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This paper addresses the calculation of the resistive distribution of halo currents in
three-dimensional structures of large magnetic confinement fusion machines. A Neumann
electrokinetic problem is solved on a geometry so complicated that complementarity is
used to monitor the discretization error. An irrotational electric field is obtained by a
geometric formulation based on the electric scalar potential, whereas three geometric
formulations are compared to obtain a solenoidal current density: a formulation based
on the electric vector potential and two geometric formulations inspired from mixed
and mixed-hybrid Finite Elements. The electric vector potential formulation is usually
considered impractical since an enormous computing power is wasted by the topological
pre-processing it requires. To solve this challenging problem, we present novel algorithms
based on lazy cohomology generators that enable to save orders of magnitude computational
time with respect to all other state-of-the-art solutions proposed in literature. Believing
that our results are useful in other fields of scientific computing, the proposed algorithm
is presented as a detailed pseudocode in such a way that it can be easily implemented.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A tokamak plasma with a vertically elongated cross section is intrinsically unstable. For elongations up to a critical value,
stability can be maintained by surrounding the plasma with close-fitting passive conducting structures, see Fig. 1(a). In this
way, the plasma is still unstable, but the vertical motion occurs on the slower resistive time-scale (ms) of these structures,
allowing stabilization by means of a feedback control system. Nevertheless, during disruptions,1 the vertical control can be
lost generating what are called Vertical Displacement Events (VDEs). As plasma comes into contact with the vacuum vessel
wall2 some of the plasma current, the so called halo current, flows in a circuit lying partially in the plasma and partially
in the vessel wall, see Fig. 1(b). The interaction of the currents injected in the passive structures of the machine with a
magnetic field of the order of some Tesla, needed for plasma confinement, causes huge electromagnetic forces.
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1 Disruptions are rapid events in which a large fraction of the plasma thermal energy is lost due to the uncontrolled growth of some large-scale plasma

instability.
2 The vacuum vessel is a hermetically-sealed steel container that surrounds the plasma and houses the fusion reaction.
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Fig. 1. (a) The ITER Tokamak (nearly 30 metres tall, 23 thousand tons weight) is made up of an estimated one million parts. The man (in the circle) is used
as a reference of the machine’s scale. Image provided courtesy of Fusion for Energy (F4E). (b) An example of upward symmetric VDE: time slices (t1 < t2)
of plasma last closed flux surface (solid) and halo boundaries (dashed).

A fully self-consistent model that may be used as a predictive tool for these forces is not yet available due to the
complexity of the physical magneto-hydrodynamic phenomena and the quite complicated domain of study. Over the years,
several 2D numerical codes have been used to model the 2D dynamics and localized forces of VDEs in experimental devices
and provide some predictions for fusion reactors under design. On the other hand, halo currents are an intrinsically 3D
phenomenon. For this reason, a big effort has been made to simulate asymmetric VDEs and disruptions in Tokamaks also
by employing 3D MHD codes (e.g. M3D [1]), although with a resistive axisymmetric wall. Despite halo currents being a
typical consequence of fast plasma movements (VDE) towards the wall, it is possible to study, to some extent, a steady state
distribution of the halo currents in the 3D structures.

From the engineering point of view, the problem consists of the prediction of electromagnetic forces on the conductive
structures surrounding the plasma by solving an electrokinetic Neumann boundary value problem where the boundary data
are the currents injected by the plasma to the first wall of the vessel. In [2] two codes have been benchmarked assuming
a simplified plasma model and a resistive distribution of halo currents to give the first estimate on halo forces on a typical
machine described with a fairly detailed geometric model. The first one is the well-known CARIDDI code [3] based on
a gauged electric vector potential formulation, whereas the second one is the CAFE code [4] based on complementary
formulations for stationary conduction.

The geometry and topology of the problem is so complicated that tetrahedral mesh generators usually fail during mesh
computation. That is why a multiblock structured hexahedral mesh has been used in this paper. The electrokinetic problem
may be solved employing the classical electric scalar potential formulation [5]. Formulations based on high order hexahedral
elements are not attractive since they suffer from the lack of high order representation of geometry in multiblock mesh
generators. Moreover, the complicated problem geometry requires many elements to describe every tiny handle of the
geometry in such a way that elements cannot be drastically reduced by using high order elements. In addition, since most
physical and geometric parameters are known with a tolerance in the percent range, extreme accuracy is unjustified in
practice. On the contrary, the aim is to minimize the setup and the running time of the software tool.

In this paper we use complementarity [6–9] to have some estimate on the quality of the solution, exploiting its guaranteed
upper and lower bounds for power dissipated [6] and the minimization of the constitutive error [7]. Complementarity consists
in solving the considered problem two times, employing two complementary formulations that produce respectively an
irrotational electric field and a solenoidal current density. Despite the additional computational cost, complementarity has
potential advantages. First, the constitutive error provides a robust error estimator for mesh adaptivity [7]. Second, averaging
the solutions obtained by both formulations gives a much better approximation that usually enable to obtain a sensible gain
from exploiting complementarity [10,11].

The irrotational electric field is usually obtained by means of the standard electric scalar potential formulation V [5],
whereas this paper investigates three alternative formulations (T, M, H) to obtain a solenoidal current density. We remark
that these formulations provide exactly the same current density, even in topologically non-trivial domains.

The first formulation, based on an electric vector potential T, requires a complicated topological pre-processing due to
the fact that the domain under study is topologically non-trivial [12]. In particular, for Neumann problems, an H2(K− ∂K)
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cohomology basis3 is needed to render the boundary value problem well defined [2], where K is the cell complex that
encode the incidences of the considered mesh. The representatives of such cohomology generators are called thick links [10].
For a rigorous introduction to algebraic topology consult for example [13] or, for non-formal ones, [12,15,10].

The topological pre-processing, if not faced carefully, is unfeasible in practice as both memory requirements and compu-
tational timings become prohibitive. This is especially true for applications arising in fusion engineering and design, where
the cell complex easily exceed millions elements and the genus of ∂K a few thousands. That means thousands of genera-
tors to retrieve quickly and with reduced support in such a way that they can be stored in memory as sparse vectors. If
any of these two requirements is not met, complementarity cannot be exploited in practical problems. And this is exactly
the present state of literature. For instance, the code CARIDDI—quite popular in fusion applications—computes directly the
kernel of a matrix whose entries are real numbers [2]: this approach is unfeasible for meshes with more than one million
elements, whereas it is practical but very time consuming (a few hours) for meshes of some hundreds of thousands hexa-
hedra. Moreover, it is prone to errors due to the finite precision of real numbers. Even state-of-the-art methods to compute
cohomology generators as [15,16] would require days to produce the generators for the problems addressed in this paper.
This is unacceptable if one thinks that the linear solver requires at least two orders of magnitude less computational effort.

