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(Received 28 February 2017; accepted 5 June 2017; published online 23 June 2017)

We present a new model for surface roughness (SR) scattering in n-type multi-gate FETs (MuGFETs)

and gate-all-around nanowire FETs with fairly arbitrary cross-sections, its implementation in a com-

plete device simulator, and the validation against experimental electron mobility data. The model

describes the SR scattering matrix elements as non-linear transformations of interface fluctuations,

which strongly influences the root mean square value of the roughness required to reproduce experi-

mental mobility data. Mobility simulations are performed via the deterministic solution of the

Boltzmann transport equation for a 1D-electron gas and including the most relevant scattering mecha-

nisms for electronic transport, such as acoustic, polar, and non-polar optical phonon scattering,

Coulomb scattering, and SR scattering. Simulation results show the importance of accounting for arbi-

trary cross-sections and biasing conditions when compared to experimental data. We also discuss how

mobility is affected by the shape of the cross-section as well as by its area in gate-all-around and

tri-gate MuGFETs. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4986644]

I. INTRODUCTION

The aggressive downscaling of CMOS transistors demands

for design solutions to obtain large drive currents at small sup-

ply voltage and preserve low leakage currents. The possible

options for technology improvement include the reduction of

source/drain series resistance that is responsible for a degrada-

tion of the transistor on-current by 30%–40%,1,2 the use of

semiconductors alternative to silicon,2–8 the introduction of

stressors,9,10 and the development of device architectures

beyond planar FETs such as multi-gate FETs (MuGFETs).7,9,11

In particular, for CMOS generations beyond the 7-nm node,

gate-all-around (GAA) nanowire FETs appear to be the most

promising architecture.1,2,5,12–15 However, nanowire transistors

still face significant challenges and, due to the high surface-to-

volume ratio, the performance of these devices is strongly influ-

enced by surface roughness (SR) and interface defects.16–21

In this framework, an accurate description of interface

effects in order to predict the device performance is required,

and the aim of this work is to present a new model for SR

scattering in MuGFETs with arbitrary cross-sections. The

model is based on a non-linear relation between the surface

roughness (SR) matrix elements and the random fluctuations

of the interface position, and a similar approach has been

already developed and demonstrated for planar bulk and

UTB MOSFETs,22,23 as an alternative to the standard

Prange-Nee and generalized Prange-Nee models widely used

in the literature for planar FETs,24–38 MuGFETs, and GAA-

FETs.39,40

The new SR model has been implemented in a complete

device simulator, where carrier transport is described by using

the deterministic solution of the multi-valley Boltzmann

Transport Equation (BTE) with no simplifying approximation,

such as momentum relaxation time (MTR)34,41 or linearization

of the BTE.42 Electrostatics and transport equations are solved

for arbitrary device cross-sections and accounting for scatter-

ing rates due to phonons, Coulomb scattering, and SR accord-

ing to the new formulation developed in this paper.

This paper is organized as follows. In Sec. II, we present

the quantization model employed for arbitrary shaped cross-

sections and the non-parabolicity corrections to the energy

relation. Then, in Sec. III we illustrate the new SR scattering

model and discuss some well justified approximations useful

to decrease the computational burden of SR scattering calcu-

lations. Some additional, important physical ingredients of

our transport model are briefly discussed in Sec. IV, such as

phonon and Coulomb scattering as well as the screening pro-

duced by free carriers, while in Sec. V, we concisely illus-

trate the deterministic solution of the BTE. Section VI shows

a validation of our mobility calculations against previous

simulation results; then, we compare our simulations with

mobility experimental data and finally investigate the influ-

ence of the cross-sectional shape and area on the electron

mobility of nanowire FETs. Some concluding remarks are

proposed in Sec. VII.

II. CONFINED ELECTRON GAS IN ARBITRARY
CROSS-SECTION MuGFET

The electron envelope wave-function for the 1D electron

gas (1DEG) is written as

Wn;kx
r; xð Þ ¼ nn rð Þ eikxxffiffiffiffiffi

Lx

p ; (1)

where Lx is the normalization length in the transport direc-

tion, kx¼ n(2p/Lx) (with n¼ 0, 61, 62,…), and r¼ (y, z) is

the position in the section of the wire, as illustrated in the

sketch of Fig. 1. The envelope wave-function nn(r) is

obtained by solving the Schr€odinger equation corresponding

to the parabolic effective mass approximationa)D. Lizzit and O. Badami contributed equally to this work.
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� �h2

2
r � Wyzrð Þ þ U rð Þ

� �
nn rð Þ ¼ e

pð Þ
n nn rð Þ; (2)

where Wyz is the 2� 2 matrix of the inverse effective masses

in the device coordinate system defined as

Wyz ¼
wyy wyz

wzy wzz

 !
; (3)

and it is linked to the effective masses of the bulk crystal

through appropriate linear transformations.35 To solve Eq.

(2), we used the Discrete Geometric Approach (DGA),43

which is very effective to describe fairly arbitrary cross-

sections (see Fig. 1).

In the DGA, physical variables are defined as fluxes or

circulations on oriented geometric elements of a pair of

dual interlocked meshes, while physical laws are expressed

in a metric-free fashion with incidence matrices. The metric

and the material information are encoded in the discrete

counterpart of the constitutive laws of materials, also

referred to as material matrices or discrete Hodge opera-

tors.44 The stability and consistency of the method are guar-

anteed by precise properties (symmetry, positive

definiteness, and geometric consistency) that material

matrices have to fulfill. The main advantage of DGA is that

material matrices, even for arbitrary star-shaped polyhedral

elements, can be geometrically defined by simple closed-

form expressions in terms of the geometric elements of the

primal and dual meshes. Moreover, when DGA is applied

to the stationary Schr€odinger problem, a second order con-

vergence of eigenvalues is obtained by solving a standard

eigenvalue problem,43,44 whereas the corresponding Finite

Element formulation requires to solve a generalized eigen-

value problem which is much more computationally

demanding.

The electron band structure in the conduction band is

calculated using the non-parabolic effective mass approxi-

mation model (EMA-NP);34 in fact, the non-parabolicity

may play an important role in both subband splitting and

transport, particularly for III-V based transistors.45–47 Non-

parabolicity effects in the quantization plane (y, z) and trans-

port direction (x) are described writing the energy as34

En ¼ hUni þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

�h2

2

k2
x

mx
þ e

pð Þ
n � hUni

" #vuut � 1

2a
; (4)

where hUni ¼
Ð

y

Ð
zjnnðy; zÞj2 Uðy; zÞ dy dz is the expectation

value of the potential energy U(y, z) in the device section,

and a is the non-parabolicity factor. Relevant effective

masses and a values for Si and InAs are reported in Table I.

