws can be written as

F = M νΦ, (2a)

I = M σ U. (2b)

The square matrix M ν (dim(M ν) = Nf ,Nf being the number of faces in K) is the reluctance
matrix such that (2a) holds exactly at least for element wise uniform induction field B and
magnetic field H in each tetrahedron. M σ is a square matrix (dim(M σ ) = Ec, Ec being
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the number of edges in Dc) that is the discrete counterpart of Ohm’s constitutive pointwise
relation.

Since algebraic Maxwell’s laws involve only combinatorial information, the metric- and
material-dependent properties enter only in the definition of the constitutive matrices.

Combining equations (1b) and (2) together with the continuity law GT I = 0 we obtain
the algebraic equations governing the Geometric A − χ formulation4 [38, 41], formulated in
terms of the array A of the circulations of the magnetic vector potential along primal edges e
of D and in terms of the array χ of scalar potential χ associated with primal nodes n of Dc.
We obtain

(CT M νCA)e = (Is)e ∀e ∈ D − Dc

(CT M νCA)e + iω(M σ Ac)e + iω(M σ Gχ)e = 0 ∀e ∈ Dc,

iω(GT M σ Ac)n + iω(GT M σ Gχ)n = 0 ∀n ∈ Dc,

(3)

where array Ac is the sub-array of A, associated with primal edges in Dc and Is is the array
of the source currents crossing dual faces in Ds . With notation (x)k , we mean the kth row of
array x, where k = {e, n} is the label of edge e or of node n.

3.1. The constitutive matrices

The constitutive matrices M ν and M σ can be constructed using different techniques described
in [38, 40, 41, 45].

In this paper, we will resort to a novel energetic approach to build such matrices based on
an energetic approach using the edge and face vector base functions defined in [42, 43]. This
approach assures that symmetry, positive definiteness and consistency5 properties are satisfied
for both the matrices M ν and M σ .

3.2. Integral representation of sources

Thanks to the linearity of the media, we can express the array A as A = Ar + As , where As is
the array of circulations of the contribution to the magnetic vector potential produced by the
source currents in Ds and Ar is the array of circulations of the contribution to the magnetic
vector potential due to the eddy-currents in Dc. Therefore we have that

(CT M νCAs)e = (Is)e (CT M νCAr )e = 0 ∀e ∈ Ds

(CT M νCAs)e = 0 (CT M νCAr )e = (I)e ∀e ∈ Dc

(4)

holds, where I is the array of eddy currents crossing f̃ in Dc. Each entry (As)i of the array
As can be pre-computed as (As)i = ∫

ei
As · dl, where ei is a primal edge in D and As is the

magnetic vector potential due to the known source current density in Ds . In our case, we have
a stranded circular coil and As can be computed in closed form in terms of the elliptic integrals
of the first and second kind [32, 46].

In this way, we can rewrite the system (3) by removing the source currents from its
right-hand side, obtaining

(CT M νCAr )e = 0 ∀e ∈ D − Dc

(CT M νCAr )e + iω(M σ Acr )e + iω(M σ Gχ)e = v ∀e ∈ Dc,

iω(GT M σ Acr )n + iω(GT M σ Gχ)n = w ∀n ∈ Dc,

(5)

4 This formulation is part of the geometric approach for Maxwell’s equations (GAME) code developed by
R Specogna and F Trevisan with the partial support of MIUR (Italian Ministry for University and Research),
http://www.quickgame.org.
5 A precise definition of the notion of consistency for constitutive matrices is given in [32].
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where v = −iω(M σ Acs)e and w = iω(GT v)e. The symmetric linear system (5) is singular
and to solve it we rely on the CG method without gauge condition.

3.2.1. Calculation of the induced voltage. For the calculation of the induced voltage we
subdivide the coilpro in a series of M sub-coils. The voltage induced at the terminals of the
ith sub-coil can be determined by

Ui = −iω�i = −iωNi

∫
ci

A · dl, (6)

where ci is the circumference coaxial with the coil and passing through the barycenter of the
considered sub-coil. For the calculation of the integral we use the Biot–Savart law,

A(P ) = As(P ) +
µ0

4π

∫
Dc

J(P ′)
|P − P ′| dV. (7)

4. Inverse problem

The eddy currents inside a voxel, for a fixed coil current, position and frequency, depend
on the conductivity of a number of neighboring voxels. Thence the inverse problem is
inherently nonlinear. Denoting with v̇ the complex voltages array consisting of the probe
voltages collected at different excitation frequencies and positions, the dependence of v̇ on
the conductivity distribution can be expressed as

v̇ = F(σ), (8)

where F is a nonlinear complex operator and σ is the array of the values of the conductivity
in the active voxels.