The present paper proposes quite a novel approach to the determination of the required thick links that is able to re-
duce the computational effort from days to tens of seconds. This enormous reduction of computational effort makes the
computation of cohomology generators negligible w.r.t. the time spent solving the linear system of equations. Moreover,
defining thick links in the boundary of ∂K limits also their support in such a way that they occupy a negligible amount of
memory. This result is not only due to novel algorithms, but especially to the recent introduction of the original mathemat-
ical concept of lazy cohomology generators [17,18]. The reasons why they enable this unprecedented speed-up and why are
deemed as lazy will be explained after the presentation of the novel algorithm for thick links extraction. We remark that
the cohomology generators may be useful also for other applications arising from scientific computing.

The electric vector potential formulation T is compared with two original mixed (M) and mixed-hybrid (H) formulations
strongly inspired from Mixed Finite Elements (MFE) and Mixed-Hybrid Finite Elements (MHFE) [19,20]. The geometric for-
mulations differ from the corresponding Finite Elements formulations since they use the dual complex [21] and discrete
Hodge operators [22,23] that are symmetric, positive definite, consistent and can be constructed avoiding numerical quadra-
ture, for general polyhedral meshes, by elementary closed form operations involving the geometric elements of the primal
and dual complexes.

This paper is structured as follows. In Section 2 the discretization of the numerical domain in primal/dual cell complexes
is presented. Section 3 contains a concise introduction to the electric vector potential T formulation. Section 4 presents the
very idea behind lazy generators and the novel graph-theoretic and general algorithm for lazy cohomology group computa-
tions. The algorithm is presented as a collection of detailed pseudocodes in Appendix A, in such a way that it can be easily
implemented in any computer code based on Finite Elements, Finite Volumes, integral formulations, compatible or mimetic
discretizations and geometric formulations. Section 5 introduces a fast and graph-theoretic method to take into account
the source currents without solving any linear system or performing a singular value decomposition. Section 6 describes
the mixed M and mixed-hybrid H geometric formulations. Section 7 is devoted to present the numerical results while in
Section 8 the conclusions are drawn.

2. Domain discretization

Let us consider a stationary current conduction problem in a conductive region K , which is a compact connected subset
of the three-dimensional Euclidean space. The conductor K is immersed in a perfectly insulating medium and possesses
in general topological handles and cavities (meaning that the 1st β1(K ) and 2nd β2(K ) Betti numbers [13] are nonzero,
respectively).

The conductor K is covered by a hexahedral mesh, whose incidences are encoded in the cell complex K represented by
the standard incidence matrices G, C and D, [21,9]. Gb , Cb and Db denote incidence matrices containing incidences between
elements on ∂K only. A dual barycentric complex K̃ is obtained from K by using the barycentric subdivision [21,15]. Let us
define the dual cell complex K̃ = D(K) in the following way:

(1) For every hexahedron v ∈K, the dual node ñ = D(v) is defined as the barycenter of v , see Fig. 2(a).
(2) For every face f ∈K that is a common face of hexahedra v1, v2 ∈K, the dual edge ẽ = D( f ) is defined as the sum of a

segment of line joining the barycenter of f with D(v1) and a segment of line joining the barycenter of f with D(v2),
see Fig. 2(a).

(3) For every edge e ∈ K let f1, . . . , fn ∈ K be the faces incidental to e. The dual face f̃ = D(e) is then defined as a
(set-theoretical) sum

⋃n
i=1 conv[B(e), D( f i)], where B(e) denotes the barycenter of the edge e and conv[·] the convex

hull, see Fig. 2(b).
(4) For every node n ∈K let e1, . . . , en ∈K be the edges incidental to n. The dual volume ṽ = D(n) is the volume bounded

by D(e1), . . . , D(en), see Fig. 2(b).

3 We remark that the absolute 2nd cohomology group H2(K − ∂K) is torsion-free [13] and any cohomology basis is suitable for this application, so
issues related to basis selection [14] are not of interest in this context.
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Fig. 2. (a) Example of dual node D(v) and dual edge D( f ). (b) Example of dual face D(e) and dual volume D(n). (c) Example of dual node Db( f ), dual
edge Db(e) and dual face Db(n) on the boundary of the hexahedron.

The matrices G̃ = DT , C̃ = CT and D̃ = −GT represent the incidence matrices of K̃ [21,15].
In case of three-manifolds with boundary, the dual complex K̃ constructed as previously described is not complete, being

undefined on ∂K. In this case, it is customary to complete K̃ by adding a barycentric dual complex on ∂K as follows:

(1) For every face f ∈ ∂K, the boundary dual node ñb = Db( f ) is defined as the barycenter of f , see Fig. 2(c).
(2) For every edge e ∈ ∂K that is a common edge of faces f1, f2 ∈ ∂K, the boundary dual edge ẽb = Db(e) is defined as

the sum of a segment of line joining the barycenter of e with Db( f1) and a segment of line joining the barycenter of e
with Db( f2), see Fig. 2(c).

(3) For every node n ∈ ∂K, let e1, . . . , en ∈ ∂K be the edges incidental to n. The boundary dual face f̃b = Db(n) is the
portion of ∂K bounded by Db(e1), . . . , Db(en), see Fig. 2(c).

As D denotes the standard dual operator, with Db we refer to its corresponding operator on ∂K. The elements of ∂K, which
is a combinatorial two-manifold without boundary, are subject to a Neumann boundary condition, as described in Section 7.

3. Electric vector potential formulation

In the electric scalar potential formulation V [5,10], Faraday’s law holds by potentials whereas Gauss’s law is imposed
by a linear system of equations. In electric vector potential formulations T, both the association of the physical variables
with geometric elements of the cell complexes and the role of the two physical laws are interchanged. That is, in order to
formulate the problem by using the vector potential formulation, the following cochains with real coefficients [13,9,10] are
introduced:

• Voltage Ũ ∈ C1(K̃,R);
• Electric current I ∈ C2(K,R);
• Electric vector potential T ∈ C1(K,R).

