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Abstract This paper presents the solution of the Schrödin-
ger–Poisson coupled problem for nanoscale electron devices
obtained by means of the Discrete Geometric Approach
(DGA). The paper illustrates a self-contained description of
the DGA method for a Schrödinger–Poisson problem, dis-
cusses its implementation and compares the results of the
DGA with respect to the ones obtained by the well estab-
lished Pseudo-spectral (PS) method for two technologically
relevant benchmark devices (i.e. a nanowire and a FinFET).
Finally, the paper examines the merits of the DGA approach
with respect to the Finite Differences (FD) and Finite Ele-
ments (FE), that are the most frequently used methods in the
electron device community.

Keywords Discrete Geometric Approach (DGA) · Cell
method · Pseudo-spectral method · Schrödinger–Poisson ·
Nanoscale electron devices · Nanowires · FinFETs

1 Introduction

The modern microelectronics and optoelectronics make use
of semiconductor materials structured at truly nanometric
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dimensions. Historical examples are related to High Elec-
tron Mobility Transistors (HEMT) based on III–V com-
pound semiconductors. However also mainstream CMOS
technologies have recently studied and fabricated transistors
where the carrier transport is confined in very thin semicon-
ductor layers. This is the case for fully depleted Silicon On
Insulator (SOI) MOSFETs realized in silicon films thinner
than 5 nm [1–4], and the trend has been reinforced by the IN-
TEL announcement in spring 2011 concerning the introduc-
tion for the 22 nm technology node of Tri-Gate transistors
(or FinFETs) [5], which are claimed to provide improved
delays at a lower supply voltage with respect to planar de-
vices.

Besides the progress related to new device architectures,
the CMOS technology is undergoing remarkable innova-
tions in terms of the optimization of the crystal orientation
[6], of strain engineering in both planar and Tri-Gate tran-
sistors [7–9], and of introduction of channel materials alter-
native to silicon [10–14].

All the technology boosters mentioned above and related
to crystal orientation, strain engineering and new channel
materials affect the electrical characteristics of the MOS-
FETs essentially through the carrier band-structure, which
form a quasi two-dimensional (2D) gas in MOS transis-
tors, because there is a significant quantum confinement
in at least one direction normal to the transport direction.
Hence, accurate and efficient methods for the solution of the
Schrödinger equation in nanoscale MOSFETs are a primary
target for electron device modeling. In this respect, it is in-
teresting to notice that the solution of the eigenvalue prob-
lem in a section of the device is a necessary step not only
for semi-classical transport modeling based on either the
momentum relaxation time approach [15–18] or the Monte
Carlo method [19–22], but also for full quantum transport
modeling, because, in order to reduce the huge computa-

Author's personal copy

mailto:ruben.specogna@uniud.it
mailto:alan.paussa@uniud.it
mailto:esseni@uniud.it
mailto:trevisan@uniud.it


288 J Comput Electron (2014) 13:287–299

Fig. 1 Sketch of the
two-dimensional domains
considered in this work. In both
the geometries, an inner silicon
core Dch is surrounded by the
gate dielectric Dox

tional burden related to the calculation of the Green’s func-
tions in real-space, the calculations are typically performed
by resorting to the mode space approach [23–26]. An inter-
esting review of analytical and numerical methods for the
solution of the Schrödinger equation in the effective mass
approximation can be found in [27].

The aim of this paper is to explore the use of the Discrete
Geometric Approach (DGA) [28–31] for the self-consistent
solution of Schrödinger–Poisson coupled problem in the
case of a 2D carrier confinement, relevant for nanowire
FETs and FinFETs. Throughout the work we neglect any
current flux at the gate terminal, hence we employ closed
boundary conditions for the Schrödinger equation at the out-
ermost boundary of the geometrical domain. Besides the for-
mal presentation of the DGA method for the Schrödinger–
Poisson coupled problem and its implementation, this paper
presents also a systematic comparison between the results
obtained with the DGA and the Pseudo-spectral (PS) [32–
34] method for different electron device structures and dif-
ferent geometrical features.

The paper is organized as follows. We start, in Sect. 2,
with the formulation of the quantization problem in nan-
odevices and in Sect. 3 we reformulate in a generalized
way the Schrödinger–Poisson coupled problem. Then in
Sects. 4, 5 and 6 we describe the DGA method, which
highlights the geometric structure behind the Schrödinger–
Poisson coupled problem. This idea has a solid physical
and mathematical foundation, highlighted in the fundamen-
tal works of E. Tonti [30, 35], of A. Bossavit with the un-
derstanding of the geometric properties of the Finite Ele-
ment Method in computational electromagnetics [36] or of
T. Weiland regarding the Finite Integration Technique on
electromagnetic wave propagation [37]. A formal conver-
gence analysis has been presented in [38, 39] together with
[40], which contains the evaluation of the constants bound-
ing the approximation error. In Sect. 7 we show the numer-
ical results for a nanowire FET and for a geometric con-
figuration representative of an actually fabricated FinFET,
and in Sect. 8 we finally draw the conclusions of our pa-
per.

