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1. Introduction

Compatible numerical schemes are designed to preserve the fundamental properties of physical and mathematical mod-
els, such as conservation laws, at the discrete level. To this end, methods of algebraic topology and differential geometry
play a fundamental role. All the discrete structures necessary to develop a compatible discrete framework are put together
by three basic ingredients.

To begin with, a choice of discrete representation of scalar and vector fields on a given polyhedral mesh is necessary, and
is given by arrays of degrees of freedom (DoFs) [1]. These DoFs are defined through the projection map (or de Rham map [2]),
i.e. the integration of the fields on specific geometric elements, where their geometric localization results from the physical
nature of the fields [1], [3]. An array of DoFs has a counterpart notion in algebraic topology [4], called cochain [1].

Next, discrete differential operators acting on degrees of freedom are required. These are obtained by mimicking the fun-
damental theorem of calculus, namely the Stokes theorem, and they result in topological operators, as they are defined
through incidence matrices of the grid [1], [5], [3]. This has a counterpart in concepts of algebraic topology, being the inci-
dence matrices a matrix representation of the coboundary operator [4]. So, the coboundary operator is the discrete analogue
of the gradient, curl and divergence operators [1].
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Finally, reconstruction operators remap degrees of freedom back to continuous vector-valued functions, thus providing a
left inverse of the projection map. The composition of the projection operator with the corresponding reconstruction map
provides an interpolation operator. A reconstruction operator is said to be of low-order when the action of this interpolation
operator leaves fixed cell-wise constant vector fields.

In this paper we focus on low-order methods for various reasons. First of all, most real three-dimensional problems are
large and their exact solutions are hardly ever smooth. In these cases, low-order methods are often preferred in order to
reduce the number of unknowns. Moreover, high order schemes suffer from the lack of high order representation of curved
geometry in off-the-shelf mesh generators. Finally, physical and geometric parameters are generally known with a tolerance
in the percent range, that is why extreme accuracy is unjustified in practice.

A central role played by reconstruction operators is in the construction of the discrete Hodge operator [2], [6], which
provides a discrete inner product on the space of discrete vector fields and it is required to satisfy two properties [7], [8].
The first one is a polynomial consistency condition, which is an exactness property on a well-defined family of polynomials.
In particular, for the low-order case we want to enforce Py-polynomial consistency, where symbol Pg refers to exactness
for constant fields (i.e. polynomials of degree 0). The second one is a stability condition, which ensures the well-posedness of
the numerical scheme. From the practical point of view, the patch test can be used to test if both requirements are satisfied
[9]. Both Pg-consistency and stability conditions are stated at a global level, since they are properties of the global mass
matrix representing the algebraic realization of the discrete Hodge operator. However, as we will see, the global mass matrix
is constructed from local mass matrices, and the latter are constructed from local reconstruction operators. Thus, the design
of a global mass matrix that satisfy Pp-polynomial consistency and stability conditions must start at the local level with a
suitable choice of local reconstruction operators.

A well established design strategy decomposes a local mass matrix as the sum of a consistent and a stabilization term
[10], [8]. Such a decomposition of the local mass matrix is suggestive since each term plays a specific role, namely, the
consistent term enforces the polynomial consistency property while the stabilization term ensures positive-definiteness,
preserving the consistency already achieved. Since the building blocks of local mass matrices are reconstruction operators,
a similar decomposition can be equivalently performed on reconstruction operators [11].

We can identify two main approaches to design low-order compatible numerical schemes. The first approach relies on a
primal-dual grid structure and the related staggered positioning of the discrete variables. In this category fall most physics-
compatible discretizations introduced so far, like the Discrete Geometric Approach (DGA) [12], [13], [14], cell method (CM)
[15], [5], [16], generalized finite differences [17] as well as in Compatible Discrete Operators (CDO) [18], [19], [11]. Once a
dual grid structure is assumed from the beginning as part of the numerical scheme, the consistency condition is satisfied
by resorting to the so called Bossavit’s consistency criterion [7], [17], and, as already recognized in [11], [19], reconstruction
operators have a clear geometric interpretation being defined by geometric elements of the dual grid.

In other physics-compatible methods like the Mimetic Finite Difference method (MFD) [10], [8], Finite Volumes (FV)
[20], reconstruction operators are defined by mimicking the continuous Stokes theorem, but without introducing at all a
dual grid. This strategy of designing reconstruction operators is also employed in the high order generalization of the MFD
schemes [21], and in some recent high order compatible methods [22], which include the low-order version as a limit case.

In this paper we provide new geometric viewpoints of low-order compatible numerical schemes. In particular, we un-
cover two main geometric aspects that are hidden in the MFD method.

As a first contribution, we show that reconstruction operators defined by mimicking the Stokes theorem, introduced in
[23], lead to reconstruction operators defined by geometric elements of the barycentric dual grid. This result shows that
the reconstruction operators used in the two main families of low-order compatible numerical schemes are equivalent. As
a consequence, consistent terms of local mass matrices are the same and the only difference relies only on the particular
choice of the stabilization term. This result extends the approach proposed in the FV literature [20] by introducing a novel
reconstruction formula for edge DoFs. We point out that, although in the approach presented in [20] the reconstruction
formula for face DoFs is derived, its identification with dual edges is not highlighted. The derivation of the novel edge for-
mula completes the picture of the relation with the dual barycentric grid. Since the barycentric dual grid is already present
in the scheme, although not made explicit, we present a novel geometric numerical scheme which is a hybrid approach
between the MFD method and the discrete geometric formulations. Here, a barycentric dual grid is assumed as part of the
numerical scheme and the stabilization technique proposed in the mimetic literature is employed. The resulting scheme
benefits from all the advantages of the two methodologies: the geometric structure allows us to write balance laws explic-
itly and simplifies the scheme software implementation [3], while the stabilization term offers the possibility of changing
properties of the local mass matrices through the selection of some user-dependent parameters. Finally, the equivalence of
the consistent terms also implies that mathematical results obtained for the MFD method, such as convergence properties
or error estimates, can be readily extended to this unified framework, and in general to the discrete geometric formulations.