Moreover, eðpÞn and nn(y, z) are, respectively, subband minima

and wave-functions for the parabolic effective mass

Hamiltonian in Eq. (2).

The Schr€odinger solver accounts for multi-valley sys-

tems, for anisotropic effective masses in the (y, z) plane (i.e.,

no isotropic approximations), and for the wave-function pen-

etration in the oxide region,48 which is important for surface

roughness scattering modeling. Continuity conditions for

nn(r) and Wyzrnn(r) (where r(�) is the gradient operator)

are implicitly satisfied by the DGA method at the

semiconductor-oxide interface.

We here notice that, in the case of cylindrical nanowires,

it is convenient to solve Eq. (2) by using polar coordinates

(r, h). Then, one can take advantage of the fact that nn(r, h)

is periodic in h (at any r), and use a Fourier series expansion

to write

nnðr; hÞ ¼
X

l

qnlðrÞeilh l ¼ 0;61;62;… (5)

where qnl(r) is defined as

FIG. 1. (a) Sketch of the cross-section of a MuGFET where x is the transport direction and I0 denotes the curve describing the semiconductor-oxide interface.

s and g are, respectively, the abscissa along I0 and normal to I0, and Ig is the curve at a distance g from I0. D0 and Dg are the lengths of the perimeters I0

(i.e., the perimeter of the semiconductor region) and Ig. (b) sketch of the cross-section of a MuGFET perturbed by a surface roughness stochastic process D(s,

x). The dashed area is the perturbed region PR [D(s, x)] where D(s, x) is non null; the grey region is the semiconductor.

TABLE I. Bulk effective mass, non-parabolicity coefficient a, and electron

affinity v for InAs and Si. The energy difference between the L and C con-

duction band minima in InAs is set to 0.716 eV.69

Material Valley

Effective mass

a (eV�1) v (eV)ml (m0) mt (m0)

InAs C70 0.026 0.026 2.5 4.9

L71 1.565 0.124 0.45

Si D35 0.916 0.19 0.5 4.05
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qnl rð Þ ¼ 1

2p

ðþp

�p

nn r; hð Þe�ilh dh; (6)

and qnð�lÞðrÞ ¼ q†
nlðrÞ because nn(r) is a real valued function.

It should be noticed that l in Eq. (6) is not an angular quanti-

zation number; in fact, Eq. (2) does not allow one to identify

an angular quantum number except for the isotropic case,

which corresponds to wyy¼wzz and wyz¼wzy¼ 0 in Eq. (3).

Equation (5) will be particularly useful in the treatment of

Coulomb scattering matrix elements and carrier screening in

cylindrical nanowires, as discussed below in Sec. IV.

III. MODELING OF SURFACE ROUGHNESS
SCATTERING

Surface roughness (SR) scattering in ultra-scaled transis-

tors is a dominant scattering mechanism, which limits the car-

rier mobility especially at large inversion densities.30,34,49–51

In the literature, several SR models have been reported even

for 3D FETs with arbitrary cross-sections;39,52,53 however, all

models assume that matrix elements are simply proportional

to D(rI), where D(rI) is the random fluctuation of the interface

position versus the abscissa rI at the semiconductor-oxide

interface. As demonstrated for planar transistors,22 however,

SR matrix elements exhibit instead a quite strong nonlinear

dependence on D(rI), so that in this paper we extend to

MuGFET and nanowire MOSFETs the non-linear model for

SR scattering that we recently proposed for planar transis-

tors.22 Figure 1(b) shows an arbitrary device cross-section

where I 0 is the curve describing the nominal, unperturbed

semiconductor-oxide interface in the cross-section, with s and

g being the abscissa, respectively, along I0 and normal to I 0.

In a cylindrical nanowire, for example, g is the radial direction

and s is the abscissa along the circumference. Surface rough-

ness is a stochastic process describing the fluctuations D(s, x)

of the interface position at each point rI¼ (s, x) of the unper-

turbed interface. PR [D(s, x)] denotes the perturbed region that

is the narrow region close to I0 illustrated in Fig. 1(b), which

contributes to SR matrix elements because D(s, x) is non-null.

By following Ref. 22, we now write the SR matrix element as

Mn0

n ðqxÞ ¼
1

Lx

ð
Lx

" ð ð
PR½Dðs;xÞ�

n†
n0 rð ÞUB nn rð Þ dr

#
e�iqxx dx; (7)

where qx ¼ k
0
x � kx is the exchanged wave-vector and UB is

the semiconductor-oxide energy barrier. As it can be seen,

Eq. (7) neglects the kinetic energy contribution to the matrix

element because, as discussed in detail for planar transis-

tors,22 the kinetic energy term can lead to unphysically large

matrix elements when using the EMA energy model; a more

accurate description of the kinetic energy contribution may

be obtained using a Hamiltonian going beyond the EMA

model,54 but this problem is outside the scope of the present

work.

Since SR is a stochastic process occurring at the inter-

face I 0 and it is thus a function of (s, x), we now intend to

write nn(r) by using the curvilinear coordinates (s, g)

sketched in Fig. 1. Figure 1(a) shows that g is the abscissa

normal to I 0 at each point s along I 0 and that I g is the curve

of length Dg obtained by moving a distance g in the direction

normal to I 0 identified by the unit vector n̂ ðsÞ.
Since nn(r) is periodic in the abscissa sg along each

curve I g, we can use Fourier series and write

nnðsg; gÞ ¼
X

l

/n;lðgÞei2plsg=Dg l ¼ 0;61;62;… (8)

with /n;lðgÞ defined as

/n;l gð Þ ¼
1

Dg

ð
Ig

nn rð Þe�i2plsg=Dgdr : (9)

Equation (9) allows one to determine the coefficients /n;lðgÞ
from the nn(r) obtained by the Schr€odinger solver by means

of a numerical integration over the curve I g.