2 Formulation of the quantization problem in
nanodevices

The quantization problem we consider occurs on a bi-
dimensional domain D = Dch ∪ Dox on a plane (y, z) nor-
mal to the transport direction x, where Dch, Dox denote the
channel and oxide domains respectively (see Fig. 1); the di-
mensions of the Dch domains are some tens of nanometers
and they will be precisely specified in the Numerical Results
section. The surrounding gate electrode is modeled as an
equipotential domain. In order to compute the electron den-
sity in narrow nanowires and FinFETs, the Effective Mass
Approximation (EMA) model is typically used to describe
the energy dispersion relation close to the conduction-band
energy minima. Such a model leads to the following 2D
Schrödinger equation in D

−div qν(r)gradψν,j (r) = λν,jψν,j (r) − u(r)ψν,j (r), (1)

where ν is the valley1 index, r is the position vector of a
point individuated by the Cartesian components (y, z) of
the position vector2 r ∈ D and ∂

∂x
= 0 holds in the defini-

tion of the differential operators in Cartesian coordinates,
thanks to the plane symmetry of the model; ψν,j (r) denotes
the wave function3 corresponding to the j -th eigenvalue
λν,j . The qν(r) is a diagonal4 double tensor, whose Carte-
sian components in D are the inverse of effective masses for
each valley index ν; for the ij -th Cartesian component (with
i, j = 1, . . .3), we write

qνij (r) = �
2

2mνi(r)
δij , (2)

where � is the reduced Plank constant and mνi(r) is the elec-
tron effective mass coefficient of the particle along the i-th

1A valley denotes a conduction-band energy minimum.
2Vectors and tensors are denoted in roman type.
3Wave functions must be normalized such that

∫
D

|ψν,j (r)|2ds = 1.
4In general, qν(r) can also be non diagonal without affecting the results
of this work.
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axis (assumed here independent of λν,j ) and δij is the Kro-
necker symbol. Finally, the potential energy u(r) of an elec-
tron can be expressed as

u(r) = −eφ(r) − χ(r), (3)

where φ(r) is electric scalar potential describing the electro-
static behavior of the nanodevice, e is the absolute value of
electron charge and χ(r) is the specified medium dependent
energy affinity of the electron. Interface condition between
Dch and Dox and boundary conditions on ∂D must be added
to (1), in order to well pose the Schrödinger problem.

The electrostatic behavior of nanodevices at the equilib-
rium can be modeled by coupling to the Schrödinger prob-
lem (1) a Poisson problem for the electric scalar potential
φ(r)

−div ε(r)gradφ(r) = ρ(r), r ∈ D, (4)

where ε(r) denotes the medium permittivity double tensor;
ρ(r) is the charge density given by

ρ(r) = −e
(
NA(r) + n(r)

)
, (5)

where NA(r) denotes the concentration of ionized acceptor
atoms (as appropriate for n-type transistors), that is null in
Dox , and n(r) denotes the electron concentration in the con-
duction band. Boundary and interface conditions must be
added to close the Poisson problem (4).

The coupling between the Schrödinger (1) and the Pois-
son (4) problems in D occurs as follows. On the one hand
the electric scalar potential φ(r) determines the potential en-
ergy u(r) in (3), on the other hand at the equilibrium the
electron concentration n(r) in (4) is given by

n(r) =
∑

ν

∑

j

Nν,j |ψν,j (r)|2, (6)

taking for Nν,j the appropriate expression for a quasi-1D
electron gas in the effective mass approximation [41, 42]

Nν,j = gν

√
2mxKBT

π�2
F− 1

2

(
EF − λν,j

KBT

)

, (7)

where gν is the valley degeneracy, F− 1
2

is the complete
Fermi–Dirac’s integral of order −1/2 according to the Din-
gle notation [43], EF , KB and T are Fermi level, Boltzmann
constant and absolute temperature respectively.

3 The abstract Schrödinger and Poisson problems

Now we will reformulate the left hand side of the Schrödin-
ger problem (1) in terms of the following relations

− gradψν,j (r) = a(r), (8)

qν(r)a(r) = b(r), (9)

div b(r) = γ (r), (10)

where we introduced in D the vector fields a(r), b(r) and the
scalar field γ (r), respectively; moreover the right hand side
of (1) becomes

(
λν,j − u(r)

)
ψν,j (r) = γ (r). (11)

Of course, (8), (9), (10) and (11) are equivalent to (1).
Similarly, the Poisson problem (4) can be rewritten in D

as

−gradφ(r) = E(r), (12)

ε(r)E(r) = D(r), (13)

div D(r) = ρ(r), (14)

where we introduced the electric and displacement vector
fields E(r), D(r) and the charge density ρ(r) is given by (5).