A second contribution of this paper is to introduce a novel property of the reconstruction operators, to which we refer
as Pg-consistency. As the name suggests, a set of Pg-consistent reconstruction operators is such that the global mass matrix
constructed using them satisfies the Pg-consistency property. The main difference with respect to the set of requirements
that characterize reconstruction operators introduced in [23] is that the new definition of Py-consistency is a global property
since it involves reconstruction operators defined on more than one cell. The formal definition of this concept is based
on a commuting diagram property of the discrete de Rham complex and its dual, which lie at the foundations of the
mathematical structure of physical theories, as represented graphically by Tonti diagrams [3]. This approach extends what
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Fig. 1. (a) Primal and (b) dual geometric elements of a polyhedron c € C.

is usually done in literature. In [11], a dual grid is introduced as part of the numerical scheme and then its relation with
reconstruction operators is identified. In our approach, instead, the barycentric dual grid is derived as a canonical choice of
designing Pgy-consistent reconstruction operators on general polyhedral cells, and as an additional result of our analysis, it
is the only possible construction if we restrict the design of reconstruction operators at the single cell level, without taking
into account reconstruction operators of other cells. The fundamental role played by Stokes theorem in mimetic numerical
schemes appears, therefore, as the geometric manifestation of the necessity of using the barycentric dual grid to design
local reconstruction operators. A geometric characterization of Pg-consistent reconstruction operators can be given as the
affine solution space of a linear system of equations, and from a physical point view, we show that it is directly connected
with conservation laws of physical theories. An analysis of this linear system constitutes the starting point to geometrically
optimize discrete Hodge operators. As an instance, it reveals that besides the barycentric dual grid there are other possible
dual grids which are not constructed according to the barycentric subdivision. In addition, for every cell we can choose an
arbitrary point in space to geometrically define the entries of local reconstruction operators. We provide an example of how
this freedom of choice in the design of reconstruction operators can be used to optimize them, as measured by a L? norm.

The paper is organized as follows. In Section 2, we introduce the geometric elements from which general polyhedral grids
are constructed. In Section 3, we present the basic building blocks of low-order compatible numerical schemes. In Section 4,
we describe the Pg-consistency property of reconstruction operators. In Section 5, we give proofs of the equivalence of
mimetic reconstruction operators and the ones defined by geometric elements of the barycentric dual grid. In Section 6, we
show examples of how this analysis can be used to design new numerical schemes. Finally, in Section 7, the conclusions are
drawn.

2. Pair of interlocked grids and geometric properties

Let us consider a subdivision of a polyhedral region  c R? into a primal grid K = (N, E, F, C), where the sets N, E, F
and C contain the grid nodes, edges, faces and cells, respectively. We denote a single node as n, an edge by e, a face by f and
a cell by c, respectively, see Fig. 1(a). The geometric elements of the primal grid are provided with an inner orientation [1],
[3].

Interlocked with the primal grid, a barycentric dual grid [4], [1], [3] is introduced; each geometric entity of the dual grid is
in one-to-one correspondence (duality pairing) with a geometric element of the primal grid and it is constructed by means
of the barycentric subdivision [4] of the primal grid. With symbol “~” we denote geometric elements of the dual grid and
with a subscript we indicate the corresponding (unique) geometric element of the primal grid. The dual of a primal cell ¢
is the dual node denoted as f; similarly the dual of a primal edge e is a dual face f. and the dual of a primal face f is a
dual edge éy.

To describe the geometric elements of the pair of grids, we introduce a Cartesian system of coordinates with specified
origin and we denote by ¥ = (X1, X2, x3)T the coordinates of its generic point. Let us consider, for the sake of clarity, a single
cell c, as the one pictured in Fig. 1(a). The geometric construction of the dual nodes, dual edges and dual faces is based on
the barycentric subdivision as follows, see Fig. 1(b). To begin with, let us define the barycenters of geometric elements. The
barycenters of edge e, face f and cell c are defined, respectively, as follows

1 1 1
b:—/xdl, b:—/xds, b:—/xdv, (1)
“7 el T 07 <7 el
e f C

where |e|, | f| and |c| denote the length of edge e, the area of face f and the volume of cell c, respectively. In the following,
we will use a generalized construction for the barycentric dual grid in which the dual node . is an arbitrary point and
does not necessarily coincide with the barycenter b, of the cell c. We refer to such a construction again as barycentric dual
grid, although the dual node does not coincide with the barycenter b of the cell c. A dual edge & is a segment which

joins fi; with the barycenter by of a primal face f, see the construction in Fig. 1(b). A dual face ]’e is a quadrilateral surface
made of a union of a pair of triangles; the first has the vertices fi, be, by,, the second the vertices fic, be, by, with f;, f; the
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two primal faces having the edge e in common. Dual edge é; and dual face f. are endowed with outer orientation [1], [3],
in such a way that each of the pairs (e, f’e), (f,ér) are oriented according to the right-hand rule.

To each of the following geometric elements e, f, f, e of the primal or of the dual grid, we associate their corresponding
vectors e, f, f, e respectively. Any of these vectors, will be represented with a column array of its Cartesian components.
Vector e is the edge vector associated with edge e; for example e = (eq, e2,e3)T =n; — n;,i# j, where n; and n; are the
coordinates of the boundary nodes of e. t. represents the unit vector of e in such a way that e = |e|t.. Vector f is the face
vector associated with face f defined as f =|f|ny, where ny is the unit normal vector orthogonal to f. In a similar way,
vector €y is the edge vector associated with the dual edge éy; for instance, ef = by — i, see Fig. 1(b). Vector fe is the face
vector associated with the dual face fe Face vector fe is equal to fe =5 (efl X (be —11¢) — ef X (be — nc)) with fi, f; two
faces such that e = f; N f;, with i =i(e) and j = j(e), and in such a way that the expression mduces the correct orientation
on fe, see Fig. 1(b).

2.1. Degrees of freedom

We define a discrete field as a collection of degrees of freedom (DoFs). DoFs are arrays of real numbers whose entries are
obtained by evaluating the physical scalar or vector fields on the geometric elements of the mesh by means of integration
[24], [1], [7]. The operation of translating a sufficiently smooth scalar or vector-valued functions into DoFs is performed by
projection maps, called also de Rham maps [2], [7].