By substituting Eq. (8) into Eq. (7) and following

Appendix A, we can write the matrix element in curvilinear

coordinates as

Mn0

n qxð Þ ¼
1

Lx D0

X
l;l0

ð
Lx

ð
D0

Mn0l0

nl D s; xð Þ
� �

e�iqll0 sds

2
4

3
5e�iqxxdx;

(10)

where Mn0l0
nl ½Dðs; xÞ� is defined as

Mn0l0

nl Dðs; xÞ½ � ¼
ðDðs;xÞ

0

Dg /†
n0l0 ðgÞUB /nlðgÞ dg; (11)

and qll0 ¼ 2pðl0 � lÞ=D0. Figure 1(a) shows that for D> 0 the

interface enters the semiconductor region and for D< 0 the

interface sets back into the oxide region.

The wave-function nn(r) is strongly asymmetric across

the semiconductor-oxide interface as shown in Fig. 2(a); in

fact, it has approximately sinusoidal features in the semicon-

ductor, whereas it decays exponentially in the oxide region.

Consequently, Mn0l0
nl defined in Eq. (11) is a markedly nonlin-

ear function of D as shown in Fig. 2(b), and Mn0l0
nl ½Dðs; xÞ� is

thus a nonlinear transformation of the random process D(s,

x).22 The ensemble averaged squared matrix element is given

by definition as

hjMn0

n qxð Þj2i ¼
1

LxD0ð Þ2
X
l; l0

g; g0

ð ð
Lx

dx dx0
ð ð
D0

ds ds0e�iqll0 s

eþiqgg0 s
0
Cn0;l0g0

n;lg sð Þe�iqx x�x0ð Þ
; (12)

where s ¼ ðs� s0; x� x0Þ and Cn0;l0g0

n;lg ðsÞ is defined as

Cn0;l0g0

n;lg ðsÞ ¼ hMn0l0

nl Dðs; xÞ½ �ðMn0g0

ng Dðs0; x0Þ
� �

Þ†i; (13)

with (l, g) and ðl0; g0Þ being the indexes of the Fourier modes

of respectively nn and nn0 defined in Eqs. (8) and (9).

Cn0;l0g0

n;lg ðsÞ is the cross-correlation function between the matrix

elements Mn0l0
nl ½Dðs; xÞ� and Mn0g0

ng ½Dðs0; x0Þ� and can be written

by using the Wiener-Kinchin theorem as the inverse Fourier

transform of the power spectrum

Cn0;l0g0

n;lg sð Þ ¼ 1

2pð Þ2
ð
qs

dqs

ð
qx0

dq0x Sn0;l0g0

n;lg qs; q
0
xð Þeiqs s�s0ð Þeiq0x x�x0ð Þ

;

(14)
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where Sn0;l0g0

n;lg ðqs; q
0
xÞ is the cross-correlation power spectrum

of Mn0l0
nl ½Dðs; xÞ� and Mn0g0

ng ½Dðs0; x0Þ�; an explicit expression

for Sn0;l0g0

n;lg ðqs; q
0
xÞ will be discussed below. Equation (14)

has been written for a continuous qx, which implies a

large normalization length along the x direction; Eq. (14)

also assumes that the length D0 of the perimeter of the

interface I 0 in the device cross-section is much larger

than the correlation length K of the D(s, x) process,

which is a very reasonable approximation for most devi-

ces of practical interests and for a K in the range of 1

to 2 nm.

We now complete the derivations for hjMn0

n ðqxÞj2i by

substituting Eq. (14) into Eq. (12) and obtain

hjMn0

n qxð Þj2i ¼
1

2pLxD0ð Þ2
X
l; l0

g; g0

ð
qs

dqs

ð
q0x

dq0x Sn0;l0g0

n;lg qs; q
0
xð Þ

�
ð ð
Lx

dx dx0ei q0x�qxð Þ x�x0ð Þ

�
ð
D0

ds e�i qll0�qsð Þs
ð
D0

ds0 eþi qgg0�qsð Þs0 : (15)

The integrals over x; x0 and s; s0 can be evaluated analyti-

cally. For a large Lx, we have

lim
Lx!1

ð ð
Lx

eiðq0x�qxÞðx�x0Þdx dx0 ¼ 2p Lxdðq0x � qxÞ; (16)

while for integrals over s we have

1

D0

ð
D0

eiqsds ¼ sin 0:5 D0 qð Þ
0:5 D0 q

� sinc 0:5 D0 qð Þ: (17)

By substituting Eqs. (16) and (17) into Eq. (15) and noting

that dðq0x � qxÞ reduces the integral over q0x, Eq. (15) can be

cast into the compact form

hjMn0

n qxð Þj2i ¼
1

LxD0

X
l; l0
g; g0

ð
qs

dqs F qll0; qgg0 ; qsð ÞSn0;l0g0

n;lg qs; qxð Þ;

(18)

where the form factor is defined as

F qll0 ; qgg0 ; qsð Þ ¼
D0

2p
sinc

qll0 � qsð ÞD0

2

� �
sinc

qgg0 � qsð ÞD0

2

� �
:

(19)

It is readily seen that for qll0 ¼ qgg0 we haveð
qs

Fðqll0 ; qll0 ; qsÞ dqs ¼ 1; (20)

and that, for a large D0 of the curve I 0 at the semiconductor-

oxide interface, Fðqll0 ; qll0 ; qsÞ tends to the Dirac function,

that is, limD0!1Fðqll0 ; qll0 ; qsÞ ¼ dðqll0 � qsÞ.
For the calculation of the cross-correlation power spec-

trum Sn0;l0g0

n;lg ðqs; qxÞ in Eq. (18), we first need an explicit

expression for the cross-correlation function Cn0;l0g0

n;lg ðsÞ, which

we write as23,55

Cn0;l0g0

n;lg sð Þ ¼ 1

2p CD 0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

D;N sð Þ
q

�
ðþ1
�1

ðþ1
�1

Mn0l0

nl D1½ � Mn0g0

ng D2½ �
� �†

� exp �D2
1 þ D2

2 � 2CD;N sð ÞD1D2

2CD 0ð Þ 1� C2
D;N sð Þ

� �
2
4

3
5dD1 dD2;

(21)

where CDðsÞ is the auto-correlation function of the roughness

process itself, D(s,x), and CD;NðsÞ ¼ CDðsÞ=CDð0Þ. In

this work, we employ an exponential correlation function for

the roughness,26 CDðsÞ ¼ D2
rmse

�s
ffiffi
2
p

=K; therefore, Cn0;l0g0

n;lg ðsÞ
depends only on s ¼ jsj (with s ¼ ðs� s0; x� x0Þ) and the

power spectrum to be used in Eq. (18) can be finally

expressed as22

Sn0;l0g0

n;lg ðqÞ ¼ 2p
ð1
0

s Cn0;l0g0

n;lg ðsÞJ0ðqsÞds; (22)

where J0(x) is the zero order Bessel function.