Due to the plane (y, z) symmetry of the Schrödinger and
Poisson problems, the vector and scalar fields previously in-
troduced are invariant along the transport direction x.

We observe that the differential structure of the Schrödin-
ger and Poisson problems in D is identical, apart from the
additional relation (11) specific of the Schrödinger problem
only; thence, we may reformulate both the problems in a
unified way as

−gradα(r) = v(r), (15)

m(r)v(r) = w(r), (16)

div w(r) = β(r), (17)

η(r)α(r) = β(r), (18)

involving the pair of scalar fields α(r), β(r), the pair of vec-
tor fields v(r), w(r); relations (16) and (18) can be inter-
preted as constitutive relations between a pair of vector and
scalar fields respectively, m(r) and η(r) being the medium
characteristics.

Clearly, by substituting the corresponding scalar and vec-
tor fields, (15)–(17) yield the Poisson problem, while (15)–
(18) represent the Schrödinger problem.

Finally, boundary conditions on ∂D = SD ∪ SN must
be added to close the Schrödinger and Poisson problems;
in general, Dirichlet and Neumann boundary conditions are
imposed on the portions SD , SN of ∂D respectively, by pre-
scribing the values

(
α(r)

)
SD

,
(
m(r)gradα(r) · n(r)

)
SN

, (19)

n(r) being the outward normal to ∂D. Moreover, the tensor
m(r) is usually discontinuous in D, which leads to the in-
terface conditions on surface Sm separating subregions with
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different material properties. In our coupled problem such a
surface separates the Dch and Dox domains and we write

(
α(r)

)
S+

m
= (

α(r)
)
S−

m
,
(
m(r)gradα(r) · n(r)

)
S+

m

= (
m(r)gradα(r) · n(r)

)
S−

m
, (20)

where n(r) is the normal to Sm; S+
m , S−

m denote the positive
and negative sides of Sm respectively.

We will refer to the problem formulated in terms of the
relations from (15) to (18) subject to (19), (20) as the ab-
stract problem.

4 Discrete Geometric Approach

To discretize the abstract problem (15)–(18) we will rely on
the geometrical structure behind a physical theory [35–37]
by means of the DGA.

4.1 Domain discretisation

We introduce in D a discretisation for the abstract prob-
lem. The discretisation consists of a primal simplicial cell
complex K = {N , E, F , V}, whose oriented geometrical
elements are nodes ni ∈ N , edges ej ∈ E , faces fh ∈ F ,
and volumes vk ∈ V (triangular prisms), [35], Fig. 2. Due
to the plane symmetry of the of the scalar and vector fields
involved in our problem, a prism vk has height h and vk will
be identified by its triangular base sk laying in the plane of
symmetry (y, z); the fields are invariant for any plane par-
allel to the plane of symmetry and thus all the equations we
will deduce will be independent of h.5 The collection of all
the triangles sk yields to a triangular mesh in D. Similarly,
the primal edges ej of interest for our problem are only those
laying on a (y, z) symmetry plane. The cardinality of each
set N , E, F , V is denoted by N , E, F and V respectively.

From the primal cell complex K, we will construct a
barycentric dual complex K̃ = {Ṽ, F̃ , Ẽ, Ñ }, whose ori-
ented geometrical elements are dual nodes ñk ∈ Ñ , dual
edges ẽh ∈ Ẽ , dual faces f̃j ∈ F̃ and dual volumes ṽi ∈ Ṽ .
According to the barycentric subdivision, a dual node ñk is
the barycenter of the prism vk , a dual edge ẽh is a broken
segment of line joining the barycenters of a pair of prisms
through the barycenter of the face fh they have in common.
Due to the plane symmetry, we need only the dual faces f̃j

dual to the primal edges ej , Fig. 2; such a dual face f̃j is the
union of the pair of rectangular faces, tailored within each
of the pair of primal volumes (prisms) having the edge ej

in common. Again the height a dual face f̃j is h. Finally, a

5It can be assumed unitary.

Fig. 2 Oriented geometric elements of the primal complex K and of
the dual complex K̃ restricted, for clarity, to a single prism vk whose
base is the triangle sk laying on the plane of symmetry

dual volume ṽi is the union of a number of hexahedral sub-
regions of height h tailored within each of the primal vol-
umes (prisms) of the cluster of primal volumes having ni as
common node.

