
Journal of Computational Physics 436 (2021) 110285
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

The role of the dual grid in low-order compatible numerical 
schemes on general meshes

Silvano Pitassi a,∗, Riccardo Ghiloni b, Francesco Trevisan a, Ruben Specogna a

a University of Udine, Polytechnic Department of Engineering and Architecture, EMCLab, via delle scienze 206, 33100 Udine, Italy
b University of Trento, Mathematics Department, via Sommarive 14, 38123 Povo-Trento, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 17 March 2021

Keywords:
Compatible discretizations
Dual grid
Polyhedral meshes
Mimetic reconstruction
Geometrically-defined mass matrices
Primal and dual conservations

In this work, we uncover hidden geometric aspect of low-order compatible numerical 
schemes. First, we rewrite standard mimetic reconstruction operators defined by Stokes 
theorem using geometric elements of the barycentric dual grid, providing the equivalence 
between mimetic numerical schemes and discrete geometric approaches. Second, we 
introduce a novel global property of the reconstruction operators, called P0-consistency, 
which extends the standard consistency requirement of the mimetic framework. This 
concept characterizes the whole class of reconstruction operators that can be used to 
construct a global mass matrix in such a way that a global patch test is passed. Given 
the geometric description of the scheme, we can set up a correspondence between entries 
of reconstruction operators and geometric elements of a secondary grid, which is built 
by duality from the primary grid used in the scheme formulation. Finally, we show the 
that the geometric interpretation is necessary for the correct evaluation of certain physical 
variables in the post-processing stage. A discussion on how the geometric viewpoint allows 
to optimize reconstruction operators completes the exposition.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Compatible numerical schemes are designed to preserve the fundamental properties of physical and mathematical mod-
els, such as conservation laws, at the discrete level. To this end, methods of algebraic topology and differential geometry 
play a fundamental role. All the discrete structures necessary to develop a compatible discrete framework are put together 
by three basic ingredients.

To begin with, a choice of discrete representation of scalar and vector fields on a given polyhedral mesh is necessary, and 
is given by arrays of degrees of freedom (DoFs) [1]. These DoFs are defined through the projection map (or de Rham map [2]), 
i.e. the integration of the fields on specific geometric elements, where their geometric localization results from the physical 
nature of the fields [1], [3]. An array of DoFs has a counterpart notion in algebraic topology [4], called cochain [1].

Next, discrete differential operators acting on degrees of freedom are required. These are obtained by mimicking the fun-
damental theorem of calculus, namely the Stokes theorem, and they result in topological operators, as they are defined 
through incidence matrices of the grid [1], [5], [3]. This has a counterpart in concepts of algebraic topology, being the inci-
dence matrices a matrix representation of the coboundary operator [4]. So, the coboundary operator is the discrete analogue 
of the gradient, curl and divergence operators [1].
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Finally, reconstruction operators remap degrees of freedom back to continuous vector-valued functions, thus providing a 
left inverse of the projection map. The composition of the projection operator with the corresponding reconstruction map 
provides an interpolation operator. A reconstruction operator is said to be of low-order when the action of this interpolation 
operator leaves fixed cell-wise constant vector fields.

In this paper we focus on low-order methods for various reasons. First of all, most real three-dimensional problems are 
large and their exact solutions are hardly ever smooth. In these cases, low-order methods are often preferred in order to 
reduce the number of unknowns. Moreover, high order schemes suffer from the lack of high order representation of curved 
geometry in off-the-shelf mesh generators. Finally, physical and geometric parameters are generally known with a tolerance 
in the percent range, that is why extreme accuracy is unjustified in practice.

A central role played by reconstruction operators is in the construction of the discrete Hodge operator [2], [6], which 
provides a discrete inner product on the space of discrete vector fields and it is required to satisfy two properties [7], [8]. 
The first one is a polynomial consistency condition, which is an exactness property on a well-defined family of polynomials. 
In particular, for the low-order case we want to enforce P0-polynomial consistency, where symbol P0 refers to exactness 
for constant fields (i.e. polynomials of degree 0). The second one is a stability condition, which ensures the well-posedness of 
the numerical scheme. From the practical point of view, the patch test can be used to test if both requirements are satisfied 
[9]. Both P0-consistency and stability conditions are stated at a global level, since they are properties of the global mass 
matrix representing the algebraic realization of the discrete Hodge operator. However, as we will see, the global mass matrix 
is constructed from local mass matrices, and the latter are constructed from local reconstruction operators. Thus, the design 
of a global mass matrix that satisfy P0-polynomial consistency and stability conditions must start at the local level with a 
suitable choice of local reconstruction operators.

A well established design strategy decomposes a local mass matrix as the sum of a consistent and a stabilization term 
[10], [8]. Such a decomposition of the local mass matrix is suggestive since each term plays a specific role, namely, the 
consistent term enforces the polynomial consistency property while the stabilization term ensures positive-definiteness, 
preserving the consistency already achieved. Since the building blocks of local mass matrices are reconstruction operators, 
a similar decomposition can be equivalently performed on reconstruction operators [11].

We can identify two main approaches to design low-order compatible numerical schemes. The first approach relies on a 
primal-dual grid structure and the related staggered positioning of the discrete variables. In this category fall most physics-
compatible discretizations introduced so far, like the Discrete Geometric Approach (DGA) [12], [13], [14], cell method (CM) 
[15], [5], [16], generalized finite differences [17] as well as in Compatible Discrete Operators (CDO) [18], [19], [11]. Once a 
dual grid structure is assumed from the beginning as part of the numerical scheme, the consistency condition is satisfied 
by resorting to the so called Bossavit’s consistency criterion [7], [17], and, as already recognized in [11], [19], reconstruction 
operators have a clear geometric interpretation being defined by geometric elements of the dual grid.

In other physics-compatible methods like the Mimetic Finite Difference method (MFD) [10], [8], Finite Volumes (FV) 
[20], reconstruction operators are defined by mimicking the continuous Stokes theorem, but without introducing at all a 
dual grid. This strategy of designing reconstruction operators is also employed in the high order generalization of the MFD 
schemes [21], and in some recent high order compatible methods [22], which include the low-order version as a limit case.

In this paper we provide new geometric viewpoints of low-order compatible numerical schemes. In particular, we un-
cover two main geometric aspects that are hidden in the MFD method.

As a first contribution, we show that reconstruction operators defined by mimicking the Stokes theorem, introduced in 
[23], lead to reconstruction operators defined by geometric elements of the barycentric dual grid. This result shows that 
the reconstruction operators used in the two main families of low-order compatible numerical schemes are equivalent. As 
a consequence, consistent terms of local mass matrices are the same and the only difference relies only on the particular 
choice of the stabilization term. This result extends the approach proposed in the FV literature [20] by introducing a novel 
reconstruction formula for edge DoFs. We point out that, although in the approach presented in [20] the reconstruction 
formula for face DoFs is derived, its identification with dual edges is not highlighted. The derivation of the novel edge for-
mula completes the picture of the relation with the dual barycentric grid. Since the barycentric dual grid is already present 
in the scheme, although not made explicit, we present a novel geometric numerical scheme which is a hybrid approach 
between the MFD method and the discrete geometric formulations. Here, a barycentric dual grid is assumed as part of the 
numerical scheme and the stabilization technique proposed in the mimetic literature is employed. The resulting scheme 
benefits from all the advantages of the two methodologies: the geometric structure allows us to write balance laws explic-
itly and simplifies the scheme software implementation [3], while the stabilization term offers the possibility of changing 
properties of the local mass matrices through the selection of some user-dependent parameters. Finally, the equivalence of 
the consistent terms also implies that mathematical results obtained for the MFD method, such as convergence properties 
or error estimates, can be readily extended to this unified framework, and in general to the discrete geometric formulations.