The inverse problem aims at estimating the actual conductivity distribution σ∗ from the
knowledge of the complex data array v̇∗, in general affected by noise (see section 5 for the
noise model adopted in this work). The proposed algorithm is based on the Gauss–Newton
(GN) method, an iterative method where the update σn+1 at step n + 1 is obtained from σn as
σn+1 = σn + δσn where δσn is a solution of

v̇∗ = F(σn) + Ṡ
n
δσn, (9)

with Ṡ
n

being the Jacobian of F at point σn.
Due to its underlying ill-posedness, problem (9) requires to be regularized. The

regularization topic has attracted the interest of many researchers in the last decades,
e.g. [18, 47–49], and many regularization schemes have been proposed. Our problem is
characterized by a conductivity that is prevalently blocky; therefore, our choice falls on the
total variation (TV) regularization, complying with this assumption [17]. TV is essentially
based on a L1-norm of derivatives, thus it measures the discontinuities in the image data set and
preserves edge informations without any prior knowledge about the blurred image geometric
details [19, 25]. The solution δσn of (9) is taken as the minimum of the following functional:

En
TV(δσ) = ‖δv̇n − Ṡ

n
δσn‖2 + αT V (σn + δσ),

δv̇n = v̇∗ − F(σn),
(10)

where α is the regularization parameter and

T V (σ) = 1

2

M∑
k=1

ψ
(∣∣Dx

k σ
∣∣2

+
∣∣Dy

k σ
∣∣2)

. (11)
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In (11) Dx
k σ and D

y

k σ are finite difference approximations of the ∂x and ∂y operators, ψ(ξ) is a
smooth approximation of the absolute value function |ξ |, introduced to avoid discontinuity of
the derivative at ξ = 0 (we choose ψ(g) = 2

√
g2 + γ 2, where γ > 0 is a small parameter) [18].

The expression on the right-hand side of (11) is a discrete approximation of the continuous
TV penalty term6,∫ √

|∂xσ (x, y, z)|2 + |∂yσ (x, y, z)|2 dV, (12)

with σ(x, y, z) being the conductivity distribution represented by the array σ.
Another available a priori information is that the conductivity of the kth voxel falls in

the range [0, σAl]. This implies that a defect acts has either a partial (0 < σk < σAl) or a
total barrier (σk = 0) to the circulation of the electrical current. We have taken into account
this constraint by introducing a projection operator P [48]. Specifically, P : σ → σ̃ is
(componentwise) defined as

(Pσ)k =
⎧⎨
⎩

0 if σk < 0
σk if 0 � σk � σAl

σAl if σAl < σk.

(13)

In summary, the algorithm reads:

(i) set n = 1 and σn equal to the initial guess;
(ii) find the minimizer δσn of En

TV;
(iii) update the solution as σn+1 = P [σn + δσn];
(iv) increase n and go to step (ii) until convergence is achieved.

The minimization of (10) does not admit a closed form expression and an iterative
minimization procedure is needed. Different strategies can be pursued to accomplish this
aim [50]. We adopted the lagged diffusivity fixed point iteration method introduced by Vogel
and Oman [18, 51, 52]. Then, at each nth iteration of the overall iterative minimization
process (step (ii)), the minimization of En

TV performs iterations henceforth labeled by using the
index m.

4.1. Choice of the regularization parameter

In solving regularized ill-posed inverse problems, the choice of a suitable regularization
parameter α is of utmost importance and several methods have been proposed to tackle this
problem [18, 26, 47–49, 53]. Moreover due to the non-closed solution of the TV penalized
least-squares problem, the determination of the optimal TV stop criterion plays a fundamental
role. In this work we let both α and m vary in a fixed range of values; hence, we find the
optimal parameters by taking the coordinates (α∗,m∗) corresponding to the global minimum
of the functional (10) in the spanned range of parameters. A sketch of typical error trend is
depicted in figure 3(left) where we report results concerning a large set of α values. We note
that the minimum is achieved in few iterations for the index m. Moreover we have analyzed
the relation existing between the optimal regularization parameter α∗ and αeq at the iteration
n, where αeq is defined as the value that balances the discrepancy term and the TV term
in (10),