Differently from [2,4], let us express the current I as

I = C

(
Ts + T +

N∑
i=1

I i
g�

i

)
, (1)

where the 1-chains {�i}N
i=1, N = β1(K), are the thick links on ∂K4 and {I i

g}N
i=1 are the corresponding independent cur-

rents. By construction, the supports of the {�i}N
i=1 are nonzero only on edges of ∂K and their dual in ∂K, {Db(�

i)}N
i=1,

are the representatives of an H1(K̃) homology basis. This is shown in Fig. 3, where the support of �1 for a thick torus
is visible in Fig. 3(a), the support of its dual on ∂KDb(�1) in Fig. 3(b), whereas the support of a representative of the
H1(K̃) generator is represented in Fig. 3(c). How to construct the thick links automatically and efficiently is the aim of
Section 4.

We remark that this solution is different w.r.t. the one presented in [2,4] where thick links {�i}N
i=1 have been defined

as H2(K − ∂K) cohomology generators (i.e. their supports are set of faces in the interior of K). One may easily produce
the {�i}N

i=1 from {�i}N
i=1 with C�i = �i , for i = 1, ..., N , but the formulation presented in this paper is more efficient and

easier to implement. In fact, defining thick links in the boundary of ∂K limits also their support in such a way that they
occupy a negligible amount of memory.

Concerning boundary conditions, T is imposed to zero on edges belonging to ∂K, whereas Ts is efficiently determined
as explained in Section 5 from the source current Is whose coefficients on ∂K faces are the plasma halo currents imposed
through them computed as described in Section 7.

4 In [24], which presents an integral formulation for eddy currents, the thick links on the boundary have been called ribbons.
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Fig. 3. (a) The support of �1 lies on the boundary of solid two-dimensional torus. (b) Db(�1) is the representative of the H1(K̃) generator. (c) The support
of the representative h1 of the H1(K̃) generator. Clearly Db(�1) and h1 are homologous since one can construct some 2-chain in K̃ such that its boundary
is the difference between Db(�1) and h1.

By defining the potentials as in (1), the current continuity law

DI = 0 (2)

is implicitly satisfied, since DC = 0 [21].
The resistance matrix R is a discrete Hodge operator [25] that relates currents I to voltages Ũ

Ũ = RI. (3)

R is the approximate discrete counterpart of the constitutive relation E = ρJ at continuous level, ρ being the resistivity of
the material assumed element-wise constant. In this paper, the resistance matrix is constructed by simple closed form ex-
pressions avoiding numerical quadrature as described in [22,23]. We note that this technique is valid for general star-shaped
polyhedra. Faraday’s discrete law,

CT Ũ = 0 (4)

is enforced by a linear system of equations. By substituting (3) and (1) in (4), an algebraic equation is obtained

KT +
N∑

j=1

(
K� j)I j

g = −KTs, (5)

where the stiffness matrix K is defined as K = CT RC. We note that the stiffness matrix may be computed directly also by
using the Finite Element Method [9].

The final algebraic linear system of equations (5) contains as unknowns also the independent currents {I j
g}N

j=1. To write
as many equations as the unknowns, Faraday’s laws have to be written also on every thick link (corresponding to each
homology H1(K̃) generator) by setting their voltage evaluation to zero

�iT CT Ũ = 0, i ∈ {1, . . . , N}. (6)

Since any dual 1-cycle may be obtained as a linear combination of the homology H1(K̃) basis plus a boundary, once the
voltage on an H1(K̃) basis vanishes, it vanishes on any other cycle nontrivial in H1(K̃). By using (3) and (1), each one of
these equations can be written in terms of unknowns as

(
�iT K

)
T +

N∑
j=1

(
�iT K� j)I j

g = −�iT KTs. (7)

The sparse and symmetric linear system is solved using a state-of-the-art direct solver (PARDISO, included in the Intel MKL
library), with a standard tree-cotree gauge [3].

4. Topological preprocessing for potential definition

The present paper proposes a novel approach for the determination of the required thick links that reduces the com-
putational effort from days to tens of seconds. The novel Algorithm 1 introduced in this paper is an adaptation of the
Dłotko–Specogna (DS) algorithm [17,18] that generates H1(K) lazy generators to compute an H1(∂K) basis instead.

Let Gb and Cb be the standard edge-node and face-edge incidence matrices restricted to elements of ∂K. First, an edge
spanning tree on ∂K is found with Algorithm 4 (see Appendix A) by a Breadth First Search (BFS) strategy [26], see Fig. 4(a).
Second, a dual edge spanning tree on Db(∂K) is computed again by a BFS technique with Algorithm 5 (see Appendix A).
This dual tree is constructed by using as graph not all dual edges in Db(∂K), but only the edges that are not in the primal
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Algorithm 1 Generation of an H1(∂K) basis.
Input: Cb , Gb

Output: representatives �1, . . . ,�2g of an H1(∂K) basis;
primalTree ← FindPrimalTree(Gb);
dualTree ← FindDualTree(Cb,primalTree);
c ← 0;
for each edge E in ∂K do

if primalTree(E) = false and dualTree(E) = false then
c ← c + 1;
�c ← CocycleRetrieval(Cb,dualTree, E);

return �1, . . . ,�2g ;

Fig. 4. (a) An edge spanning tree on ∂K, boundary of a solid two-dimensional torus. (Opposite sides are identified.) (b) The dual edge spanning tree on
∂K is constructed by using as graph the dual edges whose dual are edges not in the primal tree. (c)–(d) The support of the two representatives of the
cohomology H1(∂K) generators produced by the two free edges indicated with circles in the picture.

tree, see for example Fig. 4(b). Then, each “free” edge in ∂K that does not belong neither to the primal tree nor to the
dual tree produces an H1(∂K) generator. In fact, once a free edge E interpreted as a dual edge Db(E) is added to the dual
tree, exactly one cycle is produced on the dual complex Db(∂K), see Fig. 4(c)–(d). The dual of these dual cycles, obtained
by Algorithm 6 (see Appendix A), are the desired cohomology generators. In particular, to retrieve this cocycle, the two
faces F1, F2 on ∂K that have E in their boundaries are found. F1 and F2 may be interpreted as dual nodes on the complex
Db(∂K). Then, a discrete distance field on the dual tree from dual node Db(F1) is found by a BFS strategy [26]. The distance
field propagation stops when the Db(F2) dual node is reached. Finally, the dual cycle is retrieved starting from Db(F2) and
following back the predecessors until Db(F1) is reached.

The algorithm can be heavily parallelized, since all connected components of ∂K and generators can be processed simul-
taneously. Secondly, concerning the complexity analysis, the algorithm exhibits an optimal linear worst-case complexity of
O (card(∂K)g). Since in practical problems the genus g is bounded by a constant (i.e. O (1)), the worst-case complexity is
linear O (card(∂K)) w.r.t. the elements in the boundary of the domain of study.