A second contribution of this paper is to introduce a novel property of the reconstruction operators, to which we refer 
as P0-consistency. As the name suggests, a set of P0-consistent reconstruction operators is such that the global mass matrix 
constructed using them satisfies the P0-consistency property. The main difference with respect to the set of requirements 
that characterize reconstruction operators introduced in [23] is that the new definition of P0-consistency is a global property 
since it involves reconstruction operators defined on more than one cell. The formal definition of this concept is based 
on a commuting diagram property of the discrete de Rham complex and its dual, which lie at the foundations of the 
mathematical structure of physical theories, as represented graphically by Tonti diagrams [3]. This approach extends what 
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Fig. 1. (a) Primal and (b) dual geometric elements of a polyhedron c ∈ C .

is usually done in literature. In [11], a dual grid is introduced as part of the numerical scheme and then its relation with 
reconstruction operators is identified. In our approach, instead, the barycentric dual grid is derived as a canonical choice of 
designing P0-consistent reconstruction operators on general polyhedral cells, and as an additional result of our analysis, it 
is the only possible construction if we restrict the design of reconstruction operators at the single cell level, without taking 
into account reconstruction operators of other cells. The fundamental role played by Stokes theorem in mimetic numerical 
schemes appears, therefore, as the geometric manifestation of the necessity of using the barycentric dual grid to design 
local reconstruction operators. A geometric characterization of P0-consistent reconstruction operators can be given as the 
affine solution space of a linear system of equations, and from a physical point view, we show that it is directly connected 
with conservation laws of physical theories. An analysis of this linear system constitutes the starting point to geometrically 
optimize discrete Hodge operators. As an instance, it reveals that besides the barycentric dual grid there are other possible 
dual grids which are not constructed according to the barycentric subdivision. In addition, for every cell we can choose an 
arbitrary point in space to geometrically define the entries of local reconstruction operators. We provide an example of how 
this freedom of choice in the design of reconstruction operators can be used to optimize them, as measured by a L2 norm.

The paper is organized as follows. In Section 2, we introduce the geometric elements from which general polyhedral grids 
are constructed. In Section 3, we present the basic building blocks of low-order compatible numerical schemes. In Section 4, 
we describe the P0-consistency property of reconstruction operators. In Section 5, we give proofs of the equivalence of 
mimetic reconstruction operators and the ones defined by geometric elements of the barycentric dual grid. In Section 6, we 
show examples of how this analysis can be used to design new numerical schemes. Finally, in Section 7, the conclusions are 
drawn.

2. Pair of interlocked grids and geometric properties

Let us consider a subdivision of a polyhedral region � ⊂ R3 into a primal grid K = (N, E, F , C), where the sets N, E, F
and C contain the grid nodes, edges, faces and cells, respectively. We denote a single node as n, an edge by e, a face by f and 
a cell by c, respectively, see Fig. 1(a). The geometric elements of the primal grid are provided with an inner orientation [1], 
[3].

Interlocked with the primal grid, a barycentric dual grid [4], [1], [3] is introduced; each geometric entity of the dual grid is 
in one-to-one correspondence (duality pairing) with a geometric element of the primal grid and it is constructed by means 
of the barycentric subdivision [4] of the primal grid. With symbol “∼” we denote geometric elements of the dual grid and 
with a subscript we indicate the corresponding (unique) geometric element of the primal grid. The dual of a primal cell c
is the dual node denoted as ñc ; similarly the dual of a primal edge e is a dual face f̃e and the dual of a primal face f is a 
dual edge ẽ f .

To describe the geometric elements of the pair of grids, we introduce a Cartesian system of coordinates with specified 
origin and we denote by x = (x1, x2, x3)

T the coordinates of its generic point. Let us consider, for the sake of clarity, a single 
cell c, as the one pictured in Fig. 1(a). The geometric construction of the dual nodes, dual edges and dual faces is based on 
the barycentric subdivision as follows, see Fig. 1(b). To begin with, let us define the barycenters of geometric elements. The 
barycenters of edge e, face f and cell c are defined, respectively, as follows

be = 1

|e|
∫
e

x dl, b f = 1

| f |
∫
f

x dS, bc = 1

|c|
∫
c

x dV , (1)

where |e|, | f | and |c| denote the length of edge e, the area of face f and the volume of cell c, respectively. In the following, 
we will use a generalized construction for the barycentric dual grid in which the dual node ñc is an arbitrary point and 
does not necessarily coincide with the barycenter bc of the cell c. We refer to such a construction again as barycentric dual 
grid, although the dual node does not coincide with the barycenter bc of the cell c. A dual edge ẽ f is a segment which 
joins ñc with the barycenter b f of a primal face f , see the construction in Fig. 1(b). A dual face f̃e is a quadrilateral surface 
made of a union of a pair of triangles; the first has the vertices ñc, be, b f , the second the vertices ñc, be, b f , with f i, f j the 
i i
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two primal faces having the edge e in common. Dual edge ẽ f and dual face f̃e are endowed with outer orientation [1], [3], 
in such a way that each of the pairs (e, f̃e), ( f , ̃e f ) are oriented according to the right-hand rule.

To each of the following geometric elements e, f , f̃ , ̃e of the primal or of the dual grid, we associate their corresponding 
vectors e, f , f̃ , ̃e respectively. Any of these vectors, will be represented with a column array of its Cartesian components. 
Vector e is the edge vector associated with edge e; for example e = (e1, e2, e3)

T = ni − n j, i �= j, where ni and n j are the 
coordinates of the boundary nodes of e. te represents the unit vector of e in such a way that e = |e|te . Vector f is the face 
vector associated with face f defined as f = | f |n f , where n f is the unit normal vector orthogonal to f . In a similar way, 
vector ẽ f is the edge vector associated with the dual edge ẽ f ; for instance, ẽ f = b f − ñc , see Fig. 1(b). Vector f̃ e is the face 
vector associated with the dual face f̃e . Face vector f̃ e is equal to f̃ e = 1

2

(
ẽ f i × (be − ñc) − ẽ f j × (be − ñc)

)
with f i, f j two 

faces such that e = f i ∩ f j , with i = i(e) and j = j(e), and in such a way that the expression induces the correct orientation 
on f̃ e , see Fig. 1(b).

2.1. Degrees of freedom

We define a discrete field as a collection of degrees of freedom (DoFs). DoFs are arrays of real numbers whose entries are 
obtained by evaluating the physical scalar or vector fields on the geometric elements of the mesh by means of integration 
[24], [1], [7]. The operation of translating a sufficiently smooth scalar or vector-valued functions into DoFs is performed by 
projection maps, called also de Rham maps [2], [7].