Let u be a sufficiently regular scalar function so that we can take its pointwise values. We denote with SV the space
of such functions. For instance, S can be taken to be H'(Q) N C%(2). Node projection operator PV maps u onto its node
DoFs u™ = PN (u), where the entry of u"N corresponding to node n is

ul =u. (2)

We denote the vector space of node DoFs by A = R®@rdMN),

Let u be a sufficiently regular vector-valued function so that the integrals of its tangential components are well defined
along the grid edges. We denote with S€ the space of all such functions. For instance, S€ can be taken to be HS(), with
s > 1. Edge projection operator P maps u onto its edge DoFs u® = P€(u), where the entry of u€ corresponding to edge e
is

u?:/u.tedl. (3)

e

We denote the vector space of edge DoFs by & = Recrd®,

Now, let u be a sufficiently regular vector-valued function so that the integrals of its normal components are well defined
on the grid faces. We denote with S the space of all such functions. For instance, S¥ can be taken to be H%(2), with s > %
Face projection operator P maps u onto its face DoFs u* = P¥ (u), where the entry of u” corresponding to face f is

u?:/wnfds. (4)
f

We denote the vector space of face DoFs by F = R@d(P)

Let u be a sufficiently regular scalar function so that its integrals on compact subsets of Q2 are well-defined. We denote
with SC€ the space of such functions. For instance, S can be taken to be L1(2). Cell projection operator P¢ maps u onto
its cell DoFs u = PC(u), where the entry of u€ corresponding to cell ¢ is

uf:/udv. (5)

c

We denote the vector space of cell DoFs by C = R¢@rd©,

Let X be any set among N, &, F or C. For a given cell ¢, we denote with X, the vector subspace of all DoFs of X that
are attached to geometric elements of cell c. Then, the local projection operator on cell c is defined as Pg\’ : Sf — X¢, where
S?( is finite dimensional vector subspace of SX chosen in such a way that the map Pg\’ is bijective on X.. Thus, we can set
up a correspondence between a vector field u € ng and its corresponding DoFs. We point out that in the following we do
not need to construct explicitly the space s§< since only its generic properties will be used.

Let P be the matrix associated with the restriction of the map P : SX — X to the vector subspace of constant scalar
or vector fields. Specifically, rows of IF’CS and IP’CT collect the coefficients with respect to the standard base of R3 of the
quantities [,tedl and [;nydS, respectively. Given a constant vector field u defined on c, by Stokes theorem, the latter

integral quantities can also be computed on any homologous geometric element. In particular, matrices I[”,_fg and ]P’f can be
written as
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Pr=|fl]. PE=|el|. (6)

In what follows, we will also need the dual counterpart of matrices P€, P¥. We denote by IP".f: the matrix whose rows
collect dual edge vectors e; of c, constructed using the dual node f.. For the special case where f. coincides with the
origin we use the symbol IP’CS. In a similar way, we denote with IP’: the matrix whose rows collect dual face vectors fe of

C

¢, constructed using the dual node n.. For the special case where fi; coincides with the origin we use the symbol IF’f .
3. Compatible numerical schemes

In this section we introduce the main ingredients which lie at the foundations of any compatible numerical scheme.
Specialized definitions are given for the low-order case.

3.1. Discrete differential operators

One kind of equation that we find in physical theories are balance equations [1], [3]. A differential operator usually
arises in the continuous form of balance equations and thus, in numerical schemes we need its discrete counterpart. Stokes
theorem provides discrete counterparts of the differential operators gradient, curl and divergence [24], [1], [5]. Discrete
differential operators can be defined for both the primal and the dual grid and they are defined in matrix form by incidence
matrices of the pair of grids [1]. An entry of each of these matrices corresponding to a given pair of oriented geometric
elements of the primal grid is equal to 0, if the two geometric elements are not mutually incident, otherwise, 1 if their
mutual orientations are compatible and —1 if not [3].

From their definition discrete differential operators encode the topology of problem: being metric free, any stretching or
deformation of the mesh does not change their form.

The discrete gradient operator maps any node DoFs in N into edge DoFs in &, and is defined through the action of a
matrix

GRAD =G uV, (7)
where G is the card(E) x card(N)-matrix of incidence numbers between nodes and edges.
The discrete curl operator maps any edge DoFs in & into face DoFs in ¥, and is defined through the action of a matrix
CURLW®) :=Cu®, (8)

where C is the card(F) x card(E)-matrix of incidence numbers between edges and faces.
The discrete divergence operator maps any face DoFs in F into cell DoFs in C, and is defined through the action of a
matrix

DIVW ) =Du”, 9)

where D is the card(C) x card(F)-matrix of incidence numbers between faces and cells.
3.2. Reconstruction operators

Reconstruction operators are designed to remap DoFs into the corresponding continuous vector field. In contrast to the
projection operator, where the de Rham map is the obvious candidate, the choice of the reconstruction operator is flexible
because there are many possible ways in which global physical quantities can be combined to a local field representation.

Let RgV X —> Sﬁ( be the reconstruction operator from the vector space X, of DoFs restricted to cell c. In [8], reconstruc-
tion operators are required to satisfy a number of formal properties that involve the projection operator and the continuous
and discrete differential operators. However, for the low-order case, from this set of properties it is sufficient to require that
reconstruction operators satisfy only the so called accuracy property [8]: RgY is a left inverse of Pﬁ( ,i.e.

(RX o PX)(u) =u, Yu e SX. (10)

As we will see, since we are interested in the low-order case, we never need an explicit expression of the reconstruction
operator, but only its averaged quantities over a cell come into play. To this end in mind, let us introduce the average

reconstruction operator RY : X — sf as a map whose values are constant vector fields in c, defined as follows

— 1
R¥ ) = H/Rﬁ“(uf)dv, vud € X,. (11)
[
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Let Rf be the matrix associated with the map R_f The accuracy property requires that Rf is a left inverse of IPL{\’ . To see

this, observe that Rg((im(IP’CX)) = Rg\’(im(]P’CX)) and im(IP’CX) c Xe.

An additional property that reconstruction operators have to satisfy is the so called Pg-consistency and it will be formally
defined in Section 4. Informally, these are the reconstruction operators that can be used to construct a global mass matrix,
according to the recipe detailed in Section 3.3 and Section 3.4, that satisfies the Pg-consistency property.

3.3. Local mass matrix

Let us consider a symmetric, positive-definite 3 x 3-matrix K. representing the material property of a cell ¢, assumed
to be homogeneous in c. We want to introduce an inner product on vector spaces N,&E,F and C that is a low-order
approximation of classical L? product between two continuous vector functions u, v

<u§,v§<>x,C:/u.(Kcv)dv +O(hlc), Yu, v € S¥, (12)
Cc

where h denotes a characteristic size of the mesh and u, vX are the DoFs restricted to a cell ¢ of u, v, respectively. The
bilinear form can be expressed in matrix form through a symmetric and positive-definite matrix Mf which acts on the
local DoFs

wd, vixe = @H™MIvE. (13)
In view of (12), the local matrix Mﬁ( must contain information about the material property K. on c.

We want to design Mf in such a way that it satisfies the following three conditions [7], [17], [25], [8]:

1. symmetric;
2. positive-definite;
3. consistency condition [8]: if u is a constant vector field and v € Sﬁ(, the following equality holds for every cell ¢

ST vy /u (K.v)dV, vv e S¥. (14)

c

Suppose that we want to satisfy the three requirements above. Under the above assumptions, we now introduce an
equivalent algebraic form of the consistency condition (14). The derivation is strictly related to the one proposed in mimetic
literature, see [8].