One may realize that this algorithm does not solve the problem of determining a basis that can be used in the formu-
lation described in the previous section, since the number of obtained generator is twice the number of required ones. For
example, for a solid two-dimensional torus (i.e. the genus g of ∂K is one) we get two generators �1 and �2 in place of
one, see Fig. 5(a). �1 is a useful generator since its dual on the boundary Db(�

1) is nontrivial in H1(K̃), whereas Db(�
2) is

trivial in H1(K̃). In literature, eliminating generators as �2 has always been deemed as necessary [3,27,28,2]. This is not as
trivial as it may appear at the first glance because the required and redundant generators may be “mixed”, see for example
Fig. 5(b), requiring a considerable effort to untie them. This problem has been elegantly solved and there exist complicated
and time consuming techniques based on computing some linking numbers and a Smith Normal Form [13] of an integer
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Fig. 5. (a) The two representatives of generators �1 and �2 are a basis of the first cohomology group H1(∂K) of the boundary of a solid two-dimensional
torus. �1 represents a useful generator whereas eliminating �2 has been always deemed as necessary in literature [3,27,28,2]. (b) The representative of a

mixed generator �̂
1

cohomologous to �1 + �2 in H1(∂K).

matrix that are able to change the cohomology basis to extract the required generators [27,17,28]. This paper presents an
alternative solution to this issue that is described in what follows.

4.1. Lazy cohomology generators

Discriminating the redundant generators is computationally costly and complicated, drastically reducing the efficiency of
the whole algorithm and greatly complicating its implementation.

Here, the very idea is to refuse to do it and use all H1(∂K) � H1(Db(∂K)) generators (for example, the ones produced
with Algorithm 1) in the formulation. Surprisingly, this key idea has been presented in literature only recently in the differ-
ent context of eddy current problems, see [17,18]. In this paper we extend this idea to elliptic boundary value problems.

From Mayer–Vietoris exact sequence for homology [13,27], one has that H1(Db(∂K)) = H1(K̃) ⊕ H1(K̃c), where K̃c is
the dual complex of a triangulation of the exterior of K. Since β1(K̃) = β1(K̃c) = g [13], g being the genus of ∂K, the rep-
resentative �i of the ith H1(∂K) generator can be expressed as a linear combination �i = ∑g

h=1 αhah + ∑g
k=1 βkbk , where

{Db(bk)}g
k=1 is a basis of H1(K̃) whereas {Db(ak)}g

k=1 is a basis of H1(K̃c). We note that the dual 1-cycles {Db(ak)}g
k=1 are

homologically trivial in H1(K̃). This shows that the dual of the 2g representatives {�i}2g
i=1 of H1(∂K) generators span H1(K̃)

but they are not a basis, some of them being linearly dependent. Such 1-cocycles {�i}2g
i=1 are defined as lazy cohomology

generators [17].
In has been already shown in [17] that lazy generators may be safely used as if they were a standard basis. In fact, if

the dual of a lazy generator is trivial in H1(K̃), the corresponding nonlocal Faraday’s law (6) does not add any information,
since it can be obtained as a linear combination of local Faraday’s laws (4). The other possible case is when lazy generators
are dependent but their dual are nontrivial in H1(K̃). To consider this case, we first note that one may pick a subset of
lazy generators in such a way their dual are an H1(K̃) basis [17]. Then, the voltage on the H1(K̃) basis is set to zero by
the nonlocal Faraday’s law (6). Now, the voltage on every dual 1-cycle vanishes since any dual 1-cycle may be obtained as
a linear combination of the homology H1(K̃) basis plus a boundary. So no inconsistent constraint can arise if we impose
to zero explicitly the voltage on remaining lazy generators. To conclude, the resulting linear system is rank deficient (i.e.
some rows of the system are not linearly independent) but consistent. It is easy to catch the analogy of what happens with
ungauged formulations [29].

The generation of thick links exploiting the idea of lazy generators can be performed with five orders of reduction of
computational time, whereas the penalty of using lazy generators in place of standard ones is negligible, since the systems
solved with direct solvers or even with iterative solvers converge almost as fast as in the standard case.

In this paper we introduce a further optimization in the algorithm especially suitable when Algorithm 1 is applied
to problems that require thousands generators as in fusion engineering problems. In these cases, in fact, the dual cycles
retrieval—i.e. CocycleRetrieval of Algorithm 1—becomes a bottleneck, since it is still true that g is bounded by a constant, but
the constant is relatively large.

4.2. Optimizing the cocycle retrieval

It is intuitive that independently retrieving many thousands of dual cycles at CocycleRetrieval of Algorithm 1 is inefficient.
In the following, we propose a technique to retrieve simultaneously all generators. The idea is based on the fact that in an
acyclic and connected graph (each connected component of ∂K is considered separately), for each pair of nodes Db(F1),
Db(F2) there exists only one simple path (i.e. a path that crosses any edge at most one time) that connects them.

The whole novel algorithm is illustrated in Algorithm 2. The novel idea is to find just one distance field dist on the whole
∂K, by starting from a random face T on each connected component of ∂K.

This can be easily performed by Algorithm 7 (see Appendix A) whose output is an array dist containing, for each face
in ∂K, an integer representing the topological distance w.r.t. the seed face T of the corresponding connected component of
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Algorithm 2 Efficient generation of an H1(∂K) basis.
Input: Cb , Gb

Output: representatives �1, . . . ,�2g of an H1(∂K) basis;
primalTree ← FindPrimalTree(Gb);
dualTree ← FindDualTree(Cb,primalTree);
[dist,parent] ← FindBFSDistance(Cb,dualTree);
c ← 0;
for each edge E in ∂K do

if primalTree(E) = false and dualTree(E) = false then
c ← c + 1;
�c ← FastCocycleRetrieval(Cb,dist,parent, E);

return �1, . . . ,�2g ;

Fig. 6. (a) Distance field dist from T for the boundary of a solid two-dimensional torus. (Opposite sides are identified.) (b)–(c) The support of the two
representatives of cohomology H1(∂K) generators produced by the two free edges with the distance field dist.

∂K and the array parent containing the predecessor information. An example of such distance for the boundary of a solid
two-dimensional torus is depicted in Fig. 6(a).