Let u be a sufficiently regular scalar function so that we can take its pointwise values. We denote with SN the space 
of such functions. For instance, SN can be taken to be H1(�) ∩ C0(�). Node projection operator PN maps u onto its node 
DoFs uN = PN (u), where the entry of uN corresponding to node n is

uNn = u(n). (2)

We denote the vector space of node DoFs by N =Rcard(N) .
Let u be a sufficiently regular vector-valued function so that the integrals of its tangential components are well defined 

along the grid edges. We denote with SE the space of all such functions. For instance, SE can be taken to be Hs(�), with 
s > 1. Edge projection operator PE maps u onto its edge DoFs uE = PE(u), where the entry of uE corresponding to edge e
is

uEe =
∫
e

u · te dl. (3)

We denote the vector space of edge DoFs by E =Rcard(E) .
Now, let u be a sufficiently regular vector-valued function so that the integrals of its normal components are well defined 

on the grid faces. We denote with SF the space of all such functions. For instance, SF can be taken to be Hs(�), with s > 1
2 . 

Face projection operator PF maps u onto its face DoFs uF = PF (u), where the entry of uF corresponding to face f is

uFf =
∫
f

u · n f dS. (4)

We denote the vector space of face DoFs by F =Rcard(F) .
Let u be a sufficiently regular scalar function so that its integrals on compact subsets of � are well-defined. We denote 

with SC the space of such functions. For instance, SC can be taken to be L1(�). Cell projection operator PC maps u onto 
its cell DoFs uN = PC(u), where the entry of uC corresponding to cell c is

uCc =
∫
c

u dV . (5)

We denote the vector space of cell DoFs by C =Rcard(C) .
Let X be any set among N, E, F or C. For a given cell c, we denote with Xc the vector subspace of all DoFs of X that 

are attached to geometric elements of cell c. Then, the local projection operator on cell c is defined as PXc : SXc →Xc , where 
SXc is finite dimensional vector subspace of SX chosen in such a way that the map PXc is bijective on Xc . Thus, we can set 
up a correspondence between a vector field u ∈ SXc and its corresponding DoFs. We point out that in the following we do 
not need to construct explicitly the space SXc since only its generic properties will be used.

Let PXc be the matrix associated with the restriction of the map PXc : SXc →Xc to the vector subspace of constant scalar 
or vector fields. Specifically, rows of PEc and PFc collect the coefficients with respect to the standard base of R3 of the 
quantities 

∫
e te dl and 

∫
f n f dS , respectively. Given a constant vector field u defined on c, by Stokes theorem, the latter 

integral quantities can also be computed on any homologous geometric element. In particular, matrices PEc and PFc can be 
written as
4
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PFc =

⎛⎜⎜⎝
...

f T
i
...

⎞⎟⎟⎠ , PEc =

⎛⎜⎜⎝
...

eT
i
...

⎞⎟⎟⎠ . (6)

In what follows, we will also need the dual counterpart of matrices PE, PF . We denote by P Ẽñc
the matrix whose rows 

collect dual edge vectors ẽ f of c, constructed using the dual node ñc . For the special case where ñc coincides with the 
origin we use the symbol P Ẽc . In a similar way, we denote with P F̃ñc

the matrix whose rows collect dual face vectors f̃ e of 

c, constructed using the dual node ñc . For the special case where ñc coincides with the origin we use the symbol P F̃c .

3. Compatible numerical schemes

In this section we introduce the main ingredients which lie at the foundations of any compatible numerical scheme. 
Specialized definitions are given for the low-order case.

3.1. Discrete differential operators

One kind of equation that we find in physical theories are balance equations [1], [3]. A differential operator usually 
arises in the continuous form of balance equations and thus, in numerical schemes we need its discrete counterpart. Stokes 
theorem provides discrete counterparts of the differential operators gradient, curl and divergence [24], [1], [5]. Discrete 
differential operators can be defined for both the primal and the dual grid and they are defined in matrix form by incidence 
matrices of the pair of grids [1]. An entry of each of these matrices corresponding to a given pair of oriented geometric 
elements of the primal grid is equal to 0, if the two geometric elements are not mutually incident, otherwise, 1 if their 
mutual orientations are compatible and −1 if not [3].

From their definition discrete differential operators encode the topology of problem: being metric free, any stretching or 
deformation of the mesh does not change their form.

The discrete gradient operator maps any node DoFs in N into edge DoFs in E, and is defined through the action of a 
matrix

GRAD :=G uN , (7)

where G is the card(E)×card(N)-matrix of incidence numbers between nodes and edges.
The discrete curl operator maps any edge DoFs in E into face DoFs in F , and is defined through the action of a matrix

CURL(uE) :=C uE, (8)

where C is the card(F)×card(E)-matrix of incidence numbers between edges and faces.
The discrete divergence operator maps any face DoFs in F into cell DoFs in C, and is defined through the action of a 

matrix

DIV(uF ) :=D uF , (9)

where D is the card(C)×card(F)-matrix of incidence numbers between faces and cells.

3.2. Reconstruction operators

Reconstruction operators are designed to remap DoFs into the corresponding continuous vector field. In contrast to the 
projection operator, where the de Rham map is the obvious candidate, the choice of the reconstruction operator is flexible 
because there are many possible ways in which global physical quantities can be combined to a local field representation.

Let RXc :Xc → SXc be the reconstruction operator from the vector space Xc of DoFs restricted to cell c. In [8], reconstruc-
tion operators are required to satisfy a number of formal properties that involve the projection operator and the continuous 
and discrete differential operators. However, for the low-order case, from this set of properties it is sufficient to require that 
reconstruction operators satisfy only the so called accuracy property [8]: RXc is a left inverse of PXc , i.e.

(RXc ◦ PXc )(u) = u, ∀u ∈ SXc . (10)

As we will see, since we are interested in the low-order case, we never need an explicit expression of the reconstruction 
operator, but only its averaged quantities over a cell come into play. To this end in mind, let us introduce the average 
reconstruction operator RXc :Xc → SXc as a map whose values are constant vector fields in c, defined as follows

RXc (uXc ) := 1

|c|
∫

RXc (uXc )dV , ∀uXc ∈Xc . (11)
c

5
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Let RXc be the matrix associated with the map RXc . The accuracy property requires that RXc is a left inverse of PXc . To see 
this, observe that RXc (im(PXc )) = RXc (im(PXc )) and im(PXc ) ⊂Xc .

An additional property that reconstruction operators have to satisfy is the so called P0-consistency and it will be formally 
defined in Section 4. Informally, these are the reconstruction operators that can be used to construct a global mass matrix, 
according to the recipe detailed in Section 3.3 and Section 3.4, that satisfies the P0-consistency property.

3.3. Local mass matrix

Let us consider a symmetric, positive-definite 3 × 3-matrix Kc representing the material property of a cell c, assumed 
to be homogeneous in c. We want to introduce an inner product on vector spaces N, E, F and C that is a low-order 
approximation of classical L2 product between two continuous vector functions u, v

〈uXc , vXc 〉X,c =
∫
c

u · (Kc v)dV +O(h|c|), ∀u, v ∈ SXc , (12)

where h denotes a characteristic size of the mesh and uXc , vXc are the DoFs restricted to a cell c of u, v , respectively. The 
bilinear form can be expressed in matrix form through a symmetric and positive-definite matrix MX

c which acts on the 
local DoFs

〈uXc , vXc 〉X,c = (uXc )TMXc vXc . (13)

In view of (12), the local matrix MX
c must contain information about the material property Kc on c.