The cells of K are by construction in a one-to-one corre-
spondence6 with those of K̃, Fig. 2; The inner orientation of
K induces corresponding orientation [35] of K̃. The inter-
connections of K are described by incidence matrices; for
our purposes, we need matrix G of dimension E × N of in-
cidence numbers Gji between the orientations of pairs (ej ,
ni ) and matrix D̃ of dimension N × E of incidence num-
bers between the orientations of pairs (ṽi , f̃j ); thanks to the
duality between K, K̃ D̃ = −GT holds.7

4.2 Integral variables and their association to the elements
of K, K̃

We introduce the array A of dimension N , whose i-th entry
Ai = α(rni

), is the value α(rni
) assumes at the position rni

of the node ni , with i = 1, . . . ,N . The circulation

Vj =
∫

ej

v(r) · dl (21)

of the vector v(r) along a primal edge ej is associated with
primal edges, with j = 1, . . .E; the array V they form has
dimension E. The flux of the vector w(r) across a dual face
f̃j is associated with dual faces, with j = 1, . . .E. Due the
plane symmetry of w(r)
∫

f̃j

w(r) · ds = hWj (22)

6It is often referred to as duality.
7The minus sign comes from the assumption that ni is oriented as a
sink, whereas the boundary of ṽi is oriented by the outer normal.
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holds, h being the height of f̃j and Wj the flux per unit
height independent of h; the array W formed by the Wj has
dimension E. Finally, we introduce the volume integral of
the scalar field β associated with a dual volume ṽi , with i =
1, . . .N . Due to the plane symmetry of β(r)
∫

ṽi

β(r)dv = hBi (23)

holds, Bi being the volume integral per unit height indepen-
dent of h; we denote with B the corresponding array formed
by the Bi , of dimension N .

The arrays A, V, W and B of integral variables are often
referred to as Degrees of Freedom (DoF). We observe that
the arrays V, W are one dual of the other being associated
with dual geometric elements of the sets E , F̃ respectively;
similarly for the pair A, B, being associated with the dual
geometric elements of the sets N , Ṽ respectively.

4.3 Balance equations and constitutive relations

Now, according to algebraic topology [35], we can straight-
forwardly construct exact discrete counterparts of (15) and
(17) respectively, independently of the media and the metric
of the pair of cell complexes K, K̃ in D as

−GA = V, (24)

−GT W = B. (25)

A further step in the discretisation process is the computa-
tion of approximated discrete counterparts of the constitu-
tive relations (16) and (18), which can be written respec-
tively as

MV = W (26)

NA = B, (27)

where M and N are square matrices of dimension E and N

respectively, depending on metric and media properties of
the pair of cell complexes [35, 36, 44].

A discrete counterpart of the abstract problem is thus ob-
tained by substituting (24) in (26) and, in turn, (26) in (25)
and we write

GT MGA = B (28)

which is a discrete counterpart of (15)–(17). We will com-
pute in a purely geometric way both the so called stiffness
matrix GT MG on the left-hand side of (28) and the matrix
N in (27). We will show how the geometric approach we
pursue allows an efficient computation of the GT MG ma-
trix directly, avoiding the storage and the multiplication of
the single matrices M, G; moreover the geometric approach
leads to a diagonal matrix N.

Fig. 3 A portion of surface S is shown, representing, according to the
case, either portions of SD ∪SN or Sm. An additional dual face f̃ai in a
one-to-one correspondence with node ni on SD ∪ SN or on Sm is also
evidenced together with a portion of the corresponding dual volume ṽi

4.4 Discrete boundary and interface conditions

Discrete counterparts of Dirichlet boundary conditions (19)
on the discretized portion SD of the boundary are imposed
by assigning the Ai values on the primal nodes ni on
SD ⊆ D. Discrete Neumann boundary conditions on the dis-
cretized portion SN ⊂ D are specified by assigning the val-
ues of Wai associated with additional boundary dual faces
f̃ai on SN in a one-to-one correspondence with the primal
nodes ni on SN , Fig. 3; discrete homogeneous Neumann
boundary conditions on SN are naturally accounted for in
(28) by assuming8 Wi = 0 on f̃ai .

Discrete counterpart of interface condition on discrete
discontinuity surface Sm in D is automatically accounted
for due to the continuity of the circulations Vj along primal
edges ej on Sm; this yields in turn the first of (20) which
assures the continuity of the potential α(r) on primal nodes
belonging to Sm. Also the natural continuity of the flux Waj

across the two sides of each additional dual face f̃ai on Sm,
assures that the discrete counterpart of the second of (20) is
implicitly satisfied.