FIG. 2. ZrO2-InAs circular GAA nanowire with oxide thickness of 4 nm and

semiconductor diameter d¼ 15 nm. (a) Real part of the terms /n;l along g
for the lowest subband (n¼ 0) and for n¼ 1 and defined by Eq. (9). (b) Real

part of the SR matrix element versus D computed by means of Eq. (11) using

the /n;l terms shown in figure (a).

245301-4 Lizzit et al. J. Appl. Phys. 121, 245301 (2017)



Equation (18) is the final form for the ensemble averaged,

squared matrix element, and we now discuss two simplified

expressions for Eq. (18) that allow one for a significant reduc-

tion of computational time. In this respect, we first notice that

the form factor in Eq. (19) is given by the product of two sinc-

functions peaked at qs ¼ qll0 and qs ¼ qgg0 , respectively; hence,

Fðqll0 ; qgg0 ; qsÞ for qll0 6¼ qgg0 is expected to be small compared

to Fðqll0 ; qll0 ; qsÞ. Figure 3 shows examples of form factors for

two different lengths D0 of the perimeter. The form factor for

qll0 ¼ qgg0 (i.e., for ðl� l0Þ ¼ ðg� g0Þ) is the dominant one

and, as expected, by increasing the length of the perimeter

Fðqll0 ; qll0 ; qsÞ approaches the Dirac function dðqll0 � qsÞ. These

features of the form factors suggest two simplified formulations

for hjMn0

n ðqxÞj2i. The first simplification is obtained by drop-

ping in Eq. (18) the terms with qll0 6¼ qgg0 and leads to

hjMn0
n qxð Þj2i �

1

LxD0

X
l�l0ð Þ¼ g�g0ð Þ

ð
qs

dqs F qll0 ; qll0 ; qsð Þ

� Sn0;l0g0

n;lg qs; qxð Þ: (23)

Then, Eq. (23) can be further simplified by assuming that

Fðqll0 ; qll0 ; qsÞ � dðqll0 � qsÞ reduces the integral over qs lead-

ing to

hjMn0

n qxð Þj2i ¼
1

LxD0

X
l0�lð Þ¼ g0�gð Þ

Sn0;l0g0

n;lg qll0 ; qxð Þ: (24)

Figure 4 compares hjMn0

n ðqxÞj2i calculations for a cylin-

drical silicon nanowire with different transport directions

and for a [100] InAs nanowire with different diameters. As

can be seen, even Eq. (24) is a very good approximation of

Eq. (18), and it can thus be used to obtain an almost 10�
reduction of the computational burden. To further validate

the approximated expressions for the SR squared matrix ele-

ments, Fig. 5 reports mobility calculations for a GAA FET

with triangular cross-section and for a Tri-Gate FinFET

obtained by using the complete expression in Eq. (18) and

the approximated versions given by Eqs. (23) and (24). The

figure shows a good agreement between the different formu-

lations over a wide range of inversion carrier densities, Ninv.

Another important aspect concerning the computational

burden is the number of Fourier modes, l, that must be

retained in the calculations. A systematic analysis carried out

in this work has shown that for an accurate evaluation of

hjMn0

n ðqxÞj2i it is sufficient to consider up to jlj ¼ 5 for all

the device cross-sections considered herein. This is consis-

tent with the previous assessment reported in Ref. 56.

IV. ADDITIONAL SCATTERING MECHANISMS AND
CARRIER SCREENING

Scattering with acoustic, polar, and non-polar optical

phonons (POP) and Coulomb scattering have been included

in the simulations of this work, and we also accounted for

the effects of the screening produced by free carriers. A brief

discussion about the corresponding physical models is given

in this section.

A. Phonon and Coulomb scattering

Scattering rates for the acoustic intra-valley and optical

inter-valley phonon scattering are included with a formula-

tion consistent with Refs. 40 and 57. Optical phonon scatter-

ing can assist intra- and inter-valley transitions between

subbands belonging to different valleys, where the final val-

leys and their multiplicity depend on appropriate selection

rules.58

In polar semiconductors, such as InAs and other III-V

materials, the dominant phonon scattering mechanism at

room temperature is due to polar optical phonons (POP).59,60

POP are here included by using a conventional, bulk semi-

conductor expression for the scattering potential,59 and the

expression for scattering rates is consistent with Ref. 61.

Coulomb scattering has been included in our simulations

only for cylindrical nanowires. The squared matrix element

for Coulomb scattering is given by34,35

jMn;n0 qxð Þj2¼
1

Lx

	ð1
0

dr0

ðp
�p

dh0 r0NII r0;h0ð ÞjM0
n;n0 qx;r0;h0ð Þj2

þ
ðp
�p

dh0 rNWNit h0ð ÞjM0
n;n0 qx;rNW ;h0ð Þj2



; (25)

where NII denotes a volumetric charge (e.g., due to ionized

dopants) and Nit denotes a sheet charge at the cylindrical

interface (e.g., due to interface states). By recalling the form

FIG. 3. Form factors obtained from Eq. (19) for D0 ¼ 10 nm (a) and D0

¼ 40 nm (b). The qgg0 ¼ 2pðg0 � gÞ=D0 values are obtained by setting g¼ 0

and g0 ¼ 0; 2; 4; 6.
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of the wave-function for cylindrical nanowires in Eq. (5), the

termM0
n;n0 ðqx; r0; h0Þ is given by

M0
n;n0 qx; r0; h0ð Þ ¼ e

esct

X
l;l0

e�i l�l0ð Þh0

ð1
0

r Gl�l0;qx
r; r0ð Þ

� qnl rð Þq†
n0l0 rð Þ dr; (26)

where Gl�l0;qx
ðr; r0Þ is the reduced Green’s function for the

point charge. Exploiting the cylindrical symmetry of the

nanowire FET and assuming that all quantities are periodic

along the transport direction x over a length Lx, analytical

expressions for Gl�l0;qx
ðr; r0Þ have been reported in Ref. 34.