We want to design MX
c in such a way that it satisfies the following three conditions [7], [17], [25], [8]:

1. symmetric;
2. positive-definite;
3. consistency condition [8]: if u is a constant vector field and v ∈ SXc , the following equality holds for every cell c

(uXc )TMXc vXc =
∫
c

u · (Kc v)dV , ∀v ∈ SXc . (14)

Suppose that we want to satisfy the three requirements above. Under the above assumptions, we now introduce an 
equivalent algebraic form of the consistency condition (14). The derivation is strictly related to the one proposed in mimetic 
literature, see [8].

Let u be a constant vector field and let v be an element of SXc . We can rewrite in an equivalent way the consistency 
condition (14) as

(PXc (u))TMXc vXc =
∫
c

u · (Kc RXc (vXc ))dV , ∀vXc ∈Xc . (15)

Since u is constant inside c, we introduce the matrix form of the projection operator PXc . In addition, since both u and Kc

are constant inside the cell c, by using the definition of the matrix RXc associated with the average reconstruction operator 
RXc on the cell c, it follows that

uT (PXc )TMXc vXc = |c|u · (KcR
X
c vXc ), ∀vXc ∈Xc . (16)

The above equality must hold for every vector u and DoF vXc , thus we obtain the following condition

(PXc )TMXc = |c|KcR
X
c . (17)

By transposing both members we can finally write

MXc P
X
c = |c|(RXc )TKc. (18)

Condition expressed in (18) is called algebraic consistency condition in mimetic literature [8]. The following lemma shows 
that a solution of (18) can always be written as the sum of two terms, which is the canonical solution proposed in [8].

Lemma 1. Let Kc be a symmetric and positive-definite matrix and let RXc be a left inverse of PXc . Let α = (α1, . . . , αn−3) ∈ (R+)n−3

be any (n − 3)-upla of positive real numbers and let Dα be the diagonal matrix whose diagonal entries are α1, . . . , αn−3 . Let w =
(w1, . . . , wn−3) be any orthonormal basis of im(PXc )⊥ and let Wc,w be the matrix whose columns are the vectors w1, . . . , wn−3 . 
Define MX

c by setting
6
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MXc := |c|(RXc )TKcR
X
c +Wc,wDαW

T
c,w

Then the matrix MX
c is symmetric, consistent and positive-definite.

3.4. Global mass matrix

For each c ∈ C , let SXc be the matrix which assigns DoFs of c when it is applied to an element of X. SXc is a matrix of 
size dim(Xc) × dim(X) and every row has exactly one entry equal to 1 corresponding to a element which is in c and zero 
everywhere else.

For each c ∈ C , let MX
c be a local mass matrix associated with c defined as in Lemma 1. With this definition, we obtain

(uX)TMXvX =
∑
c∈C

(
SXc uX

)T
MXc

(
SXc vX

) = (uX)T
(∑

c∈C

(SXc )TMXc S
X
c

)
vX, (19)

from which follows the expression of the global mass matrix

MX =
∑
c∈C

(SXc )TMXc S
X
c . (20)

3.5. Derived discrete operators

In this subsection we recall the definition of the derived discrete operators ˜GRAD, ˜CURL and ˜DIV which are obtained 
through a duality relation from the discrete operators GRAD, CURL and DIV, respectively. Let us suppose that the 
discrete spaces N , E, F and C are equipped with inner products as detailed in Section 3.3 and Section 3.4.

Let us now define the derived operators. The adjoints of the discrete differential operators GRAD, CURL and DIV
will be denoted by GRAD∗ , CURL∗ and DIV∗ . It is convenient to rename the adjoints operators as follows ˜GRAD ∼=
−DIV∗ , ˜CURL ∼= CURL∗ and ˜DIV ∼= −GRAD∗ . By using the definition of DIV∗ and the identification ˜GRAD ∼=
−DIV∗ we obtain

〈uF , ˜GRAD pC〉F = −〈uF ,DIV∗ pC〉F = −〈DIV uF , pC〉C ∀uF ∈ F , pC ∈ C. (21)

As uF and pC are arbitrary it follows that

˜GRAD∼= −DIV∗ = −MF
−1DIVTMC. (22)

By using the definition of CURL∗ and the identification ˜CURL∼= CURL∗ we obtain

〈uE, ˜CURLwF 〉E = 〈uE,CURL∗ wF 〉E = 〈CURLuE, wF 〉F ∀uE ∈ E, wF ∈ F (23)

from which we obtain that

˜CURL= ME
−1CURLTMF . (24)

Similarly, the duality relation between the discrete gradient operator GRAD and its adjoint ˜DIV ∼= −GRAD∗ implies 
that

〈qN ,˜DIVwE〉N = −〈qN ,GRAD∗ wE〉N = −〈GRADqN , wE〉E ∀qN ∈N, wE ∈ E (25)

from which we obtain that

˜DIV= −MN
−1GRADTME. (26)

4. Definition of P0-consistent reconstruction operators

In this section we define the novel concept of P0-consistent reconstruction operators and provide its geometric coun-
terpart. The definition relies on a commuting diagram property of the discrete dual de Rham complex which involves the 
derived discrete operators and characterizes in a rigorous way the class of all reconstruction operators that can be used 
to construct a global mass matrix in a such a way that a global patch test is passed. Thus, the P0-consistency of recon-
struction operators refers to the property that we able to reproduce exactly the continuous solution at the discrete level. 
Instead, the consistency condition (14) only expresses an equivalence between discrete and continuous energy, and thus, 
it is a necessary but not sufficient condition. The geometry enters into the scheme since for low-order numerical schemes 
only averages of reconstruction operators over a given region are measured. In such a case, the matrix representation of 
the average reconstruction operator has entries which can be interpreted as familiar geometric elements of the space, like 
segments and polygons. The geometric conditions that characterize the class of P0-consistent reconstruction operators can 
be written as a linear system of equations. A closer inspection of this linear system reveals that in general it does not have 
a unique solution. Thus, there is no unique way of designing P0-consistent reconstruction operators.
7
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4.1. P0-consistent face reconstruction operators

Let us consider the example of magnetic phenomena as described by the following equations

∇ × H = J ,

∇ · B = 0,

H = νB,

H × n = J s,

(27)

where the source of the problem is a known current density vector field J . In particular, let us consider boundary conditions 
in such a way that vector fields B, H are constant in �. In this situation, Ampère’s law must be ∇ × H = J = 0.

To introduce the corresponding mimetic form of the above equations, let BF be the DoFs of the vector field B attached 
to faces of the grid. We represent the divergence and curl operators that appear in (27) by the discrete operator DIV and 
the derived operator ˜CURL. Using these operators, the mimetic discretization of (27) reads as follows

DIV BF = 0, (28)

˜CURL BF = 0. (29)

Due to the Dirichlet boundary conditions, (29) should be considered only for the interior edges. By using (24), (29) can be 
equivalently written as follows

ME
−1CURLTMF BF = 0. (30)

We left multiply (30) by ME obtaining

CURLT
(∑

c∈C

(SFc )T |c|(RFc )T νRFc SFc

)
BF = 0, (31)

where we have used (20) for the definition of the global mass matrix MF . Next, by using H = νB , it follows that

CURLT
(∑

c∈C

(SFc )T |c|(RFc )T
)

H = 0. (32)

Finally, since H ∈R3 is arbitrary, we obtain the following geometric condition

roweC
T
(∑

c∈C

(SFc )T |c|(RFc )T
)

= 0, ∀e ∈ E, e �⊂ ∂� (33)

where we have used the matrix form of the CURL operator.
A dimensional analysis informs us that each entry of matrix |c|(RFc )T has units of linear meters. This is a direct con-

sequence of the property of RFc of being a left inverse of PFc . Given the physical dimensions, rows of |c|(RFc )T can be 
regarded as geometric edges and (33) requires that they can be put one after the other to form a geometric closed path. 
Thus, they encode the geometric structure of a set of edges of a grid.