αn
eq = ‖δv̇n‖2

2

T V (σn)
. (14)

6 In this work, we assume a layer-by-layer regularization (the ∂z operator has not been considered in (12)). This
corresponds to defects having independent growth in each layer.
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Figure 3. (Left) Typical 3D surface of the functional En
TV: the black line indicates the value

α = α∗. (Right) Plot of α∗ versus αeq: each color refers to a different configuration (defect type,
noise level), see section 5.
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Figure 4. Example of sensitivity distributions for model (b), having fixed the frequency at
1500 Hz and the coil position in the center of the active voxels region.

By testing a wide variety of defect types and noise levels, for both models (a) and (b), we
note that the optimal value α∗ falls in the range 10−5αeq � α � 10−3αeq, as illustrated in
figure 3(right).

4.2. Derivation of the sensitivity matrix

The complex sensitivity matrix Ṡ of the voltages v̇ to small changes in conductivity of the kth
active voxel is defined as

Ṡik = ∂v̇i

∂σk

. (15)

It was found [54, 55] that for the present eddy currents problem, assuming the exciting
coil coinciding with the measuring probe one and an unitary excitation current, Ṡik can be
computed by means of the following compact expression:

Ṡik = −
∫


k

Ei · Ei d
k, (16)

where Ei is the electric field vector for the measurement configuration producing v̇i .
Figure 4 reports an example of sensitivity distributions, obtained for model (b) at frequency

1500 Hz and the probe in the 21st position (i.e. the coil placed in the center of the active voxels
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(a) (b)

(c) (d)

Figure 5. Model (b)—qualitative plots of the distribution of the magnitude of the eddy-current
density in the section of the metallic plate (perpendicular to the plane of the probe scan) at
each working frequency (probe position at the center of the active voxels region): (a) 375 Hz,
(b) 670 Hz, (c) 1500 Hz and (d) 6000 Hz. In each subfigure the color bar is rescaled to fit its range
of values.

region, see figure 1). In particular, we distinguish eight sub-figures. Taking into account the
subdivision in four layers of voxels, we plot along the z axis the value of the real and imaginary
parts of sensitivity matrix in the first and the second rows, respectively. The amplitude of
the sensitivity values is high in correspondence of the coil outer radius and tends gradually
to zero increasing the distance from the coil axis or approaching it. Moreover, superficial
layers present higher sensitivity values than the inner ones, according to the skin effect. This
means, as well known, that the spatial resolution of eddy-current testing depends not only on
the working frequency but also on the depth of inspection.

4.3. Multi-frequency excitation and related SVD normalization

To enhance the 3D reconstruction capability of our methodology, we excite the system at
Nfreq different frequencies for each coil position, in order to gather a sufficient number of
data that makes the inversion procedure reliable. Referring to model (b), figure 5 reports the
vertical cross-section of the plate, with a sketch of the active voxels grid and also a qualitative
plot of the eddy currents distribution at each excitation frequency, for the probe–coil placed
in the 21st position (center of the active voxels region). These plots indicate that the actual
values of the penetration depth are in agreement with the predicted ones (see section 2): in
particular, at 375 Hz the eddy currents penetrate through all plate thickness, and so all the
voxels layers, while at 6000 Hz we have significant currents only for the first two layers of
voxels. Therefore, adopting solely a frequency of 6000 Hz, we have a nonzero sensitivity
limited to the superficial layers, thus leading to unstable reconstruction of the inner layers.
At the same time, regarding superficial layers, higher frequencies provide better resolutions
and signal levels than lower ones. The adoption of a multi-frequency excitation allows us
to balance these opposite aspects. However, measurements at different frequencies exhibit
different signal amplitudes: the amplitude increases with the frequency. Then the highest
frequency dominates the overall discrepancy, hiding the information content provided by the
other frequencies. To avoid this unwanted behavior of the imaging procedure, we introduce a
suitable normalization of the data [56]. In the literature, different choices for the weights can
be found. For example in [12] they are inversely proportional to the square of the voltages at
frequency j . In the present work, we propose a slightly different criterion based on the singular
value decomposition (SVD) of the sensitivity matrix. Specifically, the data and discrepancy

10
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Figure 6. Model (a)—example of trends of the singular values of Ṡ before (black marks) and after
(red marks) the SVD normalization.

are weighted as follows:

δv̇n → wδv̇n,

Ṡ
n → wṠ

n
,

‖δv̇n − Ṡ
n
δσn‖2 → (δv̇n − Ṡ

n
δσn)H wT w(δv̇n − Ṡ

n
δσn).