Then, each dual cycle may be retrieved by the only distance field available dist by Algorithm 8 (see Appendix A). That
is, the dual path between a pair of dual nodes Db(F1), Db(F2) that are connected by the dual Db(E) of the free edge E
that defines the generic ith H1(∂K) generator �i is found by considering the predecessors of Db(F1) and Db(F2) until the
first common predecessor is found. The dual edges traversed during the predecessors visit form the dual cycle and their
coefficients of the cocycle �i are easily found, see Fig. 6(b)–(c).

Let us now analyze how the complexity is decreased from O (card(∂K)g) by using the novel algorithm. The distance
field computation on the whole ∂K takes O (card(∂K)), whereas the part illustrated in Algorithm 8 considers exactly
the edges needed to find the required paths. Therefore, the total worst-case complexity decreases from O (card(∂K)g) to
O (card(∂K) + P ), where P is the sum of the cardinality of all the dual cycles. In fusion problems, g is a few thousands and
each path contains a small subset of ∂K edges, therefore the gain of using this algorithm may be sensible. The difference in
term of computational time is investigated by numerical experiments in Section 7.

5. Efficient computation of sources

In this section we propose an easy graph-theoretic technique to enforce the inhomogeneous Neumann boundary condi-
tion on ∂K. In literature usually this is performed by computing the coefficients of the array Ts in all K by a quite costly
pseudo-inverse, as performed in CARIDDI [3,2].

To have a consistent solution, we first require that 〈Is, ∂K〉 = 0. With this assumption, it is possible to apply a Generalized
Spanning Tree Technique (GSTT) [30,2] on the dual complex K̃ to find the coefficients of Is for the faces in the interior of K.

This is performed by finding a tree with a BFS strategy on the graph obtained by considering all dual nodes in K̃ and
the dual edges dual to primal faces belonging to K − ∂K. For each connected component of ∂K, one random dual edge,
dual to a face in the considered connected component of ∂K, is added to the tree. Then, the coefficients of the faces dual to
cotree dual edges are set to zero, whereas the remaining coefficients of Is are found iteratively as follows. When all faces of
a given element v have been already set but exactly one, the coefficient of the remaining one can be found by imposing Is

to be a 2-cocycle (i.e. D(v, :)Is(:) = 0). This technique, implemented in CAFE code in [2], presents a couple of shortcomings.
On one hand, the technique is inefficient, since all elements of K have to be processed. On the other hand, we need to store
in memory one real number for each face of K.

In this paper we propose a different and efficient solution through the computation of a source electric vector po-
tential Ts with a graph-theoretic technique. The algorithm is straightforward to implement as it uses most ingredients
already computed in the previous section. First, we set Ts to zero outside ∂K, that enables a reduction of the mem-
ory to store its coefficients. Therefore, our aim is to compute the coefficients of Ts on ∂K edges. Second, we make a
further assumption on the source current Is: the evaluation of Is vanishes over each connected component of ∂K. This
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Algorithm 3 Efficient computation of the source electric vector potential Ts .
Input: primalTree, dualTree, source currents Is on faces in ∂K such that 〈Is, ∂Ki〉 = 0, for each connected components ∂Ki of ∂K;
Output: Ts such that Cb( f , :)Ts(:) = Is( f ) for all faces f ∈ ∂K;

initialize Ts to zero for all edges in K;
initialize imposed to false for all edges in ∂K;
initialize treated to false for all faces in ∂K;
for each edge E in ∂K do

if primalTree(E) = false and dualTree(E) = false then
primalTree(E) ← true;

if primalTree(E) = true then
imposed(E) ← true;

initialize queue Q ;
for each face T in ∂K do

if all edges in ∂T are imposed but one then
enqueue(Q , T );

while queue Q is not empty do
face F ← dequeue(Q );
if treated(F ) = true then

continue;
if all edges in ∂T are imposed but one then

circulation ← Cb(T , :),Ts(:);
current ← Is(T );
circulation ← current − circulation;
Ts(E) ← Cb(T , E) circulation, where E is the edge in ∂T not yet imposed;
imposed(E) ← true; trated(T ) ← true;
find the face U in ∂K that share the edge E with T ;
if all edges in ∂U are imposed but one then

enqueue(Q , U );
else if all edges in ∂T are imposed then

if Cb(T , :)Ts(:) − Is(T ) < tolerance then
treated(T ) = true;

return Ts ;

Fig. 7. (a) A belted tree on ∂K obtained by adding all free edges to the primal tree. (b)–(c) The support of the two homology H1(∂K) generators produced
by the two free edges.

informally means that we exclude cases in which an external current enters the conductor in one of its connected com-
ponents and exits through another. This is the case for most practical problems, as the current that enters the external
boundary of a conductor will exit through the external boundary (i.e. there is no net current through the cavities of the
conductor). If this is not the case, one may always resort to the spanning tree technique illustrated in the previous para-
graph.

The novel algorithm, presented in Algorithm 3, is efficient because the GSTT algorithm has to be run on the boundary
elements only.

The algorithm first adds to the primalTree all the free edges in order to obtain a boundary belted tree [24], see Fig. 7(a).
A belted tree is a connected graph in which the only cycles are a basis of the suitable homology group, in this case H1(∂K),
see Fig. 7(b)–(c). Finally, a Generalized Spanning Tree Technique (GSTT) [30] is used to iteratively producing the 1-cochain
Ts such that Cb( f , :)Ts(:) = Is( f ) for all faces f ∈ ∂K. The GSTT algorithm terminates in case of combinatorial two-manifold
without boundaries.

6. Geometric complementary-dual mixed and mixed-hybrid formulations

In complementary-dual formulations, only the association of the physical variables with geometric elements of the cell
complexes is interchanged w.r.t the V formulation, whereas the role of the two physical laws remain the same.
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That is, in order to formulate the problem by using the complementary-dual formulation, the following cochains with
real coefficients are introduced:

• Voltage Ũ ∈ C1(K̃,R);
• Electric current I ∈ C2(K,R);
• Electric scalar potential Ṽ ∈ C1(K̃,R).