Definition 4.1 (P0-consistent face reconstruction operators). A collection of reconstruction operators {RFc }c∈C is said to be 
P0-consistent if and only if the following geometric condition holds

roweC
T
(∑

c∈C

(SFc )T |c|(RFc )T
)

= 0, ∀e ∈ E, e �⊂ ∂�. (34)

4.2. P0-consistent edge reconstruction operators

Let us consider the example of electric phenomena as described by the following equations

∇ × E = 0,

∇ · D = ρ,

D = εE,

D · n = ρs,

(35)

where the source of the problem is a known charge density scalar field ρ . In particular, let us consider boundary conditions 
in such a way that vector fields E, D are constant in �. In this situation, Gauss’ law must be ∇ · D = 0.
8
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To introduce the corresponding mimetic form of the above equations, let EE be the DoFs of the vector field E attached 
to edges of the grid. We represent the curl and divergence operators that appear in (35) by the discrete operator CURL
and the derived operator ˜DIV. Using these operators, the mimetic discretization of (35) reads as follows

CURL EE = 0, (36)

˜DIV EE = 0. (37)

Due to the Dirichlet boundary conditions, (37) should be considered only for the interior nodes. By using (26), (37) can be 
equivalently written as follows

−MN
−1GRADTMEEE = 0. (38)

We left multiply (38) by MN obtaining

DIVT
(∑

c∈C

(SEc )T |c|(REc )T νREc S
E
c

)
EE = 0, (39)

where we have used (20) for the definition of the global mass matrix ME . Next, by using D = εE , it follows that

DIVT
(∑

c∈C

(SEc )T |c|(REc )T
)

D = 0. (40)

Finally, since D ∈R3 is arbitrary, we obtain the following geometric condition

rownG
T
(∑

c∈C

(SEc )T |c|(REc )T
)

= 0, ∀n ∈ N,n /∈ ∂� (41)

where we have used the matrix form of the DIV operator.
A dimensional analysis informs us that each entry of matrix |c|(REc )T has units of square meters. This is a direct con-

sequence of the property of REc of being a left inverse of PEc . Given the physical dimensions, rows of |c|(REc )T can be 
regarded as geometric faces and (41) requires that they can be put side to side to form a geometric closed surface. Thus, 
they encode the geometric structure of a set of faces of a grid.

Definition 4.2 (P0-consistent edge reconstruction operators). A collection of reconstruction operators {REc }c∈C is said to be 
P0-consistent if and only if the following geometric condition holds

rownG
T
(∑

c∈C

(SEc )T |c|(REc )T
)

= 0, ∀n ∈ N,n /∈ ∂�. (42)

4.3. Linear system formulation of P0-consistent reconstruction operators

The two requirements that reconstruction operators have to satisfy can be encoded into a linear system of equations. 
The unknown variables are the entries of the matrices |c|(REc )T , |c|(RFc )T with constraint equations expressed by (34), (42)
and the requirement that each matrix REc and RFc is a left inverse of the local projection operator, which is the accuracy 
property for constant vector fields. More specifically, we can write{

RFc PFc = I3, ∀c ∈ C
roweCT

(∑
c∈C (SFc )T |c|(RFc )T

)
= 0, ∀e ∈ E, e �⊂ ∂�

(43)

and {
REc P

E
c = I3, ∀c ∈ C

rownGT
(∑

c∈C (SEc )T |c|(REc )T
)

= 0, ∀n ∈ N,n /∈ ∂�
(44)

where I3 denotes the identity matrix of dimension 3.
A canonical solution of the two systems of equations is given by the barycentric dual grid. While the geometric conditions 

in (34) and (42) are trivially satisfied, proofs that geometric elements of the dual grid satisfy also the accuracy property 
are given in the next section. Other solutions are known for particular cell shapes. For instance, for cubical cells [1] and 
Delaunay tetrahedral grids [16], Voronoi dual grids are well defined and satisfy the above properties. In general, the above 
linear systems do not have a unique solution, see Example 1.

The design of other P0-consistent reconstruction operators is a global process since it links reconstruction operators 
defined on more than one cell. A crucial observation is the following: if we design reconstruction operator at the single 
element level, without taking into account adjacent cells, the dual barycentric grid is the unique canonical choice to design 
reconstruction operators for arbitrary polyhedral elements.
9
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Fig. 2. Polyhedral grid made by 2 tetrahedra and 3 square pyramids.

Example 1 (Geometric conditions for a polyhedral grid). Let us consider the polyhedral grid K pictured in Fig. 2. The grid is 
made by 5 cells and 14 faces. As an instance, we analyze the dimension of the affine solution space of the linear system 
(44). We satisfy the constraint expressed by the geometric conditions by identifying with the same unknown the unique 
two unknowns vector variables corresponding to the same face which lies at the intersection of two cells. Thus, we have 
14 unknowns vectors variables each associated with a face of K . The requirement that the matrix RFc is a left inverse of 
Fc for every cell c of K is encoded into a constraint matrix of size 15 × 14. A direct computation reveals that the rank of 
this constraint matrix is 12. Since there exists at least a solution, which is given by the coordinates of the barycenters of 
faces of K , see Section 5, the system is consistent, and we have an infinite number of solutions since the constraint matrix 
is rank deficient.

As a consequence of the conditions (34), (42), the geometric entries of the reconstruction operators on every element 
are defined up to an arbitrary point in R3. This latter can be chosen freely and can be used to optimize reconstruction 
operators. We explore this possibility in the next section.

5. Dual grid P0-consistent reconstruction operators

In this section we prove that reconstruction operators defined in [23] are equivalent to reconstruction operators defined 
by geometric elements of the barycentric dual grid. The main novelty with respect to the proofs given in [23] relies on 
the explicit identification of geometrical elements of dual faces in the expression of edge reconstruction operators. Since 
geometric elements of the barycentric dual grid satisfy the geometric conditions (34) and (42), the analysis reveals the role 
of the barycentric dual grid in low-order compatible numerical schemes: even if the dual grid is not assumed as a starting 
point of the method, for instance in mimetic literature [8], it appears as a canonical choice of constructing P0-consistent 
reconstruction operators. According to the results derived in Section 4, the expressions of the reconstruction formulas inform 
us that they are defined up to an arbitrary point in R3. We show how this freedom of choice in the design of reconstruction 
formulas can be used to optimize specific objective functions.