Let u be a constant vector field and let v be an element of sf . We can rewrite in an equivalent way the consistency
condition (14) as

(PX (u))TMX v /u (K RXvX))dv, v e X,. (15)

Since u is constant inside c, we introduce the matrix form of the projection operator IP’CX . In addition, since both u and K,
are constant inside the cell ¢, by using the definition of the matrix ]R§< associated with the average reconstruction operator

@ on the cell c, it follows that
u’ POHTMXvE = |clu - (KRXvY), vl e X.. (16)
The above equality must hold for every vector u and DoF v , thus we obtain the following condition
PHTML = |c|K RE. (17)
By transposing both members we can finally write
MXPX = || RO TK,.. (18)

Condition expressed in (18) is called algebraic consistency condition in mimetic literature [8]. The following lemma shows
that a solution of (18) can always be written as the sum of two terms, which is the canonical solution proposed in [8].

Lemma 1. Let K be a symmetric and positive-definite matrix and let ]Rg\’ be a left inverse of ]P’CX, Leta = (aq,...,0q—3) € RT3
be any (n — 3)-upla of positive real numbers and let D, be the diagonal matrix whose diagonal entries are a1, ..., Qn_3. Let w =
(w1, ..., Wy_3) be any orthonormal basis of im(IP’CX)L and let W, be the matrix whose columns are the vectors wy, ..., Wy_3.
Define MX by setting
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MY = [c|RHTKRY + We Do W/,

Then the matrix Mf is symmetric, consistent and positive-definite.
3.4. Global mass matrix

For each c € C, let Sg\’ be the matrix which assigns DoFs of ¢ when it is applied to an element of X. Sf is a matrix of
size dim(X.) x dim(X) and every row has exactly one entry equal to 1 corresponding to a element which is in ¢ and zero
everywhere else.

For each c € C, let M be a local mass matrix associated with ¢ defined as in Lemma 1. With this definition, we obtain

@O MY =3 ($Fu) M (5EvY) = @ (3o sHTMESE ), (19)
ceC ceC
from which follows the expression of the global mass matrix
MY =Y (sHT™MESY. (20)

ceC

3.5. Derived discrete operators

In this subsection we recall the definition of the derived discrete operators g% 0/7776/13 and Z/)I\’/V which are obtained
through a duality relation from the discrete operators GRAD, CURL and DIV, respectively. Let us suppose that the
discrete spaces N, &, F and C are equipped with inner products as detailed in Section 3.3 and Section 3.4.

Let us now define the derived operators. The adjoints of the discrete differential operators GRAD, CURL and DIV
will be denoted by GRAD*, CURL* and DIV*. It is convenient to rename the adjoints operators as follows GRAD =
—DIV*, CURL = CURL* and DIV = —GRAD*. By using the definition of DIV* and the identification GRAD =
—DIV* we obtain

Ww” ,GRAD pC)¢ = — ", DIV* pC)y = —(DIVUT, pC)cvu” e 7, pC eC. 1)

As u” and pC are arbitrary it follows that

GRAD = —DIV* = —M” ' DIV ME. (22)
By using the definition of CIYRL* and the identification Cm = CURL" we obtain
Wwe, CURL W )g = (S, CURL* w)g = (CURLUE, wF)rVul c & wT e F (23)
from which we obtain that
CURL =ME™'cURLTM” . (24)

Similarly, the duality relation between the discrete gradient operator GRAD and its adjoint Z/)}(/\/ = —GRAD* implies
that

(V. DIV wE) y = — (g, GRAD* WE) y = — (GRAD Y, wE)s Vg e N, wE € & (25)
from which we obtain that
DIV =MV grADT ME. (26)

4. Definition of Py-consistent reconstruction operators

In this section we define the novel concept of Pg-consistent reconstruction operators and provide its geometric coun-
terpart. The definition relies on a commuting diagram property of the discrete dual de Rham complex which involves the
derived discrete operators and characterizes in a rigorous way the class of all reconstruction operators that can be used
to construct a global mass matrix in a such a way that a global patch test is passed. Thus, the Pg-consistency of recon-
struction operators refers to the property that we able to reproduce exactly the continuous solution at the discrete level.
Instead, the consistency condition (14) only expresses an equivalence between discrete and continuous energy, and thus,
it is a necessary but not sufficient condition. The geometry enters into the scheme since for low-order numerical schemes
only averages of reconstruction operators over a given region are measured. In such a case, the matrix representation of
the average reconstruction operator has entries which can be interpreted as familiar geometric elements of the space, like
segments and polygons. The geometric conditions that characterize the class of Pgp-consistent reconstruction operators can
be written as a linear system of equations. A closer inspection of this linear system reveals that in general it does not have
a unique solution. Thus, there is no unique way of designing Pg-consistent reconstruction operators.

7



S. Pitassi, R. Ghiloni, E Trevisan et al. Journal of Computational Physics 436 (2021) 110285

4.1. Py-consistent face reconstruction operators

Let us consider the example of magnetic phenomena as described by the following equations

VxH=],
V.-B=0,
(27)
H=vB,
Hxn:.lsa

where the source of the problem is a known current density vector field J. In particular, let us consider boundary conditions
in such a way that vector fields B, H are constant in €. In this situation, Ampére’s law must be V.x H= J =0.

To introduce the corresponding mimetic form of the above equations, let B’ be the DoFs of the vector field B attached
to faces of the grid. WE\rEeBresent the divergence and curl operators that appear in (27) by the discrete operator D7V and

the derived operator CURL. Using these operators, the mimetic discretization of (27) reads as follows

DIVB” =0, (28)
CURLB” —o. (29)

Due to the Dirichlet boundary conditions, (29) should be considered only for the interior edges. By using (24), (29) can be
equivalently written as follows

ME cUrRLT™M” BT = 0. (30)
We left multiply (30) by M€ obtaining
CURLT (S-S IelRT)TvRE ST ) B =0, (31)
ceC

where we have used (20) for the definition of the global mass matrix M’ . Next, by using H = vB, it follows that
cuRLT(Z(Sf)Hq(Rf)T)H:o. (32)
ceC
Finally, since H € R3 is arbitrary, we obtain the following geometric condition
roweCT(Z(Sf)ﬁq(Rf)T) —0,VecE,eqdQ (33)
ceC

where we have used the matrix form of the CTYRL operator.