The scalar potential Ṽ in the dual nodes is defined through

Ũ = −G̃Ṽ = −DT Ṽ, (8)

what renders the discrete Faraday law CT Ũ = 0 implicitly satisfied, since CT DT = (DC)T = 0 holds [21]. The resistance ma-
trix R, already described in Section 3, relates currents I to voltages Ũ

Ũ = RI. (9)

Finally, the current continuity law

DI = 0 (10)

has to be enforced by the linear system of equation. By substituting (9) and (8) in (10), an algebraic system with one
unknown per element is obtained

−DR−1DT Ṽ = 0. (11)

This approach, for general hexahedral meshes, is not viable since the R−1 matrix is full.
In an alternative way, following the idea behind Mixed Finite Elements (MFE) formulations [19,20], we introduce the

formulation M writing a system with both I and Ṽ as unknowns

RI + DT Ṽ = 0 (12)

DI = 0. (13)

This saddle point problem is solved by a penalty method [31], [19, p. 80], [32](
R + γ DT D

)
I = 0, (14)

where the real parameter γ 	 1.
The final system is obtained by enforcing the current I on faces in ∂K to Is , by standard boundary condition tech-

niques. Eq. (14) sparse, symmetric and positive definite linear system with boundary conditions, that contains as unknowns
the currents on faces in K \ ∂K, is solved by using a state-of-the-art direct solver (PARDISO, included in the Intel MKL
library).

Another solution (formulation H) inspired by Mixed-Hybrid Finite Elements (MHFE) formulations [19,33,20], involves a
domain decomposition with as many sub-domains as mesh elements (hexahedra in this paper) in such a way that the
number of faces is doubled. Lagrange multipliers λ are used to enforce the equality between each pair of currents. Let us
denote the doubled cochains as underlined bold characters, i.e. I denotes the currents over the doubled faces.

The mixed system (12) then becomes [19,33]

RI + DT Ṽ + NT λ = 0 (15)

DI = 0 (16)

NI = Is, (17)

where, as usual, Is is the source current and N collects the constraints to enforce the equality of currents on each face pair.
This matrix has a number of faces as rows and a total number of doubled faces as columns. Its entries for the row f are the
incidence numbers D(v1, f ) and D(v2, f ), where v1 and v2 are the two hexahedra that contain f . These two integers are
placed in the appropriate columns corresponding to the labels of f in the doubled list of faces. Of course, for faces f lying
in the boundary there is only one of such hexahedron, and the matrix N is in this case used to enforce the inhomogeneous
Neumann boundary condition. The matrix R is block diagonal, each block being the local resistance mass matrix of one
hexahedral element. Thus, by inverting R, it is possible to easily eliminate the currents unknowns as

DR−1DT Ṽ + DR−1NT λ = 0 (18)

NR−1DT Ṽ + NR−1NT λ = −Is. (19)
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Fig. 8. Geometrically simple but topologically non-trivial 3D benchmark configuration. (a) Current density field lines. Neumann boundary conditions (BCs)
are imposed on ∂K. (b) Module of the current density. (c) Distribution of the constitutive error (log scale): the presence of higher values in a specific
region gives an idea of the discretization error, providing a criterium to guide a possible adaptive mesh refinement.

Matrix Q = DR−1DT is diagonal, the value Q(v, v) being easily computed locally in each element v by Dv (Rv)−1DT
v , where

Rv and Dv are the local resistance mass matrix and the local volume-face incidence matrix, respectively. Since Q can be
easily inverted, we can also eliminate the potential unknowns obtaining

N
[
R−1 − R−1DT Q−1DR−1]NT λ = −Is. (20)

Finally, to obtain a symmetric and positive definite system, one Lagrange multiplier is eliminated by imposing its coefficient
to zero by usual boundary condition techniques, i.e. by not considering it in the assembling process.

The assembling for (20) can be easily performed locally for each mesh element. In fact, for the element v , one first
finds the Q(v, v) = Dv(Rv )−1DT

v value, then form the local (6 × 6 for a hexahedron) matrix J = R−1
v − R−1

v DT
v Q−1Dv R−1

v .
The elements of the J(i, j) matrix have to be assembled in the row corresponding to face i and in the column corre-
sponding to face j by multiplying them by D(v, i)D(v, j) to take into account the left and right multiplication by N and
NT , respectively. As the Reader can see, both the matrix N and the labeling for the doubled faces are not explicitly con-
structed.

7. Numerical results

As a preliminary test, the configuration sketched in Fig. 8 is considered, which is geometrically simple but topologically
non-trivial (β1(K ) = 1); uniform non-homogeneous Neumann boundary conditions (BCs) are imposed on two opposite faces
of ∂K (I = 1A), as shown in Fig. 8(a); homogeneous Neumann BCs are imposed on the other faces of ∂K.

In Fig. 9 a study of convergence is presented, in terms of overall power loss in K: it is clear that the mean of the two
solutions (the one provided by formulation V, the other by formulation T or, equivalently, by M or H) is much more accurate
than the solutions provided by each formulation alone, and is relatively close to the reference value even for the coarsest
mesh.5

Then, a model of a representative fusion device is considered: the discretization of half of the machine is shown in
Fig. 10. Note that for this particular geometry (ITER-like) it would be possible to take into account just 1/9 of the numerical
domain, despite the non-symmetric source term. Nonetheless, since most fusion reactors present no symmetries at all, we
consider here a complete model of the machine as a challenging test of the proposed procedure. So far, the entire compu-
tational domain has been discretized into a full hexahedral mesh composed by more than 1 million elements, including the
main conductive structures surrounding the plasma (vessel, port extensions, blanket modules and divertor). Then, from a
uniform refinement of the initial mesh (each element is split into 8 hexahedra, by introducing new nodes corresponding to
the barycentres of volumes, faces and edges), the second full hexahedral mesh composed by more than 8 million elements
has been produced.6 The geometric elements of both initial and refined meshes are summarized in Table 1, together with
the corresponding degrees of freedom (DOFs) and non-zero entries of the system matrix for formulation V, T (with and w/o
gauge), M and H.

The boundary conditions (BCs) of the stationary current conduction problem (the normal component of the plasma
current to the wall) are provided as a result of a three-dimensional resistive MHD code M3D used to run Tokamak
VDE and disruption simulations [34]. M3D code represents the magnetic field in potential form to ensure that the
magnetic field is div-free. The simulations rely on three features of the code: a time dependent resistivity (nearly con-
stant along magnetic field lines; outside the last closed flux surface, resistivity is set 10–100 times bigger than in the

5 The reference value P = 2.075 W is calculated from post-processing of an accurate 2D solution (the numerical domain is discretized in more than 100k
second order elements) by means of Comsol©.

6 Adaptivity on multiblock structured meshes is not straightforward and usually produces mesh elements of poor quality. Developing a tool for automatic
adaptive refinement on multiblock hexahedral meshes is an ongoing work.
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Fig. 9. Study of convergence, in terms of overall power loss in K as a function of the number of mesh elements (log-scale). The mean of the two solutions
(the one provided by formulation V, the other by formulation T or, equivalently, by M or H) is much more accurate than the solutions provided by each
formulation alone, and is relatively close to the right value even for the coarsest mesh.