B. Carrier screening

The screening produced by the 1D electron gas on a

static perturbation potential (e.g., Coulomb or SR scattering

potential) is here described by the static dielectric matrix,

��;n;n
0

w;m;m0 ðqxÞ, which allows one to calculate the screened matrix

elements Mscr
�;n;n0 ðqxÞ, from unscreened matrix elements

Mw;m;m0ðqxÞ by solving the linear problem

Mw;m;m0 ðqxÞ ¼
X
�;n;n0

��;n;n
0

w;m;m0 ðqxÞMscr
�;n;n0 ðqxÞ; (27)

where (�, w) are valley indexes and ðn;m; n0;m0Þ are subband

indexes. For a 1D electron gas, the dielectric matrix is

FIG. 4. Intra-subband surface roughness matrix element for the lowest subband (i.e., n ¼ n0 ¼ 0) in a cylindrical nanowire calculated with its complete form

[Eq. (18)], or with approximated expressions in Eqs. (23) and (24). (a), (c), and (b) are for the Si-SiO2 system with a cross-sectional area of about 40 nm2

(diameter d¼ 7.14 nm), and inversion density Ninv¼ 1 � 1013 cm�2. (d) is for the InAs-HfO2 system with diameter d¼ 5 or 10 nm, and Ninv¼ 5 � 1012 cm�2.

Results are shown for: (a) [100] transport, two-times degenerate D-valleys (see inset); (b) [100] transport, four-times degenerate D-valleys; (c) [111] transport,

six-times degenerate D-valleys; and (d) [100] transport, C valley. The parameters of the surface roughness spectrum are Drms¼ 0.21 nm and correlation length

K¼ 1.4 nm. Calculations obtained with Fourier modes up to jlj; jlj0 ¼ 4. Reprinted with permission from Badami et al., Tech. Dig. - IEEE Int. Electron

Devices Meet. 2016, 36.1.1–36.1.4. Copyright 2017 IEEE.56

FIG. 5. Simulated electron mobility for a Si-SiO2 system and for: (a) GAA FET with triangular cross-section, (b) FinFET with aspect ratio Hfin/Wfin of 2:1.

Results are obtained accounting for phonon scattering and SR scattering either with the complete formulation for the matrix elements in Eq. (18) or with

approximated expressions in Eqs. (23) and (24). The area is 40 nm2 and the oxide thickness is 1 nm. Transport direction is [100]. The insets show the electron

concentration in the cross-section of each device for the largest Ninv of approximately 1� 1013 cm�2.
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written as in Ref. 34, and the expression for the form

factor consistent with the wave-function nn(r, h) in Eq. (5) is

given by

F�;n;n
0

w;m;m0 ðqxÞ ¼ 2p
X

ðl�l0Þ¼ðg�g0Þ

ð1
0

r dr qw;m;gðrÞq†
w;m0;g0 ðrÞ

�
ð1

0

r0 dr0 q†
�;n;lðr0ÞGl0�l;qxðr; r0Þ q�;n0;l0 ðr0Þ;

(28)

where ðl; l0Þ are Fourier modes of, respectively, nn and

nn0 ; ðg; g0Þ are modes of, respectively, nm and nm0 , while the

expressions for the reduced Green’s function Gl,q(r, r0) are

given in Ref. 34. Equation (27) can be directly used for the

screening in Coulomb scattering.

The screening for a linear formulation of the SR scatter-

ing is also described directly by Eq. (27) and it has been dis-

cussed in several previous contributions.35 A more

complicated formulation for the screening is instead required

for the case of the nonlinear SR model of this work, and it is

given by23

hjMscr
�;n;n0 ðqxÞj2i ¼

X
w;m;m0

jL�;n;n
0

w;m;m0 ðqxÞj2hjMuns
w;m;m0 ðqxÞj2i

þ
X

ðw;m;m0Þ6¼ðu;p;p0Þ
L�;n;n

0

w;m;m0 ðqxÞL�;n;n
0

u;p;p0 ðqxÞ†

� hMuns
w;m;m0 ðqxÞðMuns

u;p;p0 ðqxÞÞ†i; (29)

where L�;n;n
0

w;m;m0 ðqxÞ is the inverse of the dielectric matrix

��;n;n
0

w;m;m0 ðqxÞ and hMuns
w;m;m0 ðqxÞðMuns

u;p;p0 ðqxÞÞ†i is the cross-

correlation power spectrum between the matrix elements

Muns
w;m;m0 ðqxÞ and Muns

u;p;p0 ðqxÞ, which can be calculated as in

Eq. (22) but using the cross-correlation function between

Mw;m0;l0

w;m;l ½Dðs; xÞ� and Mu;p0;g0

u;p;g ½Dðs; xÞ�.
23 Equation (29) is the

screening formulation for SR scattering used throughout this

work.

V. MOBILITY CALCULATIONS

In this work, the electron transport (along x direction) is

described by a direct, deterministic solution of the

Boltzmann transport equation (BTE), with no a priori sim-

plifying assumptions about the occupation function f(x, kx).

The BTE for a 1DEG has been solved using the

approach proposed in Ref. 62, which allows us to write the

BTE as two ordinary differential equations

þjvg;n x;Enð Þj dfþn x;Enð Þ
dx

¼ Sin;þ
n � Sout;þ

n ; (30a)

�jvg;n x;Enð Þj df�n x;Enð Þ
dx

¼ Sin;�
n � Sout;�

n ; (30b)

where vg,n is the group velocity, Sin=out;6
n are the in- and out-

scattering integrals, En is the electron energy in subband n
given by Eq. (4), and the unknown functions f 6

n ðx;EnÞ are

defined as

fþn ðx;EnÞ ¼ fnðx; kxÞ; for kx > 0; (31a)

f�n ðx;EnÞ ¼ fnðx; kxÞ; for kx < 0: (31b)

En is therefore a parameter in Eq. (30) that must be solved

for all the En values of interest.

In this work, we do not introduce any approximation for

the scattering integrals in the right-hand-side of Eq. (30),

such as the momentum relaxation time employed in a num-

ber of previous studies.34,39

Mobility simulations correspond to a uniform transport

regime and a very small lateral electric field F. The solution

of the BTE is obtained by discretizing the (x, En) with a con-

stant grid spacing and, as illustrated in Fig. 6, for a constant

electric field F the unknown occupation functions belonging

to different sections but having the same kinetic energy are

actually the same unknowns if the energy discretization is

taken as DE¼ eFDx. This approach allows us to calculate

mobility by effectively solving the BTE in a single section.

Moreover, since the solution of the BTE in a single sec-

tion does not imply any connection to the source/drain reser-

voirs, we enforce the charge conservation in the solution of

the BTE as a normalization condition for the unknowns.