(17)

In (17) w is a (real) diagonal matrix whose elements referring to the j th frequency are
independent from the position index and inversely proportional to the part of the sensitivity
matrix Ṡ (the sensitivity matrix for the defect-free configuration) corresponding to the same
j th frequency. As example, in case we have only two frequencies, Ṡ can be partitioned
as a column vector of two submatrices (one for each set of measurements at a prescribed
frequency)

Ṡ =
[
Ṡ1

Ṡ2

]

and

w = diag

⎡
⎢⎣

N1︷ ︸︸ ︷
λ−1

1 , . . . , λ−1
1 ,

N2︷ ︸︸ ︷
λ−1

2 , . . . λ−1
2

⎤
⎥⎦ ,

where Nj and λj are the number of measurements and the largest singular value of Ṡj ,
respectively, at the j th frequency.

Figure 6 reports the plots of the singular values of the matrix Ṡ before and after the SVD
normalization. We note that after the SVD normalization we have eliminated the gaps in the
singular values, guaranteeing a better exploitation of the information content.

Finally, we would like to note that in perspective the experimental data to be processed
could be attained by exploiting real multi-frequency excitation signals as in the case of pulsed
eddy currents technique [57–60].

5. Numerical results

The data processed by the inversion algorithm are synthetic and generated by the same (full
3D) numerical model embedded in the imaging method. To avoid the inverse crime, the data

11
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Table 1. Signal level and relative noise.

Model (a)—type I Model (b)—type I

Relative noise Relative noise
Freq. Signal Signal
(Hz) level ε = 10−6 ε = 5 × 10−6 ε = 10−5 level ε = 10−6 ε = 5 × 10−6 ε = 10−5

375 – – – – 7.55 × 10−5 14.74% 71.13% 147.42%
670 4.76 × 10−5 2.57% 12.84% 25.40% 1.84 × 10−4 6.25% 30.95% 62.54%

1500 1.74 × 10−4 0.86% 4.29% 8.14% 4.49 × 10−4 2.49% 13.01% 24.91%
6000 9.95 × 10−4 0.19% 0.94% 1.85% 7.53 × 10−4 1.88% 9.72% 18.78%

have been corrupted with a random generated noise. Basically, the eddy currents measuring
systems implement a voltmeter, whose intrinsic noise depends on its operating range and
accuracy. We have modeled this by introducing the noise in the following manner:

v̇∗
i = v̇i + η̇i ,

η̇i = ε × V air
i × ρi × e2πjφi ,

(18)

where v̇∗
i represents the noisy data, v̇i represents the noise-free data, η̇i is the noise term, ε is a

parameter that controls the magnitude of the noise, V air
i is the coil voltage magnitude in air (in

the absence of the conductive specimen) at the frequency competing to the ith measurement,
ρi and φi are uniformly distributed random values on [0, 1]. It is worth noting that this can be
considered a worst case scenario where the measurements are absolute, i.e. we measure the
total voltage across the coil that includes: (i) the free-space contribution V air, (ii) the eddy-
current contribution due to the presence of the defect-free plate δv̇plate, (iii) the eddy-current
contribution due to the presence of the defect δv̇defect. In the previous expressions σn=1 stands
for the unflawed conductivity distribution (see section 4). In addition, taking into account the
nominal parameters of the coil (Rair = 1.18
,Lair = 36 µH), the ratio between V air at the
highest frequency and V air at the lowest frequency is about 1.5. This means the magnitude of
the noise is rather flat in the considered frequency range (375–6000 Hz), thus the data at the
lowest frequencies are relatively more penalized in term of noise.

To gain insight about signal and noise levels characterizing the present results, we
introduce two quantities that relate the magnitude of this three terms with the noise contribute
η̇ for different values of the parameter ε. Precisely for each single frequency we define

signal level = max
(∣∣δv̇defect

i

∣∣)∣∣V air
i

∣∣
relative noise = ‖η̇i‖2∥∥δv̇defect

i

∥∥
2

, (19)

where i is the overall measurement index, but related only to the measurements for a prescribed
frequency. Table 1 reports some numerical values of these two quantities.