Fig. 10. A relatively complex fusion device: the geometry of half of the machine (an ITER-like model including vessel, port extensions, blanket modules and
divertor) is discretized in a full hexahedral mesh.

Table 1
Geometric elements (nodes, hexahedra, edges, faces) of initial and refined meshes. Corresponding degrees of
freedom (DOFs) and non-zero entries of the system matrix for formulation V, T (with and w/o gauge), M and H.

Initial mesh Refined mesh

Nodes 1,879,240 11,803,088
Hexahedra 1,088,055 8,704,440
Edges 4,814,281 32,242,940
Faces 4,021,512 29,142,708

DOFs (V) 1,879,239 11,803,087
DOFs (T with gauge) 1,421,947 14,381,081
DOFs (T ungauged) 1,788,065 20,128,560
DOFs (M) 2,506,818 23,083,932
DOFs (H) 4,021,511 29,142,707

Non-zeros (V) 19,088,749 137,149,188
Non-zeros (T with gauge) 12,050,568 139,213,216
Non-zeros (T ungauged) 20,035,111 273,186,474
Non-zeros (M) 11,918,736 123,893,364
Non-zeros (H) 20,342,331 159,709,302
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Fig. 11. Typical pattern of the normal component of the current density flowing from plasma to wall and viceversa (post-processing of M3D output).

Table 2
Resume of computational time for different formulations (V, T (with and w/o gauge), M (penalty γ = 1010), H) on initial mesh. The computational cost of
thick link generation is presented both for Algorithm 1 (adaptation of the Dłotko–Specogna (DS) algorithm) and Algorithm 5 (optimization of the cocycle
retrieval).

V Tgauge T M H

Thick link generation with Algorithm 5 [s] – 6.00 6.00 – –
Thick link generation with Algorithm 1 [s] – 52.85 52.85 – –
Source fields Ts [s] – 5.95 5.95 – –
Solution [s] 25.55 16.60 26.00 19.95 32.10

plasma core), an unstructured mesh of the plasma region and resistive wall boundary conditions. The solution inside
the resistive wall is matched to the exterior vacuum solution; the exterior problem is solved with Green’s function
method.

In Fig. 11 a typical pattern of the normal component of the plasma current to the wall is shown. It is calculated by
means of M3D at a given time instant during an asymmetric upward VDE, and accounts for two terms, the toroidal
derivative of the toroidal plasma current (by definition asymmetric and therefore present only in a 3D plasma model)
and the poloidal contribution (related to both symmetric and non-axi-symmetric components of the toroidal magnetic
field).

The surface ∂K is quite complicated, both geometrically and topologically (genus g is 1586). A resume of the compu-
tational time spent to generate thick links and to compute source fields Ts is presented in Tables 2 (initial mesh) and 3
(refined mesh), together with the time spent to solve the linear system for all the formulations with a state-of-the-art di-
rect solver (Intel MKL Pardiso©). Also advanced iterative methods are suitable for the solution of some of the linear systems
described in Sections 4 and 6 (e.g. aggregation-based algebraic multigrid solver (AGMG) [35,36] for V, H and, surprisingly,
also M,7 or Conjugate Gradient (CG) methods with ad hoc preconditioners for V and ungauged T) but none of them can
overcame the performance of the direct solver.

It must be pointed out that 3172 lazy cohomology generators are computed by Algorithm 5 in 6 s for the initial mesh;
a similar amount of time is spent to calculate Ts , while the solution of the linear system with the formulation T (with
gauge, 1,421,947 DoFs) takes 16.6 s. As far as refined mesh is concerned, lazy cohomology generators and Ts are calculated
in 78.45 s and 28.15 s, respectively. Here, the solution of the linear system takes 276 s. As one can see, thanks to the
efficiency of their implementation, the percentage of time spent for computation of cohomology generators and Ts is of the
order of 40% for initial mesh and 30% for refined mesh with respect to the overall time, not including pre-processing and
assembling (mesh loading and refinement, cell complex incidence calculation, stiffness matrix assembling); if pre-processing
and assembling is taken into account, these percentages become even smaller. Moreover, for a given mesh lazy cohomology
generators are computed only once (in the pre-processing phase) and used for any simulation with different BCs. Further-

7 It is well known that it is almost impossible for an iterative method to solve the linear system obtained by a penalty method [19, p. 81].
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Table 3
Resume of computational time for different formulations (V, T (with and w/o gauge), M (penalty γ = 1010), H) on refined mesh. The computational cost
of thick link generation is presented both for Algorithm 1 (adaptation of the Dłotko–Specogna (DS) algorithm) and Algorithm 5 (optimization of the cocycle
retrieval).

V Tgauge T M H

Thick link generation with Algorithm 5 [s] – 78.45 78.45 – –
Thick link generation with Algorithm 1 [s] – 280.40 280.40 – –
Source fields Ts [s] – 28.15 28.15 – –
Solution [s] 293.50 276.00 510.00 280.50 332.00

Fig. 12. Module of the current density for a representative case of upward asymmetric VDE. A saturated color map is adopted to highlight the region of
stronger plasma-wall interaction.

Fig. 13. Distribution of the constitutive error. The presence of higher values in a specific region gives an idea of the discretization error, providing a criterium
to guide a possible adaptive mesh refinement.

more, since the solution of the linear system is relatively faster for formulation T, with respect to V (and also w.r.t. M and
H), the overall time for T exceeds the one for V of no more than 30% for both meshes, providing the conditions for practical
use of complementarity on very large scale problems.

In Fig. 12, a typical interaction between plasma and FW is shown for an asymmetric upward VDE. The known terms of
the problem (currents exchanged between plasma and FW Neumann BCs) are calculated from interpolation of the normal
component of the plasma current density at the wall, provided by M3D code (see Fig. 11). Fig. 13 shows the entity of the
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Fig. 14. Detail of force distribution (f = J × B, arbitrary units) calculated for each element of the mesh. A known distribution of magnetic flux density is
assumed, which consist only on its toroidal component produced by the so called toroidal field (TF) coils.

Table 4
Cartesian components of the overall electromagnetic force acting on the machine, calculated by complementary formulations (V, TMH) on both initial and

refined meshes. For each component a relative discrepancy is introduced: e.g. for x component, we get: �% = | F V
x −F T

x

F T
x

| · 100.