A dimensional analysis informs us that each entry of matrix |c|(Rf)T has units of linear meters. This is a direct con-
sequence of the property of Rf of being a left inverse of ]P’CT. Given the physical dimensions, rows of |c|(Rf)T can be
regarded as geometric edges and (33) requires that they can be put one after the other to form a geometric closed path.
Thus, they encode the geometric structure of a set of edges of a grid.

Definition 4.1 (Py-consistent face reconstruction operators). A collection of reconstruction operators {Rf}cec is said to be
Po-consistent if and only if the following geometric condition holds

roweCT(Z(Sf)ﬂq(Rf)T) —0,VecE,eqdx. (34)

ceC
4.2. Pg-consistent edge reconstruction operators

Let us consider the example of electric phenomena as described by the following equations

V x E =0,
V.D=p,
(35)
D =¢€E,
D -n=ps,

where the source of the problem is a known charge density scalar field p. In particular, let us consider boundary conditions
in such a way that vector fields E, D are constant in 2. In this situation, Gauss’ law must be V - D =0.

8
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To introduce the corresponding mimetic form of the above equations, let E€ be the DoFs of the vector field E attached
to edges of the grid. We represent the curl and divergence operators that appear in (35) by the discrete operator CURL

and the derived operator D7V. Using these operators, the mimetic discretization of (35) reads as follows

CURLE® =0, (36)
DIVES =o. (37)

Due to the Dirichlet boundary conditions, (37) should be considered only for the interior nodes. By using (26), (37) can be
equivalently written as follows

—MV ' GRADTMEEE = 0. (38)
We left multiply (38) by MV obtaining
DIV (89 Ic|RETYREST) EE =0, (39)
ceC

where we have used (20) for the definition of the global mass matrix M®. Next, by using D = €E, it follows that

DIV’ ( > sHT |c|(1R<<§)T) D=0. (40)

ceC

Finally, since D € R3 is arbitrary, we obtain the following geometric condition

rowy GT (D (SO IeIRE)T) =0, ¥n e N.n ¢ 62 (41)
ceC
where we have used the matrix form of the DIV operator.

A dimensional analysis informs us that each entry of matrix |c|(]R‘Cg)T has units of square meters. This is a direct con-
sequence of the property of ]Rf of being a left inverse of IP’f’. Given the physical dimensions, rows of |c|(Rf’)T can be
regarded as geometric faces and (41) requires that they can be put side to side to form a geometric closed surface. Thus,
they encode the geometric structure of a set of faces of a grid.

Definition 4.2 (Py-consistent edge reconstruction operators). A collection of reconstruction operators {R?}Cec is said to be
Pp-consistent if and only if the following geometric condition holds

rownGT(Z(Sf)T|c|(R§)T) —0,VneN,n¢aQ. (42)

ceC
4.3. Linear system formulation of Pg-consistent reconstruction operators

The two requirements that reconstruction operators have to satisfy can be encoded into a linear system of equations.
The unknown variables are the entries of the matrices |c|(R‘?)T, |C|(Rf)T with constraint equations expressed by (34), (42)
and the requirement that each matrix R§ and Rf is a left inverse of the local projection operator, which is the accuracy
property for constant vector fields. More specifically, we can write

RFPY =15, VceC i3
rowe<CT(Zcec(gf)ﬂq(Rf)T) —0,VecE eq 00 (43)
and
REPE =15, VceC
(44)
rowi G (Loec SHTICIRET) =0, Vn e N.n ¢ 00

where I3 denotes the identity matrix of dimension 3.

A canonical solution of the two systems of equations is given by the barycentric dual grid. While the geometric conditions
in (34) and (42) are trivially satisfied, proofs that geometric elements of the dual grid satisfy also the accuracy property
are given in the next section. Other solutions are known for particular cell shapes. For instance, for cubical cells [1] and
Delaunay tetrahedral grids [16], Voronoi dual grids are well defined and satisfy the above properties. In general, the above
linear systems do not have a unique solution, see Example 1.

The design of other Pg-consistent reconstruction operators is a global process since it links reconstruction operators
defined on more than one cell. A crucial observation is the following: if we design reconstruction operator at the single
element level, without taking into account adjacent cells, the dual barycentric grid is the unique canonical choice to design
reconstruction operators for arbitrary polyhedral elements.
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Fig. 2. Polyhedral grid made by 2 tetrahedra and 3 square pyramids.

Example 1 (Geometric conditions for a polyhedral grid). Let us consider the polyhedral grid K pictured in Fig. 2. The grid is
made by 5 cells and 14 faces. As an instance, we analyze the dimension of the affine solution space of the linear system
(44). We satisfy the constraint expressed by the geometric conditions by identifying with the same unknown the unique
two unknowns vector variables corresponding to the same face which lies at the intersection of two cells. Thus, we have
14 unknowns vectors variables each associated with a face of K. The requirement that the matrix R is a left inverse of
IF. for every cell ¢ of K is encoded into a constraint matrix of size 15 x 14. A direct computation reveals that the rank of
this constraint matrix is 12. Since there exists at least a solution, which is given by the coordinates of the barycenters of
faces of K, see Section 5, the system is consistent, and we have an infinite number of solutions since the constraint matrix
is rank deficient.

As a consequence of the conditions (34), (42), the geometric entries of the reconstruction operators on every element
are defined up to an arbitrary point in R3. This latter can be chosen freely and can be used to optimize reconstruction
operators. We explore this possibility in the next section.

5. Dual grid Py-consistent reconstruction operators

In this section we prove that reconstruction operators defined in [23] are equivalent to reconstruction operators defined
by geometric elements of the barycentric dual grid. The main novelty with respect to the proofs given in [23] relies on
the explicit identification of geometrical elements of dual faces in the expression of edge reconstruction operators. Since
geometric elements of the barycentric dual grid satisfy the geometric conditions (34) and (42), the analysis reveals the role
of the barycentric dual grid in low-order compatible numerical schemes: even if the dual grid is not assumed as a starting
point of the method, for instance in mimetic literature [8], it appears as a canonical choice of constructing Pg-consistent
reconstruction operators. According to the results derived in Section 4, the expressions of the reconstruction formulas inform
us that they are defined up to an arbitrary point in R3. We show how this freedom of choice in the design of reconstruction
formulas can be used to optimize specific objective functions.

5.1. Reconstruction formulas and their proofs

Let us consider a pair of vector fields u, w : R3 — R3 along with a scalar field w : R® — R defined on a given cell c.
The following well-known integration by parts formulas hold

/u-deV:—/V-uwdv—i—/u-nwds, (45)
ac

/u-Vxde:/qu-de-{-/uxwwdS. (46)

c c ac

Given a cell c, we write “f € dc” meaning that f is varying over all (oriented) faces of c. Similarly, we write “e € dc”
meaning that e is varying over all (oriented) edges of c. Finally, given a polygon f in some (affine) plane of R3, we write
“e € 0 f” meaning that e is varying over all (suitably oriented) edges of the boundary of f.