We note that a noise level ε of just few parts per million leads to a significant relative
noise, especially for low frequencies as expected. This feature implies that model (b) is less
robust towards noise than model (a) as well as deeper layers are less robust than superficial
ones.

To stop the GN algorithm, we adopt a classical criterion for ill-posed problem (e.g. [48]
and references therein). This criterion is based on the a priori knowledge of the noise level
magnitude: the algorithm is stopped when the discrepancy goes below a threshold given by
the product of a scaling factor (equal to 1.01 in this work and, in general, slightly larger than 1)
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Figure 7. Model (a)—type I: discrepancy E versus iteration number n. The plots refer to a noise
level equal to ε = 10−6 (squares), ε = 5 × 10−6 (triangles), ε = 10−5 (circles), respectively; the
dotted lines indicates their corresponding threshold.
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Figure 8. Images attained for model (a)—type I: the first row reports the target conductivity
distribution; rows 2–4 report the distributions attained at the final iteration n = 4, 3, 3 and for
ε = 10−6, 5 × 10−6, 10−5, respectively.

and the magnitude of the noise energy. Figure 7 illustrates how such criterion works: the
plots represent the trends of discrepancy versus the iteration number for different noise levels
whereas the dotted lines indicate their corresponding thresholds. The results highlight that
our method converges in few steps, as desirable in view of real world applications.
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Figure 9. Images attained for model (a)—type I: the first row reports the target conductivity
distribution; rows 2–4 report the distributions attained at the final iteration n = 5, 4, 3 and for
ε = 10−6, 5 × 10−6, 10−5, respectively.

Some reconstructions attained adopting the present method are reported in figures 8–10
where we have represented the conductivity distribution by means of the negative contrast
function componentwise defined as

χk = σAl − σk

σAl
. (20)

Despite the severe ill-posedness of this inverse problem, the results show that conductivity
profiles are satisfactory assessed in few Gauss–Newton iterations. The quality of the
reconstruction deteriorates in the deeper layers and for high conductivity defects, as expected
from the physics of the eddy currents inspection. For the sake of completeness, here we
compare the results obtained by means of the proposed method with the results obtained by
applying the regularization in the ‘classical’ way. In particular, we first finds the minimum
σα of

ETV(σ) = ‖F(σ) − v̇∗‖2 + αT V (σ) (21)

for prescribed values of α. Then, we chose the regularization parameter by means, for instance,
of the L-curve method [26]. Figure 11 shows the plot of the discrepancy versus the TV term
corresponding to σα , for α in the range [10−24, 10−14]. In the L-curve method, the value of
the regularization parameter is associated with the point of highest curvature. In this case,
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Model b) – type I 
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Figure 10. Images attained for model (b): the first rows report the target conductivity distributions
for two types of defect; the second rows report the corresponding distributions attained for ε = 10−6

at the final iteration n = 3, 4 for types I and II, respectively.

Figure 11. L-curve analogous for the TV regularization for defect model (a)—type I, with
ε = 10−5.

we find αL-curve = 2.52 × 10−4 × αeq that, incidentally, is in compliance with the selection
rule (10−3 � α/αeq � 10−5, see section 4.1) of the proposed method. Figure 12 reports the
images attained for the same defect type exploiting our and the L-curve method. It is worth
noting that the proposed method leads to a less blurred reconstruction.
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Figure 12. Images attained for model (a)—type I, with ε = 10−5: the first row reports the target
conductivity distribution; rows 2,3 report the distributions attained at the final iteration n = 3, 3
with our method and the L-curve one, respectively.

6. Conclusions

We presented a method for solving the inverse problem of defect identification in conducting
materials by eddy-current testings. The data consist of ECT measurements at several multiple
frequencies to increase the information content of the data and for better forming an image
of the defects at different depths. The TV regularization has been applied to each iteration of
the underlying Gauss–Newton method and an appropriate rule for selecting the regularization
parameter has been proposed. Moreover, a comparison with the ‘standard’ TV-based inversion
method shows the superior performances of the proposed approach. Finally, a number of
numerical experiments demonstrate that the proposed methodology is capable to identify the
defects in few iterations with a good accuracy.
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