5.1. Reconstruction formulas and their proofs

Let us consider a pair of vector fields u, w : R3 → R3 along with a scalar field w : R3 → R defined on a given cell c. 
The following well-known integration by parts formulas hold∫

c

u · ∇w dV = −
∫
c

∇ · u w dV +
∫
∂c

u · n w dS, (45)

∫
c

u · ∇ × w dV =
∫
c

∇ × u · w dV +
∫
∂c

u × n · w dS. (46)

Given a cell c, we write “ f ∈ ∂c” meaning that f is varying over all (oriented) faces of c. Similarly, we write “e ∈ ∂c” 
meaning that e is varying over all (oriented) edges of c. Finally, given a polygon f in some (affine) plane of R3, we write 
“e ∈ ∂ f ” meaning that e is varying over all (suitably oriented) edges of the boundary of f .

Theorem 2 (Reconstruction from face DoFs). Let u be a constant vector field defined on a cell c. Choose an arbitrary dual node ñc ∈R3

and define ẽ f := b f − ñc , as at the end of Section 2. The following equality holds
10
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Fig. 3. A polygon and the relevant geometric elements involved in the proof of Lemma 2.

u = 1

|c|
∑
f ∈∂c

(u · f ) ẽ f . (47)

Proof. Let w ∈R3. Thanks to (45), we have

|c|u · w =
∫
c

u · w dV =
∫
c

u · ∇(
w · (x − ñc)

)
dV =

∫
∂c

(u · n)(w · (x − ñc))dS =
∑
f ∈∂c

(u · f )((b f − ñc) · w). (48)

By using the definition of ẽ f , it follows that

|c|u · w =
∑
f ∈∂c

(u · f )(ẽ f · w). (49)

Since w is arbitrary, we obtain the claimed equality. �
Lemma 2 (Reconstruction from edge DoFs restricted to a polygonal face). Let u be a constant vector field and let f be a polygon in 
some plane L of R3 . Let us denote with n the unit vector orthogonal to f . Choose an arbitrary point p ∈ R3 . The following equality 
holds

u × n = 1

| f |
∑
e∈∂ f

(u · e)(be − p). (50)

Proof. Let f e := e × n be the vector orthogonal to edge e in L. Note that vector u × n belongs to L. Thus, if we apply the 
argument used in the proof of Theorem 2 to the vector field u × n restricted to f , then we obtain

u × n = 1

| f |
∑
e∈∂ f

((u × n) · f e)(be − p). (51)

Based on the definition of f e , it follows that

(u × n) · f e = (u × n) · (e × n) = (n × (u × n)) · e = u · e. (52)

and hence, substituting in (51), we obtain the claimed equality (see Fig. 3). �
Theorem 3 (Reconstruction from edge DoFs). Let u be a constant vector field defined on a cell c. Choose an arbitrary dual node ñc ∈R3

and define f̃ e as at the end of Section 2. The following equality holds

u = 1

|c|
∑
e∈∂c

(u · e) f̃ e. (53)

Proof. Let w ∈R3. Thanks to (46), we have

2|c|u · w = 2
∫
c

u · w dV =
∫
c

u · ∇ × (
w × (x − ñc)

)
dV =

∫
∂c

(u × n) · (w × (x − ñc)
)

dS (54)

=
∑
f ∈∂c

∫
f

(u × n f ) · (w × (x − ñc)
)

dS =
∑
f ∈∂c

| f |(u × n f ) · (w × ẽ f ).

Apply Lemma 2 to every face f in the last term of the above expression, choosing the same node ñc as the arbitrary point 
involved in the formula. We obtain
11
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Fig. 4. A cubic cell c. A set of DoFs � are attached to faces. This is an example of DoFs that are not image of any constant vector field under the projection 
map PFc .

2|c|u · w =
∑
f ∈∂c

( ∑
e∈∂ f

(u · e)(be − ñc)
)

· (w × ẽ f ) =
∑
f ∈∂c

(
ẽ f ×

( ∑
e∈∂ f

(u · e)(be − ñc)
))

· w (55)

=
∑
e∈∂c

(u · e)((ẽ f i × (be − ñc) − ẽ f j × (be − ñc)) · w),

where f i, f j are the unique faces of c such that e = f i ∩ f j , for suitable indices i = i(e) and j = j(e), and oriented so that 
they induce opposite orientations on edge e. Now, dividing by two both members of the last term in (55) and using the 
definition of f̃ e , it follows that

|c|u · w =
∑
e∈∂c

(u · e)( f̃ e · w). (56)

Since w is arbitrary, we obtain the claimed equality. �
Lemma 3 (Dual grid reconstruction operators). Let us consider a cell c. Choose an arbitrary dual node ñc ∈R3 . Let RFñc

:= 1
|c| (P

Ẽ
ñc

)T

and REñc
:= 1

|c| (P
F̃
ñc

)T . The following formulas hold

RFñc
PFc = I3, (57)

REñc
PEc = I3. (58)

Proof. By using Theorem 2, Theorem 3 and the definition of the matrices P Ẽñc
, P F̃ñc

, we have the following identities 

(P Ẽñc
)TPFc = |c|I3, (P F̃ñc

)TPEc = |c|I3. Dividing by |c| both members of the latter equations we obtain the claimed result. �
5.2. Optimizing dual grid reconstruction operators

The expressions of the dual grid reconstruction operators show that they are uniquely defined up to an arbitrary point 
ñc ∈R3, which can be chosen independently for every cell. Now, we show how this fact can be used to optimize the dual 
grid reconstruction operators. In particular, we ask if for a given cell c there exists a point such that the reconstructed vector 
field is optimal with respect to a least square difference.

Let X = E or X = F . We observe that the map PXc has rank 3, thus it is not surjective as a map from R3 to Rdim(Xc) , 
see Fig. 4.

Let uXc /∈ imPXc . In this case, among all possible constant vector fields, we select the minimum norm solution of the 
following least squares problem

u∗ = arg min
u∈R3

∥∥∥PXc u − uXc

∥∥∥
2
. (59)

The Moore–Penrose matrix inverse of PXc , denoted as (PX)+c , allows us to write the minimum norm solution u∗ of (59)
into the following form

u∗ = (PXc )+uXc ; (60)

moreover, since Xc has full rank, (PXc )+ can be explicitly written as (PXc )+ = (PXc )TPXc )−1(PXc )T , see [26].
Now, we ask the following question: does there exist a point ñc ∈ R3 such that RXñc

= (PXc )+? By Lemma 3, we know 
that RX is a left inverse of PXc . Thus, in order that RX = (PXc )+ , it is sufficient that the following property holds
ñc ñc

12
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Fig. 5. A tetrahedron to illustrate the geometric quantities involved in the proof of Lemma 4.

PXc RXñc
= (PXc RXñc

)T , (61)

see [26]. For tetrahedral and cubic cells we have the following characterization.

Lemma 4. Let c be a tetrahedral or cubic cell. If ñc is the barycenter of c, then ñc satisfies (61).