5 Geometric construction of GT MG and N matrices

In the following, without loosing generality, we will fo-
cus on a single triangle sk corresponding to a prism vk of
height h, Fig. 2. With respect to sk , we will compute the
local stiffness matrix (GT MG)k and the matrix (N)k , with
k = 1, . . . V ; the corresponding global matrices GT MG and

8This is to say that additional dual faces f̃ai are not considered in the
assembling process of (28).
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N are then easily deduced, by adding the local contributions
from each triangle of the complex according to a standard
assembling process.

At the base of the computation there is the assumption
of local uniformity of scalar, vector and tensor field quanti-
ties within each sk with k = 1, . . . , V , since, within a small
enough region, any regular field quantity can be approxi-
mated by a uniform field.

5.1 Computation of local stiffness matrix

We denote with ni , i = 1, . . .3, a node of sk , the cyclic in-
dex i being of modulo 3; we introduce the pair (ei , fi−1)
formed by a primal edge ei and the not coplanar primal face
fi−1 of vk , having node ni in common. Correspondingly, ei ,
fi−1 denote the edge vector9 and the face vector10 associated
with ei , fi−1 respectively.

From the geometric interpretation of a pair of vectors
forming a base in R

2 and the pair of vectors forming its re-
ciprocal base, [45], the following, purely geometric, tensor
identity

Dk i−1fi−1 ⊗ Gi ni
ei + Dk ifi ⊗ Gi−1ni

ei−1 = 2 I |vk|, (29)

holds for prism vk , where symbol ⊗ denotes the tensor prod-
uct, I is the identity tensor, |vk| is the volume of vk , Gi ni

is
the incidence number (±1) between the inner orientations of
ei and ni , while Dk i is the incidence number (±1) between
the inner orientations of vk and fi . Since

fi = |ei |hui , |vk| = |sk|h (30)

hold, where ui = fi/|fi | is the unit vector normal to fi , then
by right multiplying (29) by the vector v(r) locally uniform
in vk , we obtain

v = 1

2|sk| (Dk i−1Gi ni
|ei−1|ui−1Vi + Dk iGi−1ni

|ei |uiVi−1)

(31)

where we used (21).
Now, denoting with (ni , ni+1) the boundary nodes of the

edge ei , with i = 1, . . .3 and i modulo 3, then

Gi ni
= −Gi ni+1 (32)

holds; using (24) for edge ei and (32), we obtain

Vi = −Gi ni
(Ani

− Ani+1). (33)

9It is the vector having as amplitude the length of the edge, directed
and oriented as the edge.
10It is the vector having as amplitude the area of the face, normal to the
face and oriented in a congruent way as the orientation of the face.

Fig. 4 Geometric elements involved in the computation of local stiff-
ness matrix for the triangle sk (or prism vk )

Substituting (33) for Vi in (31) and using (32), we write

v = 1

2|sk|
(
Dk i−1|ei−1|ui−1Ani+1 + Dk i |ei |uiAni−1

− (Dk i−1|ei−1|ui−1 + Dk i |ei |ui )Ani

)
. (34)

Since
∑3

i=1 Dkifi = 0 holds for the lateral face vectors of
the prism vk , from the first of (30) we write

3∑

i=1

Dki |ei |ui = 0 (35)

and (34) yields

v = 1

2|sk|
3∑

i=1

Dk i+1|ei+1|ui+1Ani
, (36)

where the pairing between the vector11 Dk i+1|ei+1|ui+1 and
the potential Ani

associated with the opposite node is appar-
ent, for i = 1, . . .3 and i modulo 3.

Next, assuming a material tensor m(r) locally uniform
in vk , (16) implies also the local uniformity of w(r) in vk ,
thence (22) yields

hWi = f̃i · m v, i = 1, . . .3, (37)

where f̃i is the area vector associated with dual face f̃i in a
one-to-one correspondence with ei , with i = 1, . . .3, Fig. 4.
By particularizing (25) for the dual volume ṽi , we write12

−Gni iWi − Gni i−1Wi−1 = Bni
, (38)

11It is a face vector per unit h.
12The contributions due to the fluxes across the pair of portions of the
primal faces intersecting ṽi , are omitted, for they cancel out in the as-
sembly process of the entire dual volume.
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and substituting (37) for Wi (38) yields

−Gni i f̃i · m v − Gni i−1f̃i−1 · m v = hBni
. (39)

Since in the prism vk the following geometric relation

−Gni i f̃i − Gni i−1f̃i−1 = 1

2
Dk i+1fi+1 (40)

holds, Dk i+1 being the incidence number between vk and
the lateral face fi+1, with i = 1, . . .3 and i modulo 3, then
(39) becomes

1

2
Dk i+1fi+1 · m v = hBni

(41)

or equivalently from the first of (30) it follows

1

2
Dk i+1|ei+1|ui+1 · m v = Bni

. (42)

By substituting in (42), (36) for v, we obtain

1

4|sk|
3∑

j=1

Dk i+1|ei+1|ui+1 · mDk j+1|ej+1|uj+1Anj
= Bni

.