VI. MOBILITY SIMULATION RESULTS

In this section, we first validate our transport model

against mobility simulation results reported in the literature

and then compare simulations with some recent experimental

results for GAA and MuGFETs. Finally, we investigate the

influence of the shape and area on mobility of the MuGFET

devices. All simulations are performed at room temperature

and whenever carrier density Ninv is quoted in (cm�2), it is

obtained by normalizing the linear density in (cm�1) by the

length D0 of the semiconductor cross-section perimeter. The

energy barrier UB used in the solution of the Schr€odinger

equation as well as in the computation of the SR scattering

matrix elements is calculated as the difference of the electron

affinities v between semiconductor and oxide whose values

FIG. 6. Schematic view of the unknown distributions in the (x, En) space in

the case of uniform transport. Points that correspond to the same kinetic

energy (see dashed-line oval) have the same occupation function fn(x, En).

DE and Dx are linked by the electric field F¼DE/Dx. The solid line repre-

sents a given subband profile.
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are summarized in Tables I and II, together with a few addi-

tional material parameters relevant for our simulations.

A. Validation against previous simulation results

Figure 7 shows a comparison of phonon limited mobility

simulations with the results reported in Ref. 40 for cylindri-

cal, silicon GAA-nanowires with [100] transport direction.

In order to be consistent with Ref. 40, these simulations have

been carried out neglecting the non-parabolicity correction,

the electron wave-function penetration into the SiO2 oxide

and the anisotropicity of the silicon D-valleys.

A good agreement between our simulations (solid lines)

and the results from Ref. 40 (symbols) is observed for differ-

ent nanowire diameters and over a wide range of Ninv.

In order to investigate the effect of non-parabolicity cor-

rections, wave-function penetration into the SiO2 oxide, and

anisotropicity of the silicon D-valleys, Fig. 8 shows the

phonon-limited mobility obtained under different approxi-

mations for two cylindrical GAA devices with diameter

d¼ 10 nm and d¼ 3 nm, and using the same scattering

parameters as in Fig. 7. As can be seen, the mobility is over-

estimated when using the simplified model (filled squares)

that assumes isotropic, parabolic bands (which underestimate

the density of states and scattering rates) and neglects the

wave-function penetration in the oxide region. Moreover,

with the inclusion of the wave-function penetration into the

oxide and non-parabolicity corrections (open circles), simu-

lation results approach quite well the complete model (filled

circles), thus revealing that in this case the anisotropy of the

energy relation seems to play only a modest role.

B. Comparison with experimental data

In Fig. 9, we present a comparison between simulations

and experimental mobility for an InAs cylindrical, GAA

FET.63 Figure 9 also shows the contribution of the different

scattering mechanisms by reporting the mobility calculated

including only acoustic, polar, and non-polar optical phonons

(open circles), then adding SR scattering (open triangles), and

finally including also Coulomb scattering induced by fixed

oxide charges Nfix¼ 4� 1012 cm�2 and Nfix¼ 8� 1012 cm�2.

The phonon-limited mobility is approximately one order of

magnitude larger than the measurements and a fairly good

agreement between simulations and experiments at large

inversion densities is obtained by adding SR scattering with

Drms¼ 0.17 nm and K¼ 1.4 nm. Mobility simulations with

phonon and SR scattering still largely overestimate mobility

at small inversion densities, suggesting that additional scatter-

ing mechanisms are presumably at work. In order to further

address this point, we investigated the role played by the

Coulomb scattering with a fixed interface charge Nfix; in fact,

the experimental device has a negligible channel doping.63 By

TABLE II. Oxide parameters.

HfO2 ZrO2 In2O3

m(C)72 (m0) v72 (eV) j73 (e0) m(C)74 (m0) v74 (eV) j73 (e0) m(C)41 (m0) v75 (eV) j41 (e0)

0.11 2.0 22 0.30 3.0 24 0.30 3.5 15

FIG. 7. Simulated phonon-limited mobility for a circular, GAA nanowire

with different diameters. The transport direction is [100] and the SiO2 thick-

ness is 1 nm. Our simulations are compared to DBTE and MSMC results

from Ref. 40. Scattering parameters used in these simulations are consistent

with Reference 40.

FIG. 8. Simulated phonon-limited mobility for the same device as in Fig. 7 for d¼ 3 nm (right) and d¼ 10 nm (left), and for different modelling approxima-

tions. Filled squares: simplified model without band anisotropy, with parabolic bands and without wave-function penetration; empty circles: isotropic bands,

with non-parabolicity corrections and wave-function penetration into the oxide; filled circles: complete model with anisotropic bands, valley non-parabolicity

and wave-function penetration into the oxide.
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considering areal densities up to Nfix¼ 8� 1012 cm�2, we can

improve the agreement with experiments, but simulations still

overestimate measured mobility at small Ninv. As discussed in

more detail in Ref. 64, Nfix¼ 8� 1012 cm�2 is probably

already too large to be realistic, and a net charge qNfix would

induce a shift in I-V curves that is not consistent with experi-

ments, so that we refrained from considering any larger Nfix

value.

Figure 9 shows that carrier screening plays a modest

role in the simulated GAA MOSFET. This almost negligible

effect of carrier screening can be explained by noting that, in

a degenerate 1D electron gas, intra-subband transitions at

energies close to the Fermi level result in a very large

exchanged wave-vector q ¼ ðk0x � kxÞ, which reduces drasti-

cally the effect of screening.35,65 Inter-subband transitions

may have a significantly smaller q, but inter-subband screen-

ing is weaker.35,65

We now move to the mobility simulation of a back-

gated (BG), nanowire InAs FET experimentally analyzed in

Ref. 66. The simulation domain is sketched in Fig. 10(a),

and it includes the thick SiO2 back-oxide, an In2O3 native

oxide, and also an air region to mimic the experimental

structure and capture capacitive parasitics. The lack of a gate

surrounding the cylindrical nanowire breaks the radial sym-

metry of the wave-function, whose peak is pushed towards

the back-oxide, as can be seen in Fig. 10(c) for the wave-

function corresponding to the lowest subband; this behavior

is expected to influence mobility results. Figure 11 shows the

simulated mobility for the BG device reported in Fig. 10(a)

compared with experimental results and as a function of the

linear electron density, which for experiments has been

obtained as Ninv¼CG(VGS – VT), with the capacitance CG ’
40 aF/lm obtained from Fig. 4 of Ref. 66 by extrapolating at

a nanowire diameter of 15 nm. Moreover, results for the

same nanowire operated in a GAA mode are also shown in

Fig. 11 for comparison. A good agreement between simula-

tions and experiments is obtained with a Drms¼ 0.55 nm and

K¼ 2.0 nm and it is interesting to note that these SR spec-

trum parameters are close to the values measured in III-V

quantum well FETs.67 An analysis carried out on the same

experimental data but using a linear SR scattering model and

GAA biasing conditions, instead, led to a much larger

Drms¼ 1.2 nm.41 The ability of the new, nonlinear SR model

to reproduce experiments with substantially smaller and in

effect more realistic Drms values compared to conventional

linear SR models has been already observed and discussed

for planar transistors22,23 and appears to be confirmed in 3D

FETs.