Theorem 2 (Reconstruction from face DoFs). Let u be a constant vector field defined on a cell c. Choose an arbitrary dual node fi. € R3
and define €7 := by — 1., as at the end of Section 2. The following equality holds

10



S. Pitassi, R. Ghiloni, E Trevisan et al. Journal of Computational Physics 436 (2021) 110285

I

Fig. 3. A polygon and the relevant geometric elements involved in the proof of Lemma 2.

1 -
"ZHZ("'f)ef' (47)

feac
Proof. Let w € R3. Thanks to (45), we have
Ic|u - w:/u -wdV :/u-V(w S(x—1c))dV :/(u-n)(w C®—)dS =) (u- f)((by —iic) - w). (48)
c c ac fedc
By using the definition of ey, it follows that
clu-w="> (- s w). (49)
feac
Since w is arbitrary, we obtain the claimed equality. O
Lemma 2 (Reconstruction from edge DoFs restricted to a polygonal face). Let u be a constant vector field and let f be a polygon in

some plane L of R3. Let us denote with n the unit vector orthogonal to f. Choose an arbitrary point p € R3. The following equality
holds

uxn:%Z(u~e)(be—p). (50)

ecdf

Proof. Let f,:=e x n be the vector orthogonal to edge e in L. Note that vector u x n belongs to L. Thus, if we apply the
argument used in the proof of Theorem 2 to the vector field u x n restricted to f, then we obtain

1
uxn:mZ((uxn)'fe)(be—P)- Gb

ecdf

Based on the definition of f,, it follows that
uxn)-f,=mxn)-(exn)=mx@xn)-e=u-e. (52)

and hence, substituting in (51), we obtain the claimed equality (see Fig. 3). O

Theorem 3 (Reconstruction from edge DoFs). Let u be a constant vector field defined on a cell c. Choose an arbitrary dual node fic e R3
and define f, as at the end of Section 2. The following equality holds

u=%2(u-e)fe. (53)

ecdc
Proof. Let w € R3. Thanks to (46), we have

2|c|u~w=2/u-de=/u-Vx (wx(x—ﬁc))dV=/(uxn)-(wx(x—ﬁc))ds (54)
ac

C Cc

= Z/(uxnf)~(wx(x—ﬁc))d52 > Ifl@xng) - (w x éf).

fedck fedc

Apply Lemma 2 to every face f in the last term of the above expression, choosing the same node i, as the arbitrary point
involved in the formula. We obtain

11
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Fig. 4. A cubic cell c. A set of DoFs @ are attached to faces. This is an example of DoFs that are not image of any constant vector field under the projection
map P7.

2clu-w= Z (Z(we)(he —ﬁc)>~(w X ef) = Z (éf X (Z(u'e)(be —ﬁc))>'w (55)

fedc eedf feac ecdf
=) (u-e)((€y; x (be —fic) — &5, x (b —Tic)) - W),
ecdc

where fj, f; are the unique faces of ¢ such that e = f; N f;, for suitable indices i =i(e) and j = j(e), and oriented so that
they induce opposite orientations on edge e. Now, dividing by two both members of the last term in (55) and using the
definition of f,, it follows that

lclu-w=>"u-e)f, w). (56)
ecdc

Since w is arbitrary, we obtain the claimed equality. O

Lemma 3 (Dual grid reconstruction operators). Let us consider a cell c. Choose an arbitrary dual node i1 € R3. Let Rg = ‘1?‘ (IP’ﬁg)T
and R’,:?C = l]?l(]P’g:)T. The following formulas hold

R,.TC]P’f =1;, (57)
RS PE =15 (58)

Proof. By using Theorem 2, Theorem 3 and the definition of the matrices IP’,_Ig ,IP’,_IT, we have the following identities

(]P’ﬁ%)TIPf =|c|I3, (]P’Z)TIPC‘C’ = |c|I5. Dividing by |c| both members of the latter equations we obtain the claimed result. O

5.2. Optimizing dual grid reconstruction operators

The expressions of the dual grid reconstruction operators show that they are uniquely defined up to an arbitrary point
fic € R3, which can be chosen independently for every cell. Now, we show how this fact can be used to optimize the dual
grid reconstruction operators. In particular, we ask if for a given cell c there exists a point such that the reconstructed vector
field is optimal with respect to a least square difference.

Let X =& or X = F. We observe that the map PX has rank 3, thus it is not surjective as a map from R> to R4im*Xo),
see Fig. 4.

Let ug\’ ¢ im]P’CX. In this case, among all possible constant vector fields, we select the minimum norm solution of the
following least squares problem

u* = argmin H]P’Cxu — uﬁ( (59)
ucl3 2

The Moore-Penrose matrix inverse of IPCX, denoted as (IP’X);R allows us to write the minimum norm solution u* of (59)
into the following form

ut = (PSHTud; (60)

moreover, since X, has full rank, (P)* can be explicitly written as (PX)* = (PX)TPY)~1(PX)T, see [26].
Now, we ask the following question: does there exist a point fic € R3 such that Rgc = (IF’;")*? By Lemma 3, we know

that ]Rg(c is a left inverse of IPCX. Thus, in order that RﬁXc = (IPCX)J“, it is sufficient that the following property holds

12
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Fig. 5. A tetrahedron to illustrate the geometric quantities involved in the proof of Lemma 4.

PIRY = (PIRS), (61)

see [26]. For tetrahedral and cubic cells we have the following characterization.
Lemma 4. Let c be a tetrahedral or cubic cell. If . is the barycenter of c, then fi; satisfies (61).

Proof. First, suppose that c is a tetrahedron, see the tetrahedron pictured in Fig. 5. Consider the case X = . We have to
show that IP’fRﬁT is symmetric. It is sufficient to consider the pair of faces f; and f,. By definition, we have
(

- e X ey e) +e3 e +e;+e3 1
fl-ez—( 5 )( 3 7 )—ﬂ(ﬁxez)-e& (62)
- e2><e3) <e1+e2 e1+e2+e3) 1
8= . - = .ey. 63
fa-e ( 3 3 2 24(€2><¢?3) el (63)

By comparing the above two expressions we obtain f;-é, = f,-e;.
Consider now the case X = &. Let us prove that IPC‘S]R% is symmetric. It is sufficient to consider the pair of edges e; and
e,. By definition, we have

~ 1,e14+e e;+e3 er e +ey+es 1
fra=Gs- "5 )G 5 ) e=ypexere (69
= 1/ex+e3 e1+e e; ej+eytes 1

o (1 _ e2_&a1tertes) , _ 1 e 65
Fa-en (2( 3 3 )X<2 4 )) e1=p(exe) e (65)

By comparing the above two expressions we obtain f1 -ey = fz -eq.