(43)

It is important to note, that (43) is an exact discrete counter-
part of (15), (16), (17) in vk (or equivalently in sk), provided
that v(r), w(r), m(r) are locally uniform in vk (or equiva-
lently in sk).

Therefore, from (43), the entry (GT MG)kij of a local
symmetric stiffness matrix for |vk| = h|sk|, expressed effi-
ciently in a pure geometric way, is given by

(
GT MG

)k

ij

= 1

4|sk|Dk i+1|ei+1|ui+1 · mDk j+1|ej+1|uj+1,

i, j = 1, . . .3. (44)

5.2 Computation of local N matrix

We introduce in the prism vk (or equivalently in sk) a scalar
function fi(r), attached to a primal node ni , defined as

fi(r) =
{

1 if r ∈ ṽi

0 elsewhere,
(45)

ṽi being the dual volume corresponding to ni , Fig. 4. These
base functions represent exactly a locally uniform scalar
field α(r) in vk as

α(r) =
3∑

j=1

fj (r)Aj . (46)

Next, using constitutive equation (18), (23) yields

hBi =
∫

ṽi

η(r)α(r)dv = h

∫

s̃i

η(r)α(r)ds, (47)

where we used the plane symmetry of β(r) = η(r)α(r) and
s̃i is the base of the dual volume ṽi .

Since (47) is specific of the Schrödinger problem only,
we particularize η(r) = λν,j − u(r) according to the actual
constitutive relation (11); assuming a locally uniform field
α(r) in s̃i , with i = 1, . . . ,3, as in (46), we rewrite (47) as

Bi =
3∑

j=1

[

λν,j

∫

s̃i

fj (r)ds −
∫

s̃i

fj (r)u(r)ds

]

Aj (48)

= λν,j

3∑

j=1

δij

|sk|
3

Xj −
3∑

j=1

δij

∫

s̃i

u(r)ds Aj , (49)

where we used (45) and the geometric identity |sk| = 3|s̃i |,
for i = 1, . . .3.

Therefore, from (49), the entry (N)kij of a local diago-

nal matrix Nk for tetrahedron vk , expressed efficiently in a
purely geometric way, is given by

(N)kij = δij

|sk|
3

λν,j − δij

∫

s̃i

u(r)ds. (50)

Such a relation, suggests to partition Nk as the sum of a pair
of local diagonal matrices

(N)k = λ(N)
′k − (Nu)

k, (51)

whose entries are δij
|sk |
3 , δij

∫
s̃i

u(r)ds respectively. In this
paper, we will assume a uniform potential energy distribu-
tion uk in each sk ; therefore for the entries of (Nu)

k we sim-
ply write δij

|sk |
3 uk .

6 Discrete formulated Schrödinger–Poisson problem

Now by substituting in the abstract problem the variables
specific of the Schrödinger or of the Poisson problems and
using the same discretisation of the domain D, we can eas-
ily deduce discrete counterparts of the Schrödinger–Poisson
problem obtained according to the DGA approach.

6.1 The discrete problems according to DGA approach

From (28), (27) and using (51) a generalized eigenvalue
problem is obtained for the Schrödinger problem, for trian-
gle sk , as

((
GT Mqν G

)k + (Nu)
k
)
Ψ k = λν,j (N)

′kΨ k, (52)
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Ψ k being a local array of the Ψ k
i values, with i = 1, . . .3,

in the nodes of sk ; the entries of the local stiffness matrix
(GT Mqν G)k are obtained from (44) by substituting qν for
the tensor m. Then by assembling the contributions from
(52), for k = 1, . . . V , we obtain the final global generalized
eigenvalue problem
(
GT Mqν G + Nu

)
Ψ = λν,j N′Ψ , (53)

where Nu and N′ are the global diagonal matrices corre-
sponding to the local ones in (51). Since N′ is diagonal and
positive definite, then (53) can be easily transformed into a
standard one and we may write

(
N′)−1/2(GT Mqν G + Nu

)(
N′)−1/2

Ψ ′ = λν,jΨ
′, (54)

where we set Ψ ′ = (N′)1/2Ψ . We observe that there is
no need to compute the matrix products in (54); it is
enough to multiply each non-zero ij -entry of the sparse
matrix (GT Mqν G + Nu) by (N′)−1/2

i (N′)−1/2
j with i, j =

1, . . .N , where (N′)−1/2
i denotes the i-th diagonal element

of (N′)−1/2.
Similarly, from (28), (27) a local Poisson problem is ob-

tained, for triangle sk , as

(
GT MεG

)k
Φk = Qk, (55)