Proof. First, suppose that c is a tetrahedron, see the tetrahedron pictured in Fig. 5. Consider the case X = F . We have to 
show that PFc RFñc

is symmetric. It is sufficient to consider the pair of faces f 1 and f 2. By definition, we have

f 1 · ẽ2 =
(e1 × e2

2

)
·
(e2 + e3

3
− e1 + e2 + e3

4

)
= 1

24
(e1 × e2) · e3, (62)

f 2 · ẽ1 =
(e2 × e3

2

)
·
(e1 + e2

3
− e1 + e2 + e3

4

)
= 1

24
(e2 × e3) · e1. (63)

By comparing the above two expressions we obtain f 1 · ẽ2 = f 2 · ẽ1.
Consider now the case X = E. Let us prove that PEc REñc

is symmetric. It is sufficient to consider the pair of edges e1 and 
e2. By definition, we have

f̃ 1 · e2 =
(1

2

(e1 + e2

3
− e1 + e3

3

)
×

(e1

2
− e1 + e2 + e3

4

))
· e2 = 1

24
(e1 × e3) · e2, (64)

f̃ 2 · e1 =
(1

2

(e2 + e3

3
− e1 + e2

3

)
×

(e2

2
− e1 + e2 + e3

4

))
· e1 = 1

24
(e3 × e2) · e1. (65)

By comparing the above two expressions we obtain f̃ 1 · e2 = f̃ 2 · e1.
Let c be a cubic cell. Consider the case X = F . We have to show that PFc RFñc

is symmetric. Observe that the (i, j)-entry 
of this product is of the form f i · ẽ f j for some pair of faces f i, f j . Let i �= j. Define ẽi := ẽ f i and ẽ j := ẽ f j . Two cases are 
possible, either f i = − f j or f i · f j = 0. In the first case, we have ẽi = −ẽ j from which follows that f i · ẽ j = f j · ẽi . In the 
second case, we have f i · ẽ j = 0 and f j · ẽi = 0, from which follows that f i · ẽ j = f j · ẽi .

Consider now the case X = E. Let us prove that PEc REñc
is symmetric. Observe that the (i, j)-entry of this product is 

of the form ei · f̃ e j
for some pair of edges ei, e j . Let i �= j. Define f̃ i := f̃ ei

and f̃ j := f̃ e j
. Two cases are possible, either 

ei = ±e j or ei · e j = 0. In the first case, we have f̃ i = ± f̃ j from which follows that ei · f̃ j = e j · f̃ i . In the second case, we 
have ei · f̃ j = 0 and e j · f̃ i = 0 from which follows that ei · f̃ j = e j · f̃ i . �

Let us denote by D the set of all cells that satisfy (61) for some point ñc ∈R3.

Example 4. Let us consider the case of the face reconstruction operator RFñc
. By definition, we have RFñc

= 1
|c| (P

Ẽ
c − 1ñT

c )T , 
where 1 denotes the vector in Rcard(Fc) whose entries are all equal to 1. Let us consider a pyramid with a square base 
divided in two triangles. The boundary decomposes into six faces. A direct computation reveals that this cell does not 
belong to D . To show this, it is sufficient to directly compute the Moore–Penrose matrix inverse (PFc )+ and subtract from 
(P Ẽc )T the matrix |c|(PFc )+ . If there exists a point ñc satisfying (61), then the columns of this matrix difference must be all 
equal to ñc .

To handle the situations where a cell c /∈ D , we propose to select a dual node ñc which minimizes the distance with 
respect to the Moore–Penrose inverse matrix measured by a L2 metric.
13
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Definition 5.1 (Optimal dual node). Let us introduce the following map

ξc : R3 → R (66)

ñc �→
∥∥∥RXñc

− (PXc )+
∥∥∥2

2
.

We define the optimal dual node of a cell c, ñopt,c , as the unique point which minimizes function ξc .

From the practical point of view we can solve the optimization problem in (66) for every cell and find two optimal 
reference points, one for the matrix RFñc

and the other one for REñc
. To speed up the computation we choose a unique point 

as the optimal dual node of the matrix RFñc
. In this case, we give an explicit expression of the optimal dual node.

Lemma 5 (Optimal dual node expression). The optimal dual node can be written as

ñopt,c = 1

card(Fc)

card(Fc)∑
i=1

Ai, (67)

where A := (P Ẽc )T − |c|(PFc )+ and the sum is over the set of columns of A.

Proof. By definition RFñc
= 1

|c| (P
Ẽ

c − 1ñT
c )T . The objective function can be written as 1

|c|2
∥∥A− ñc1T

∥∥2
2 = 1

|c|2
∑

i

∥∥Ai − ñc
∥∥2

2, 
where the sum is over the set of columns of A. By equating the gradient to zero we obtain the minimum point at 

1
card(Fc)

∑
i Ai . �

6. Numerical results

We first verified the equivalence of the reconstruction operators introduced in [8] with the reconstructions operators 
defined by geometric elements of the dual barycentric grid in Section 5 by solving two multi-material patch tests on a 
grid made by general polyhedra. Then, a real-life stationary current conduction problem is solved using the geometric 
optimization of reconstruction operators described in Section 5.2. Finally, we show an example of the role of the dual 
barycentric dual grid for the correct computation of some global variables, in this case the current flowing through the 
electrodes.

The stationary current conduction is a Poisson problem in a connected region � of the 3-D Euclidean space

∇ × E = 0,

∇ · J = 0,

J = σ E,

(68)

where σ is a material parameter called electric conductivity, E and J are the electric field and the current density vectors, 
respectively. The material parameter electric conductivity σ is assumed to be a positive scalar value which is piecewise 
uniform in each material region. The region boundary ∂� is partitioned into a set of N i surfaces of perfect insulators ∂�i

k , 
and a set of Nc + 1 disjoint equipotential surfaces (electrodes) of perfect conductors ∂�c

k:

∂� =
N i∑

k=1

∂�i
k +

Nc∑
k=0

∂�c
k. (69)

Electrode ∂�c
0 is considered as reference for all the voltages of the remaining electrodes, that are supposed to be assigned. 

J · n = 0 is set as boundary conditions (b.c.) on each ∂�i
k , where n is the outwards oriented normal unit vector of ∂�.

6.1. Multi-material patch tests

The multi-material patch tests are Poisson problems designed in such a way that their solution is piecewise-uniform. By 
interpreting the Poisson problems as direct current conduction problems, a simple way to produce multi-material patch test 
is to consider a resistor with two conductors with different material properties (called electric resistivity ρ) placed in series
or in parallel as described in detail later.

To test the edge mass matrices we use the classical scalar potential formulation S P . Instead, in order to test the face 
mass matrices we use the vector potential V P [27] or mixed-hybrid M H formulations [10], [28]. We remark that the V P
and M H formulations produce the same results given that they are algebraically equivalent [28]. The polyhedral grid used 
14
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Fig. 6. The series multi-material patch test (a). We set the voltage between the two electrodes, represented in gray in the picture, to 1 V. (b) Electric field 
E produced by the S P formulation. (c) Current density field J produced by the S P formulation. (d) Electric field E produced by the V P formulation. (e) 
Current density field J produced by the V P formulation.

Fig. 7. The parallel multi-material patch test (a). We set the voltage between the two electrodes, represented in gray in the picture, to 1 V. (b) Electric field 
E produced by the S P formulation. (c) Current density field J produced by the S P formulation. (d) Electric field E produced by the V P formulation. (e) 
Current density field J produced by the V P formulation.

in the example is formed by 131 nodes, 306 edges, 237 faces and 61 cells. The grid is obtained through two levels of 
sub-gridding of a few cells, so that the obtained elements are general polyhedra.