Let ¢ be a cubic cell. Consider the case X = ¥. We have to show that P/ R,{ is symmetric. Observe that the (i, j)-entry
of this product is of the form f; - éfj for some pair of faces f;, f;. Let i # j. Define &; := ey, and e; := éfj. Two cases are
possible, either f; =—f; or f;- f;=0.In the first case, we have & = —e&; from which follows that f;-e;= f;-e;:. In the
second case, we have f;-€; =0 and f;-& =0, from which follows that f;-&;= f; - e;.

Consider now the case X = &. Let us prove that IP’CS]R;(QC is symmetric. Observe that the (i, j)-entry of this product is
of the form e; - fej for some pair of edges e;, e;. Let i # j. Define f,- = fe,- and f]- = fej. Two cases are possible, either
e; ==e;j or e; - e; = 0. In the first case, we have f,- = ifj from which follows that e; - fj =ej- f,-. In the second case, we
have e; - fj =0ande;- ]’i =0 from which follows that e; - fj =ej- f,». a

Let us denote by D the set of all cells that satisfy (61) for some point fi. € R3.

Example 4. Let us consider the case of the face reconstruction operator Rﬁi. By definition, we have Rffc = %(]P’C‘S —1n, )T,

where 1 denotes the vector in R4 whose entries are all equal to 1. Let us consider a pyramid with a square base
divided in two triangles. The boundary decomposes into six faces. A direct computation reveals that this cell does not
belong to D. To show this, it is sufficient to directly compute the Moore-Penrose matrix inverse (IPCT )t and subtract from
(]P’C‘S)T the matrix |c|(IP’C77 )*. If there exists a point i, satisfying (61), then the columns of this matrix difference must be all
equal to 7.

To handle the situations where a cell ¢ ¢ D, we propose to select a dual node fi, which minimizes the distance with
respect to the Moore-Penrose inverse matrix measured by a L? metric.

13
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Definition 5.1 (Optimal dual node). Let us introduce the following map
g£:R3>R (66)
2
= X X+
o[ -,
We define the optimal dual node of a cell c, figp,c, as the unique point which minimizes function &.

From the practical point of view we can solve the optimization problem in (66) for every cell and find two optimal
reference points, one for the matrix ]Rﬁf and the other one for Rfi . To speed up the computation we choose a unique point
C C

as the optimal dual node of the matrix Rﬁf. In this case, we give an explicit expression of the optimal dual node.
C

Lemma 5 (Optimal dual node expression). The optimal dual node can be written as

1 card(F¢)
n =— Aj, 67
opt,c card(F,) ; i ( )

where A := (PCS)T — |c|(IE"C7'C)Jr and the sum is over the set of columns of A.

s F_1 & _ 15T \T fact : : 1 5 T2 - 1 a2
Proof. By definition R} = 5 (P —1ii.)". The objective function can be written as o |A —nT|; = oF Yl A

where the sum is over the set of columns of A. By equating the gradient to zero we obtain the minimum point at
carc}(F) ZiAi' o
C

6. Numerical results

We first verified the equivalence of the reconstruction operators introduced in [8] with the reconstructions operators
defined by geometric elements of the dual barycentric grid in Section 5 by solving two multi-material patch tests on a
grid made by general polyhedra. Then, a real-life stationary current conduction problem is solved using the geometric
optimization of reconstruction operators described in Section 5.2. Finally, we show an example of the role of the dual
barycentric dual grid for the correct computation of some global variables, in this case the current flowing through the
electrodes.

The stationary current conduction is a Poisson problem in a connected region Q of the 3-D Euclidean space

VxE=0,
V-J]=0, (68)
J=0E,

where ¢ is a material parameter called electric conductivity, E and J are the electric field and the current density vectors,
respectively. The material parameter electric conductivity o is assumed to be a positive scalar value which is piecewise
uniform in each material region. The region boundary <2 is partitioned into a set of N' surfaces of perfect insulators 9Qi,
and a set of N®+ 1 disjoint equipotential surfaces (electrodes) of perfect conductors d$2:

N! N¢
0= Q)+ 9. (69)
k=1 k=0

Electrode 9<2j is considered as reference for all the voltages of the remaining electrodes, that are supposed to be assigned.
J -n=0is set as boundary conditions (b.c.) on each 92}, where n is the outwards oriented normal unit vector of 9.

6.1. Multi-material patch tests

The multi-material patch tests are Poisson problems designed in such a way that their solution is piecewise-uniform. By
interpreting the Poisson problems as direct current conduction problems, a simple way to produce multi-material patch test
is to consider a resistor with two conductors with different material properties (called electric resistivity p) placed in series
or in parallel as described in detail later.

To test the edge mass matrices we use the classical scalar potential formulation SP. Instead, in order to test the face
mass matrices we use the vector potential V P [27] or mixed-hybrid MH formulations [10], [28]. We remark that the V P
and MH formulations produce the same results given that they are algebraically equivalent [28]. The polyhedral grid used
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Fig. 6. The series multi-material patch test (a). We set the voltage between the two electrodes, represented in gray in the picture, to 1V. (b) Electric field
E produced by the SP formulation. (c) Current density field J produced by the SP formulation. (d) Electric field E produced by the V P formulation. (e)
Current density field J produced by the V P formulation.

(b) (c) (d) (e)

(a)

Fig. 7. The parallel multi-material patch test (a). We set the voltage between the two electrodes, represented in gray in the picture, to 1V. (b) Electric field
E produced by the SP formulation. (c) Current density field J produced by the SP formulation. (d) Electric field E produced by the V P formulation. (e)
Current density field J produced by the V P formulation.

in the example is formed by 131 nodes, 306 edges, 237 faces and 61 cells. The grid is obtained through two levels of
sub-gridding of a few cells, so that the obtained elements are general polyhedra.

In the first multi-material patch test, two different materials with different material properties are placed in series. From
the result represented in Fig. 6, we conclude that the tangential component of the electric field E is conserved across
the material interface, whereas the tangential component of the current density field J jumps. This result holds for both
formulations.

In the second multi-material patch test, two different materials with different material properties are placed in parallel.
From the result represented in Fig. 7, we conclude that the normal component of the current density J is conserved across
the material interface, whereas the normal component of the electric field E jumps. This result holds for both formulations.