Φk being a local array of the Φk
i values, with i = 1, . . .3,

in the nodes of sk ; the entries of the local stiffness matrix
(GT MεG)k are obtained from (44) by substituting ε for the
tensor m. The i-th entry Qk

i of the local array Qk is the
charge obtained from (5) as

Qk
i =

∫

ṽk
i

ρdv, (56)

ṽk
i being the portion of the dual volume tailored in vk . Then

by assembling the contributions from (4), for k = 1, . . . V ,
we obtain the final global Poisson problem

GT MεGΦ = Q. (57)

7 Numerical results

We solved the coupled Schrödinger and Poisson problem for
a gate-all-around nanowire and for a FinFET. As reference
for the DGA method, we considered the results obtained
with the Pseudo-spectral (PS) approach [32–34]. The PS
method approximates the unknown function ψ of the cou-
pled problem by using algebraic or trigonometric polynomi-
als. If the unknown function is sufficiently smooth, the PS
method leads to an extremely fast decrease of the approxi-
mating error with respect to the degree of the interpolating
polynomial.

Fig. 5 The domain for the nanowire FET

A section of the simulated nanowire is sketched in Fig. 5,
whereas Fig. 6 shows both a TEM picture of the FinFET de-
vice taken as a reference, and the corresponding geometri-
cal domain actually used for the simulations. Here we would
like to emphasize that the geometry of the FinFET has been
obtained directly by tracing the image shown in Fig. 6c.
For both the nanowire and the FinFET we denote with x

the transport direction. In order to obtain an efficient con-
vergence of the Schrödinger–Poisson iterative loop we em-
ployed the so called non-linear formulation of the Poisson
equation described in [41, 42], for both the DGA and the PS
method.

The solver for the Schrödinger–Poisson coupled prob-
lem by means of DGA method has been integrated into the
GAME (Geometric Approach to Maxwell’s Equations) re-
search code [46]. The software has been implemented in
Fortran 90 and the Intel Fortran 90 Compiler has been used
to produce the executable. The PARDISO direct solver con-
tained in the Intel MKL scientific library has been employed
to solve the resulting linear system of equations, whereas
the FEAST [47] library has been used to solve the eigen-
value problems. The solver of the Schrödinger–Poisson cou-
pled problem with the PS method has been implemented in
MATLAB due to the presence of many built in functions that
facilitate the implementation.

The Fermi energy EF in Eq. (7) is taken as the zero of the
energy and the temperature is set to T = 300 K. The electron
affinity χ in Eq. (3) depends on the material and in silicon
the χ is 3.1 eV larger than in the oxide.
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Table 1 Expressions for the terms mνy , mνz of the tensor qν in Eq. (2)
and for the corresponding effective mass mx in the transport direction
and the multiplicity of the valleys gν (see Eq. (7)). The expressions
are given for the [100] and the [110] transport directions and in terms

of the longitudinal ml = 0.916 and transverse mt = 0.19 masses of
the silicon energy minima. The free electron mass is assumed to be
m0 = 5.68 × 10−30 eV s2 nm−2. The index ν denotes the different val-
leys

x y z ν
m0
mνy

m0
mνz

mx gν

[110] [110] [001] 1 1
mt

1
ml

mt 2

2 mt +ml

2mtml

1
mt

mt +ml

2 4

[100] [010] [001] 1 1
ml

1
mt

mt 2

2 1
mt

1
ml

mt 2

3 1
mt

1
mt

ml 2

Fig. 6 Simulation domains
used for the FinFET problem (a)
with DGA method (b) with PS
method. The reference FinFET
structure is illustrated in (c), that
is a picture obtained with the
Transmission Electron
Microscopy (TEM) technique
(courtesy of NXP
Semiconductors, Leuven,
Belgium)

7.1 Nanowire FET

A doping density NA = 1 × 1018 cm−3 and an equivalent
oxide thickness (EOT) of 1 nm have been considered in
these simulations. The gate voltage VG is used to specify
the Dirichlet boundary conditions on the gate for the Pois-
son problem, while ψν,j (r) = 0 for r ∈ ∂D is assumed for
the Schrödinger problem. The diagonal entries of ε(r) ten-
sor are 3.9ε0 for r ∈ Dox and 11.7ε0 for r ∈ Dch, ε0 being
the vacuum permittivity. The entries of the tensor qν(r) are
obtained by considering the [100] transport direction as de-
scribed in Table 1.

Figure 7 shows the lowest eigenvalue versus the number
of discretization points at VG = 1 V, and it can be seen that
DGA and PS method converge to the same result; a simi-
lar behavior is observed for the total charge concentration
n + NA in Fig. 8. To complete the analysis of the relevant
physical quantities internal to the device Fig. 9 finally il-
lustrates a 3D view of the charge density distribution in the
nanowire in the (y, z) plane calculated by the PS method.