We also repeated our simulations using a GAA biasing

condition [see Fig. 10(b)] for the same Drms and K parame-

ters, and Fig. 11 shows that this results in larger mobility val-

ues that actually overestimate the experiments. This can be

FIG. 10. (a) Simulation domain for the back-gated nanowire. Homogeneous

Neumann boundary conditions are imposed in the external domain with

dashed lines, whereas Dirichlet boundary conditions are imposed at the bot-

tom of the SiO2 film (solid line); (b) simulation domain for the same nano-

wire but with a gate-all-around biasing condition. Squared magnitude of the

lowest subband wave-function at Ninv� 1� 107 cm�1 for: (c) back-gated

nanowire; and (d) gate-all-around nanowire. Reprinted with permission from

Badami et al., Tech. Dig. - IEEE Int. Electron Devices Meet. 2016,

36.1.1–36.1.4. Copyright 2017 IEEE.56

FIG. 11. Mobility versus inversion density Ninv in a back-gated (BG), InAs

cylindrical FET [open circles, see Fig. 10(a)] with diameter d¼ 15 nm:

closed symbols are experiments from Ref. 66; mobility results are also

obtained for the same InAs cylindrical FET with gate-all-around (GAA)

biasing condition [open squares, see Fig. 10(b)]. Reprinted with permission

from Badami et al., Tech. Dig. - IEEE Int. Electron Devices Meet. 2016,

36.1.1–36.1.4. Copyright 2017 IEEE.56

FIG. 9. Mobility simulations (open symbols) obtained for an InAs circular

GAA with d¼ 15 nm and compared with corresponding experiments from

Ref. 63 (filled circles). The oxide material is ZrO2 with a thickness of 4 nm.

Simulations have been performed by considering different sets of scattering

mechanisms: only phonon scattering (open circles); phonon scattering and SR

(open triangles); phonon scattering, SR and CS with Nfix¼ 4� 1012 cm�2

(open squares) and Nfix¼ 8� 1012 cm�2 (open diamonds). SR parameters are

Drms¼ 0.17 nm and K¼ 1.4 nm. Simulations with SR and CS were also

repeated by switching off the carrier screening (dashed line with diamonds).
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explained resorting to the wave-function behavior reported

in Figs. 10(c) and 10(d). In fact, in the BG mode the wave-

function is more confined towards the interface than it is in

GAA mode, which implies larger matrix elements for SR

scattering and smaller mobility. These results emphasize the

importance of our simulation approach that is able to account

for arbitrary cross-sections and biasing conditions.

C. Mobility simulations by varying shape and area
of the device cross-section

Figure 12 shows mobility simulations at a fixed Ninv for

GAA circular and square FETs, for Tri-Gate FinFETs (with

aspect ratio Hfin/Wfin of 2:1), and for different cross-

sectional areas ranging from 10 to 50 nm2. The SR spectrum

parameters (Drms ¼ 0.21 nm and K¼ 1.4 nm) are those

extracted from a fitting with experimental data for planar

devices23 and are the same for III-V and Si MuGFETs. As

shown in Fig. 12(a) at Ninv¼ 2� 1012 cm�2 mobility is

degraded with decreasing area of the cross-section. This is

explained by the fact that, at such relatively small Ninv, the

electron wave-functions and the electron charge spreads in a

large fraction of the cross-section (and the charge is in fact

maximum at the center of the MuGFET), so that by shrink-

ing the cross-section the wave-function is pushed toward the

semiconductor-oxide interface thus increasing the influence

of SR scattering. Figure 12(a) also shows that, for InAs

nanowires at Ninv¼ 2� 1012 cm�2 and for areas smaller than

approximately 20 nm2, we observe a mobility decrease

according to an A3 power law, the same for all the device

cross-sections (circular, square, FinFET-like).

For Ninv¼ 5� 1012 cm�2, instead, Fig. 12(b) shows that

the modulation of mobility with the cross-sectional area is

smaller than in Fig. 12(a); this is because at this Ninv the

external bias has a strong influence on the shape of the

wave-function and on its interaction with the semiconductor-

oxide interface, whereas the impact of the cross-sectional

area is comparably weaker. Figure 12(b) also shows that the

SR is responsible for a strong mobility degradation if we

compare mobility results obtained with the inclusion of the

SR (solid line with diamonds) and with phonons only

(dashed line with diamonds).

Moreover, Fig. 12(b) shows mobility fluctuations versus

the cross-sectional area; these are specific of a 1DEG system

with large subband separation and are related to the peculiar

behavior of the density-of-states and to the relative position

of the subbands with respect to the Fermi level. This behav-

ior has already been investigated in III-V MOSFETs41 and

experimentally observed in silicon nanowire MOSFETs at

low temperature.68

VII. CONCLUSIONS

In this paper, we have developed a nonlinear SR scatter-

ing model for GAA MOSFETs and MuGFETs with fairly

arbitrary cross-sections and biasing schemes which is a very

substantial extension of our previous contribution limited to

planar FETs.22,23 The SR model has been implemented in a

mobility simulator that directly solves the BTE without sim-

plifying approximations, and including the effects of anisot-

ropy and non-parabolicity of the energy dispersion relation,

as well as the penetration of the wave-function into the oxide

region.

The nonlinear SR model is able to reproduce experi-

ments in GAA nanowires with smaller and actually more

realistic values of the r.m.s. roughness compared to conven-

tional linear models, thus confirming a trend already

observed and discussed in detail for planar MOSFETs.22,23

Our results also emphasize the importance of the flexi-

bility in simulation approach when comparing to experimen-

tal data, in order to allow for a realistic description of the

cross-section of MuGFETs and of the biasing condition,

because biasing condition can affect the features of the elec-

tron wave-functions and thus influence scattering rates and

ultimately mobility.