Initial mesh Refined mesh

V TMH �% V TMH �%

Fx [arb.unit] 132,773 131,306 1.1172 132,466 131,978 0.3698
F y [arb.unit] −430,813 −425,164 1.3287 −429,533 −427,627 0.4457
F z [arb.unit] 2,442,859 2,442,910 0.0021 2,442,897 2,442,910 0.0005

constitutive error ε8 [7]. The detection of high values in a specific region could be profitably used to guide an automatic or
manual local refinement of the mesh.

Then, complementarity is used to provide some estimate of electromagnetic force produced by the interaction of cur-
rents injected in the conductive structures of the machine with the magnetic field needed for plasma confinement. A known
distribution of magnetic flux density is assumed, which consist only on its toroidal component produced by the so called
toroidal field (TF) coils. Fig. 14 illustrates the distribution of forces (f = J × B), in arbitrary units, calculated for each element
of the mesh. Table 4 summarizes the results for overall electromagnetic force acting on the machine, calculated with com-
plementary formulations (V, TMH) on both meshes. For each component a relative discrepancy is also introduced: e.g. for

x component, we get: �% = | F V
x −F T

x

F T
x

| · 100. An excellent agreement is achieved, with a maximum relative error of the order

of 1%, even for the initial (relatively coarse) mesh.

8. Conclusions

While the electric scalar potential formulation V is widely used to produce an irrotational electric field for a Poisson-
like Neumann boundary value problems, we compared three different formulations to obtain a solenoidal current density.
Lazy cohomology generators and fast algorithms to compute them automatically render the simulation time of the vec-
tor potential formulation T comparable with the other two formulations inspired from mixed FE (M) and mixed-hybrid
FE (H). The formulation M seems to be the least attractive since it requires a suitable and problem dependent choice
of the penalty factor: Too small values produce a current that is not solenoidal, whereas too big values render the sys-
tem undefinite providing wrong results. As far as T and H is concerned, they are almost equivalent (also in terms of
computational costs) and the best solution is probably to use both of them to provide a robust cross-check of the re-
sults.

Complementarity is used to provide some estimate of electromagnetic force produced by the interaction of halo currents
injected in the conductive structures of a representative fusion device. An excellent agreement is achieved, with a maximum
relative error of the order of 1%, even for the coarsest mesh.

8 ε = ∫
v

1
ρ |E − ρJ|2dv where the electric field E is interpolated inside each hexahedron v of K with the V formulation, whereas the ρJ is obtained from

TMH.
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Appendix A

Algorithm 4 FindPrimalTree.
Input: Gb
Output: primalTree;

initialize vector primalTree to false for each edge of ∂K;
initialize vector cc to false for each node of ∂K;
while true do

node R ← 0;
for each node R in ∂K do

if cc(R) = false then
break;

if R = 0 then
break;

cc(R) ← true; initialize queue Q ;
for each edge E in ∂K incidental to R found with Gb(:, R) do

enqueue(Q , E);
while queue Q is not empty do

edge E ← dequeue(Q );
find the nodes N1 and N2 boundary of E;
if cc(N1) = false or cc(N2) = false then

if cc(N1) = false then
N ← N1;

else
N ← N2;

primalTree(E) ← true;
cc(N) ← true;
for each edge E in ∂K incidental to N found with Gb(:, N) do

enqueue(Q , E);
return primalTree;

Algorithm 5 FindDualTree.
Input: Cb , primalTree
Output: dualTree;

initialize vector dualTree to false for each edge of ∂K;
initialize vector cc to false for each face of ∂K;
while true do

face F ← 0;
for each face F in ∂K do

if cc(F ) = false then
break;

if F = 0 then
break;

cc(F ) ← true; initialize queue Q ;
for each dual edge Db(E) in ∂K incidental to dual node Db(F ) found with Cb and such that primalTree(E) = false do

enqueue(Q , E);
while queue Q is not empty do

edge E ← dequeue(Q );
find faces F1 and F2 such that Db(F1) and Db(F2) are the boundary of Db(E);
if cc(F1) = false or cc(F2) = false then

if cc(F1) = false then
F ← F1;

else
F ← F2;

primalTree(E) ← true;
cc(F ) ← true;
for each dual edge Db(e) in ∂K incidental to dual node Db(F ) found with Cb and such that primalTree(e) = false do

enqueue(Q , e);
return dualTree;
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Algorithm 6 CocycleRetrieval.
Input: Cb , dualTree, E
Output: �i ;

initialize vector dist to ∞ for all faces in ∂K;
find faces F1, F2 in ∂K such that E ∈ ∂ F1 and E ∈ ∂ F2; (Since ∂K is a combinatorial 2-manifold without boundary, the number of such faces is always
exactly two.)
dist(F1) ← 0; initialize queue Q ; enqueue(Q , F1);
while queue Q is not empty do

face F ← dequeue(Q );
if F = F2 then

break;
for all faces G ∈ ∂K that share an edge e with F and dualTree(e) = true do

if dist(G) = ∞ then
dist(G) ← dist(F ) + 1;
parent(G) ← F ;
enqueue(Q , G);

�i(E) ← 1;
while true do

G ← parent(F );
e ← common edge between triangles F and G;
circulation ← Cb(F , :) · �i(:);
�i(e) ← −circulation Cb(F , e);
if dist(G) = 0 then

break;
F ← G;

return �i ;

Algorithm 7 FindBFSDistance.
Input: Cb , dualTree
Output: dist, parent

initialize vector dist to ∞ for all faces in ∂K;
while true do

T ← 0;
for each face T in ∂K do

if dist(T ) = ∞ then
break;

if T = 0 then
break;

dist(T ) ← 0; initialize queue Q ; enqueue(Q , T );
while queue Q is not empty do

face F ← dequeue(Q );
for all faces G ∈ ∂K that share an edge E with F and dualTree(E) = true do

if dist(G) = ∞ then
dist(G) ← dist(F ) + 1;
parent(G) ← F ;
enqueue(Q , G);

return dist, parent;

Algorithm 8 FastCocycleRetrieval.
Input: E , dist, parent, Cb
Output: �i

find faces F1, F2 in ∂K such that E ∈ ∂ F1 and E ∈ ∂ F2;
n1 ← F1; n2 ← F2; �i(E) ← 1;
while true do

if dist(n1) < dist(n2) then
big ← n2; small ← n1;

else
big ← n1; small ← n2;

circulation ← Cb(big, :)�i(:);
find edge e shared by faces big and parent(big);
�i(e) ← −circulation Cb(big, e);
if parent(big) = small then

break;
n1 ← small; n2 ← parent(big);

return �i ;
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