As an example of an electrical quantity related to the
overall device terminal characteristics, Fig. 10 shows a the
total charge concentration n + NA versus the gate voltage;

Fig. 7 First eigenvalue for each valley versus the number of discretiza-
tion points and for the nanowire FET; gate bias VG = 1 V

as expected from the analysis of the internal quantities illus-
trated in Fig. 7 to 9, the linear charge density (i.e. integrated
over the nanowire section) obtained with the two numerical
methods is essentially the same.
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7.2 FinFET

Figure 6c is a picture obtained by means of the Transmis-
sion Electron Microscopy (TEM) technique of the reference
FinFET used in our simulations. In particular, Fig. 6a shows
the geometry used in DGA simulations, while Fig. 6b illus-
trates the geometry used with the PS method. A doping den-
sity NA = 1 × 1015 cm−3 and an equivalent oxide thickness
of about 2 nm have been considered in these simulations.
Figure 11 is a sketch illustrating the boundary conditions
used for the Poisson problem in FinFETs: the gate voltage
is used to specify the Dirichlet boundary conditions on the
gate, while a homogeneous Neumann boundary condition
is considered in the remaining parts. For the Schrödinger
problem, instead, the boundary conditions were imposed by
setting ψν,j (r) = 0 for r ∈ ∂D. The diagonal entries of ε(r)
tensor are 3.9ε0 for r ∈ Dox and 11.7ε0 for r ∈ Dch, ε0 be-
ing the vacuum permittivity. The entries of the tensor qν(r)
are obtained by considering the [1̄10] transport direction as
described in Table 1.

Fig. 8 Total charge concentration n+NA in the nanowire FET versus
the number of discretization points; gate bias VG = 1 V

Figure 12 compares the convergence of lowest eigenvalue
of the first and second valley for an increasing number of

Fig. 9 A 3D view of the electron volumetric concentration n in
the nanowire FET and computed with the PS method; gate voltage
VG = 1 V

Fig. 10 Total charge concentration n+NA versus gate voltage VG for
the nanowire FET

Fig. 11 Three different
boundary conditions for the
Poisson problem. The dashed
parts of ∂D are subject to a
homogeneous Neumann
boundary condition
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discretization points computed for both the DGA and the
PS approaches. The corresponding total charge concentra-
tion n + NA is illustrated in Fig. 13, while Fig. 14 reports a
3D view of the charge density distribution in a section of the
FinFET and calculated by the PS method. Figure 15 finally
shows the total charge concentration n + NA variation with
respect to the gate voltage VG. The results obtained with
the DGA and PS methods are similar but not exactly the
same, due to the difference in the simulated domains shown
in Fig. 6.

It is finally worth noting that, in case of DGA method,
the size of the substrate oxide actually included in the sim-
ulated domain has an essentially negligible impact on the
overall charge concentration. Such an impact remains negli-
gible even when using different boundary conditions as the
ones sketched in Fig. 11.

Fig. 12 First eigenvalue for each valley versus the number of dis-
cretization points and for the FinFET transistor; gate bias VG = 1 V

8 Conclusions

We have demonstrated that the DGA method can be used
for the efficient solution of the Schrödinger–Poisson prob-
lem. The DGA, unlike classical Finite Differences (FD), can
handle accurately complicated geometries like those of the
real devices, and may be thus suitable for the study of the
device variability produced by process induced variations
of the geometrical dimensions. The DGA leads to a stan-
dard eigenvalue problem since the matrix N′ in (53) is di-
agonal; on the contrary, in Finite Elements (FE) the matrix
corresponding to N′ in (53) is not diagonal, having the same
sparsity pattern as the matrix on the left hand side of (53).
Since first order FE and DGA have the same order of conver-
gence, the latter is computationally more efficient because it
saves memory (it saves exactly half of the memory, since the
mass matrix has the same sparsity pattern as the left-hand-
side matrix) and eigenvalue solvers for standard eigenvalue

Fig. 13 Total charge concentration n + NA versus the number of dis-
cretization points and in the FinFET transistor; gate bias VG = 1 V

Fig. 14 A 3D view of the
volumetric electron
concentration n in the FinFET
transistor obtained by the PS
method; gate bias VG = 1 V
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Fig. 15 Total charge concentration n+NA versus the gate voltage for
the FinFET transistor

problems are faster than for generalized ones (generalized
eigenvalue problems require a factorization of the mass ma-
trix or the solution of a linear system for each iteration).
Two benchmark devices, consisting in a nanowire FET and
a FinFET, have been successfully simulated with the DGA
method using as reference the Pseudo-spectral method; the
results of the two approaches are in good agreement.
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