We have found that free carrier screening plays a mod-

est role in III-V based GAA MOSFETs with strong degener-

acy compared, for instance, to III-V transistors realized in a

planar architecture, and thus corresponding to a 2D as

opposed to a 1D carrier gas. This behaviour is related to the

large exchanged momentum in the intra-subband transitions

of a 1D electron gas occurring at energies close to the Fermi

level. Another feature specific of a 1D gas is a maximum of

scattering rates and thus a minimum of mobility for those

cross-sectional area and inversion density conditions such

that a subband minimum crosses the Fermi level.

In narrow MuGFETs, mobility and transport are thus

substantially influenced by the shape of the cross-section, the

biasing scheme, and the features of the 1D electron gas

induced by carrier confinement, which emphasizes the

importance of physically based scattering and transport mod-

els as the ones developed and discussed in this paper.

FIG. 12. Simulated mobility versus

cross-section area for GAA nanowire

MOSFETs with square or circular cross-

section and for Tri-Gate FinFET: simula-

tions include phonon and SR scattering

with Drms ¼ 0.21 nm and K¼ 1.4 nm. (a)

Inversion density Ninv¼ 2 � 1012 cm�2;

(b) Ninv¼ 5� 1012 cm�2.
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APPENDIX A: DERIVATION OF THE MATRIX ELEMENT
IN EQ. (10)

Before discussing the calculation of the integral over PR

[D(s, x)] in Eq. (7), we introduce a few necessary consider-

ations about the parametrization of the MuGFET cross-

section. Let us consider a parametrization rðtÞ ¼ f ðtÞ̂iy þ
gðtÞ̂iz of the curve I 0 in Fig. 1(a), where îy and îz are the unit

vectors in y and z directions and t is the parameter. From

r(t), we can define the abscissa s(t) along I 0 as

s tð Þ ¼
ðt

0

���� dr uð Þ
du

����du: (A1)

Since s(t) is a positive-defined and monotonically increasing

function, there exists a unique inverse function ~tðsÞ such that

we can write t ¼ ~tðsÞ; hence, r(t) can be rewritten in terms of

s as rðsÞ ¼ ~f ðsÞ̂iy þ ~gðsÞ̂iz where ~f ðsÞ ¼ f ½~tðsÞ� and

~gðsÞ ¼ g½~tðsÞ�.
The unit vector tangent to the curve I0 is

t̂ sð Þ ¼ dr tð Þ=dt

jdr tð Þ=dtj ¼
dr tð Þ

dt
� ds tð Þ

dt

� ��1

¼ dr sð Þ
ds

¼ d~f sð Þ
ds

îy þ
d~g sð Þ

ds
îz ¼ ty sð Þ̂iy þ tz sð Þ̂iz; (A2)

and the unit vector normal to the curve I0 reads

n̂ðsÞ ¼ �tzðsÞ̂iy þ tyðsÞ̂iz ¼ nyðsÞ̂iy þ nzðsÞ̂iz: (A3)

If we now consider a small region close to I 0, such as the PR

[D(s, x)] sketched in Fig. 1(b) and used in Eq. (7), we can

define I g as the curve obtained by moving, at each points

along I 0, of a distance g in the direction normal to I 0 identi-

fied by n̂ ðsÞ. The relation that links the coordinates system

(y, z) to (s, g) is thus

y ¼ ~f ðsÞ þ g nyðsÞ
z ¼ ~gðsÞ þ g nzðsÞ

;

(
(A4)

and the Jacobian of the transformation from (y, z) to (s, g) is

J s; gð Þ ¼ det

@y

@s

@y

@g
@z

@s

@z

@g

2
6664

3
7775 ¼

ty � g
@tz

@s
�ty

tz þ g
@ty
@s

þtz

2
664

3
775

¼ 1þ g tz
@ty

@s
� ty

@tz
@s

� 

; (A5)

where we have used t2
y þ t2

z ¼ 1. We notice that J(s, 0)¼ 1,

and in fact the length of the curve I0 is D0 ¼
ÐD0

0
Jðs; 0Þds.

We now move to the calculation of the integral inside

square brackets in Eq. (7), which can be rewritten by using

the new integrating variables (s, g) asð ð
PR Dðs;xÞ½ �

n†
n0 ðrÞUB nnðrÞ dr

¼
ðD0

0

ðDðs;xÞ

0

n†
n0 ðs; gÞUB nnðs; gÞJðs; gÞ dg ds: (A6)

For small g values (either positive or negative), the Jacobian

of the transformation from Cartesian to curvilinear coordi-

nates is now approximated with its average value �Jðs; gÞ
along the curve Ig, that is

�J s; gð Þ ¼

ðD0

0

J s; gð Þds

ðD0

0

ds

¼ Dg

D0

: (A7)

We now recall that Eq. (8) writes nn(r) as a function of (sg,

g); however, Fig. 1(a) shows that, for each I g, a one-to-one

relation must exist between sg and s that we express as ~sgðsÞ.
Therefore, Eq. (8) can be rewritten as a function of s as

nnðg; sÞ ¼
X

l

/n;lðgÞ; ei2pl ~sg ðsÞ=Dg : (A8)

Equation (A8) in principle requires to determine ~sgðsÞ to pro-

ceed further, but in the case of small g values, we can intro-

duce a second approximation by linearizing ~sgðsÞ as

~sg sð Þ �
Dg

D0

s; (A9)

that fulfills the conditions ~sgð0Þ ¼ 0 and ~sgðD0Þ ¼ Dg. By

substituting Eqs. (A7)–(A9) in Eq. (A6) and then Eq. (A6)

back in Eq. (7), we finally obtain Eq. (10) of the main text.

We conclude the Appendix by noting that Eqs. (A7) and

(A9) are exact for polygonal and circular cross-sections, as

well as for cross-sections obtained by any combination of

arcs of circles and segments.
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37M. Poljak, V. Jovanović, D. Grgec, and T. Suligoj, IEEE Trans. Electron

Devices 59, 1636 (2012).
38S. Koba, Y. Ishida, R. A. Kubota, Y. Tsuchiya, H. A. Kamakura, N. Mori,

and M. Ogawa, Tech. Dig. - IEEE Int. Electron Devices Meet. 2013,

12.1.1–12.1.4.
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