6.2. Square resistor benchmark

As a more complicated example, we compute the conductance G of a square resistor [28], see Fig. 8. A voltage of u =1V
is enforced between the two electrodes, which are placed in the two lateral surfaces of the solid square torus. The con-
ductor placed inside the solid torus has an electrical conductivity o = 1S/m. This problem is interesting because, like most
industrial problems, exhibits a singular analytical solution. Yet, the analytical solution is available and G = 10.23409256 S.

The conductance G is extracted by computing the total dissipated power P = Gu? = fQ % or alternatively by using the

Ohm’s law G =i/u, where i is the current that flows between the two electrodes.

All simulations are performed using the optimal dual node for the geometric dual grid as described in Section 5.2.
We do not observe a significant improvement in the convergence of the scheme although the reconstruction operator is
locally optimized for every single cell. Here, the optimization is substantial for cells which are not symmetric. This can
be qualitatively seen by the results of Section 5.2 where it is shown that where the cell is cubic the optimal dual node
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Fig. 8. (a) The geometry of the square resistor benchmark (h =1m, d =4m, and [ = 2 m). The two electrodes are depicted in red and blue. (b) Thanks to
the symmetry, the computational domain has been reduced to one in eight of the resistor. (For interpretation of the colors in the figure(s), the reader is
referred to the web version of this article.)

I (&) . (b) . () I (d)

Fig. 9. The four different types of grids used to discretize the geometry of the square resistor in Fig. 8. (a) Structured tetrahedral grid. (b) Unstructured
tetrahedral grid. (c) Structured hexahedral grid. (d) Polyhedral grid with subgridding.

coincides with the barycenter of the cell. We point out that the optimization can be performed as a preprocessing step that
defines the optimal geometric structure of reconstruction operators.

The conductance of the square resistor has been evaluated by the SP and VP = MH formulations on refined grids.
The results are collected in Fig. 10. First, it is interesting to note that the results relative to the scalar potential SP and
to the vector potential VP or mixed-hybrid MH formulations provide, respectively, the upper and lower bounds for the
conductance [29], [27]. This property is called complementarity in the computational electromagnetics community [28].
Second, in Fig. 9, four different types of grids have been used. Polyhedral grids with subgridding, i.e. a nonconforming-like
local mesh refinement technique, appears to be particularly appealing.

A faster convergence can be reached only by using automatic mesh adaptivity. A comparison of the results obtained with
tetrahedral and polyhedral unstructured meshes constructed with automatic mesh adaptivity is prevented by the lack of an
automatic polyhedral mesh generator. Such a mesh generator is under development.

6.3. Pg-consistent reconstruction operators and post-processing

Let us consider the problem described in the previous section 6.2. Now we show that the Pg-consistency property of
reconstruction operators guarantees the continuous balance laws at the discrete level. To begin with, we observe that

CURLE® =0, (70)

so that an essential physical property of the continuous problem is preserved. What about the flux-conservation property
of the discrete current density? The question naturally arises since in the mimetic framework DoFs of the current density
J are not explicitly defined. As a first approach to assess the discrete conservation property of J, let E, be the cell-wise
electric field reconstructed starting from edge DoFs. Then, we denote by J, the reconstructed current density defined on each
cell multiplying E, by the corresponding conductivity, assumed to be constant over each cell. Although J, is divergence-
free inside cells, there are flux “leaks” between faces of the primal grid. To validate this assertion, let I; and I, be the
inward and outward current of J,. through the two pair of electrodes 32§ and 9K, respectively. For the problem under
consideration, the following values are found I; = 1.3830 and I = 1.0916. Thus, the computed currents are “non-physical”
since an essential physical property is violated, namely the fact that I; have to be equal to I,. Thus, I; and I, do not
represent a good approximation of the current through the resistor.

On the contrary, compute accurately the current through the electrodes is very important in many applications like
Electrical Impedance Tomography (EIT). The results of Section 4 shed light on the reasons why one should not integrate the

reconstructed current density J, on faces on the primal grid. Indeed, by requiring 5.\7(/1/ E€ =0, we obtain
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Fig. 10. Results for the square resistor benchmark.

rownGT(Z(S§)7|c|(R§)T]r,C) —0,VneN,n¢oQ. (71)

ceC

So discrete solenoidality requires that the flux of J, through the geometric closed surface associated with Pg-consistent edge
recostructions operators of every inner node vanishes. Therefore, we may aggregate geometric closed surfaces associated
with inner nodes, and the flux of J, will vanish across such an aggregate. Based on these results, let us compute the
following quantity

=Y row G (Y6 Id®E) I, 72

nedQ ceC

as the discrete approximation of the current of J through 9Q¢, where a similar expression holds for I,. Then, we see that

> rowaGT (Y SETIARD I ) =0=11 + 11, (73)

neN ceC

where we have used the given boundary values of J. Thus, we have I1 = —I, = 1.3225, proving the physical soundness of
the computed quantities (up to a minus sign, which accounts for the orientation of the surfaces).
Another remarkable result is that the obtained current I; = —I» coincides up to machine precision with the dissipated

power inside the resistor computed in previous section as P = Gu? = fQ % (given that u is fixed to 1V with boundary
conditions).

As shown in Section 5, a canonical way of constructing Pg-consistent reconstruction operators is given by barycentric
dual grid. In this case, (72) can be interpreted as the sum of currents through dual faces. We point out that the current in
(72) is equal through every homologous surface associated with a different choice of the Pg-consistent edge reconstruction
operators.

7. Conclusions

In this paper, we have studied hidden geometric aspects of low-order compatible numerical schemes for arbitrary poly-
hedral grids. First, we have shown that standard mimetic numerical schemes have noteworthy geometric properties. These
geometric properties were demonstrated by reformulating standard mimetic reconstruction operators using geometric ele-
ments of the barycentric dual grid, thus proving the equivalence between mimetic and geometric approaches. Second, we
have introduced the class of Pgp-consistency reconstruction operators which extends the standard consistency requirement
of the mimetic framework. A characterization of these operators is given as an affine solution space of a linear system of
equations. Given the geometric description of the scheme, this analysis reveals the existence of many dual grids that define
reconstruction operators and constitutes the starting point to optimize them. Additionally, it shows that the barycentric dual
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grid is a canonical way of designing Pg-consistency reconstruction operators at single element level. The fundamental role
played by Stokes theorem in mimetic numerical schemes appears, therefore, as the geometric manifestation of the necessity
of using the barycentric dual grid to design local reconstruction operators. Numerical examples show the importance of the
geometric interpretation for the correct evaluation of some physical variables in the post-processing stage, thus motivating
the practical impact of including them as part of the numerical scheme.
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