In the first multi-material patch test, two different materials with different material properties are placed in series. From 
the result represented in Fig. 6, we conclude that the tangential component of the electric field E is conserved across 
the material interface, whereas the tangential component of the current density field J jumps. This result holds for both 
formulations.

In the second multi-material patch test, two different materials with different material properties are placed in parallel. 
From the result represented in Fig. 7, we conclude that the normal component of the current density J is conserved across 
the material interface, whereas the normal component of the electric field E jumps. This result holds for both formulations.

6.2. Square resistor benchmark

As a more complicated example, we compute the conductance G of a square resistor [28], see Fig. 8. A voltage of u = 1 V 
is enforced between the two electrodes, which are placed in the two lateral surfaces of the solid square torus. The con-
ductor placed inside the solid torus has an electrical conductivity σ = 1 S/m. This problem is interesting because, like most 
industrial problems, exhibits a singular analytical solution. Yet, the analytical solution is available and G = 10.23409256 S. 
The conductance G is extracted by computing the total dissipated power P = G u2 = ∫

�
| J |2
σ or alternatively by using the 

Ohm’s law G = i/u, where i is the current that flows between the two electrodes.
All simulations are performed using the optimal dual node for the geometric dual grid as described in Section 5.2. 

We do not observe a significant improvement in the convergence of the scheme although the reconstruction operator is 
locally optimized for every single cell. Here, the optimization is substantial for cells which are not symmetric. This can 
be qualitatively seen by the results of Section 5.2 where it is shown that where the cell is cubic the optimal dual node 
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Fig. 8. (a) The geometry of the square resistor benchmark (h = 1 m, d = 4 m, and l = 2 m). The two electrodes are depicted in red and blue. (b) Thanks to 
the symmetry, the computational domain has been reduced to one in eight of the resistor. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Fig. 9. The four different types of grids used to discretize the geometry of the square resistor in Fig. 8. (a) Structured tetrahedral grid. (b) Unstructured 
tetrahedral grid. (c) Structured hexahedral grid. (d) Polyhedral grid with subgridding.

coincides with the barycenter of the cell. We point out that the optimization can be performed as a preprocessing step that 
defines the optimal geometric structure of reconstruction operators.

The conductance of the square resistor has been evaluated by the S P and V P = M H formulations on refined grids. 
The results are collected in Fig. 10. First, it is interesting to note that the results relative to the scalar potential S P and 
to the vector potential V P or mixed-hybrid M H formulations provide, respectively, the upper and lower bounds for the 
conductance [29], [27]. This property is called complementarity in the computational electromagnetics community [28]. 
Second, in Fig. 9, four different types of grids have been used. Polyhedral grids with subgridding, i.e. a nonconforming-like 
local mesh refinement technique, appears to be particularly appealing.

A faster convergence can be reached only by using automatic mesh adaptivity. A comparison of the results obtained with 
tetrahedral and polyhedral unstructured meshes constructed with automatic mesh adaptivity is prevented by the lack of an 
automatic polyhedral mesh generator. Such a mesh generator is under development.

6.3. P0-consistent reconstruction operators and post-processing

Let us consider the problem described in the previous section 6.2. Now we show that the P0-consistency property of 
reconstruction operators guarantees the continuous balance laws at the discrete level. To begin with, we observe that

CURL EE = 0, (70)

so that an essential physical property of the continuous problem is preserved. What about the flux-conservation property 
of the discrete current density? The question naturally arises since in the mimetic framework DoFs of the current density 
J are not explicitly defined. As a first approach to assess the discrete conservation property of J , let Er be the cell-wise 

electric field reconstructed starting from edge DoFs. Then, we denote by J r the reconstructed current density defined on each 
cell multiplying Er by the corresponding conductivity, assumed to be constant over each cell. Although J r is divergence-
free inside cells, there are flux “leaks” between faces of the primal grid. To validate this assertion, let I1 and I2 be the 
inward and outward current of J r through the two pair of electrodes ∂�c

1 and ∂�c
2, respectively. For the problem under 

consideration, the following values are found I1 = 1.3830 and I2 = 1.0916. Thus, the computed currents are “non-physical” 
since an essential physical property is violated, namely the fact that I1 have to be equal to I2. Thus, I1 and I2 do not 
represent a good approximation of the current through the resistor.

On the contrary, compute accurately the current through the electrodes is very important in many applications like 
Electrical Impedance Tomography (EIT). The results of Section 4 shed light on the reasons why one should not integrate the 
reconstructed current density J r on faces on the primal grid. Indeed, by requiring ˜DIV EE = 0, we obtain
16
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Fig. 10. Results for the square resistor benchmark.

rownG
T
(∑

c∈C

(SEc )T |c|(REc )T J r,c

)
= 0, ∀n ∈ N,n /∈ ∂�. (71)

So discrete solenoidality requires that the flux of J r through the geometric closed surface associated with P0-consistent edge 
recostructions operators of every inner node vanishes. Therefore, we may aggregate geometric closed surfaces associated 
with inner nodes, and the flux of J r will vanish across such an aggregate. Based on these results, let us compute the 
following quantity

I1 =
∑

n∈∂�c
1

rownG
T
(∑

c∈C

(SEc )T |c|(REc )T J r,c

)
(72)

as the discrete approximation of the current of J through ∂�c
1, where a similar expression holds for I2. Then, we see that∑

n∈N

rownG
T
(∑

c∈C

(SEc )T |c|(REc )T J r,c

)
= 0 = I1 + I2, (73)

where we have used the given boundary values of J . Thus, we have I1 = −I2 = 1.3225, proving the physical soundness of 
the computed quantities (up to a minus sign, which accounts for the orientation of the surfaces).

Another remarkable result is that the obtained current I1 = −I2 coincides up to machine precision with the dissipated 
power inside the resistor computed in previous section as P = G u2 = ∫

�
| J |2
σ (given that u is fixed to 1 V with boundary 

conditions).
As shown in Section 5, a canonical way of constructing P0-consistent reconstruction operators is given by barycentric 

dual grid. In this case, (72) can be interpreted as the sum of currents through dual faces. We point out that the current in 
(72) is equal through every homologous surface associated with a different choice of the P0-consistent edge reconstruction 
operators.

7. Conclusions

In this paper, we have studied hidden geometric aspects of low-order compatible numerical schemes for arbitrary poly-
hedral grids. First, we have shown that standard mimetic numerical schemes have noteworthy geometric properties. These 
geometric properties were demonstrated by reformulating standard mimetic reconstruction operators using geometric ele-
ments of the barycentric dual grid, thus proving the equivalence between mimetic and geometric approaches. Second, we 
have introduced the class of P0-consistency reconstruction operators which extends the standard consistency requirement 
of the mimetic framework. A characterization of these operators is given as an affine solution space of a linear system of 
equations. Given the geometric description of the scheme, this analysis reveals the existence of many dual grids that define 
reconstruction operators and constitutes the starting point to optimize them. Additionally, it shows that the barycentric dual 
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grid is a canonical way of designing P0-consistency reconstruction operators at single element level. The fundamental role 
played by Stokes theorem in mimetic numerical schemes appears, therefore, as the geometric manifestation of the necessity 
of using the barycentric dual grid to design local reconstruction operators. Numerical examples show the importance of the 
geometric interpretation for the correct evaluation of some physical variables in the post-processing stage, thus motivating 
the practical impact of including them as part of the numerical scheme.
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