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In this work we propose an adaptive version of the recently introduced Mixed High-
Order method and showcase its performance on a comprehensive set of academic and 
industrial problems in computational electromagnetism. The latter include, in particular, 
the numerical modeling of comb-drive and MEMS devices. Mesh adaptation is driven 
by newly derived, residual-based error estimators. The resulting method has several 
advantageous features: It supports fairly general meshes, it enables arbitrary approximation 
orders, and has a moderate computational cost thanks to hybridization and static 
condensation. The a posteriori-driven mesh refinement is shown to significantly enhance 
the performance on problems featuring singular solutions, allowing to fully exploit the 
high-order of approximation.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let � ⊂ R
d , d ≥ 1, denote a bounded connected polyhedral domain of boundary ∂�, f a square-integrable volumetric 

source term, and K a bounded tensor-valued diffusion coefficient piecewise constant on a polyhedral partition P� of �, and 
with eigenvalues in the interval [K , K ], 0 < K ≤ K < +∞. We consider the problem that consists in seeking a vector-valued 
field σ : � →R

d and a scalar-valued field u : � →R such that

K −1σ − ∇u = 0 in �, (1a)

−∇·σ = f in �, (1b)

u = 0 on ∂�. (1c)

Our goal is to develop an a posteriori-driven, adaptive version of the Mixed High-Order method of [1] for the numerical 
approximation of problem (1); cf. also [2] for more general diffusion coefficients and boundary conditions. The performance 
of the proposed method is thoroughly demonstrated on a comprehensive set of academic and industrial test cases.

Problems of the form (1) arise in a variety of fields, ranging from porous media flows to heat transfer and electrostatics. 
The latter application provides the original motivation for this work. In this context, the variable u represents the electric 
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scalar potential, whereas e = −∇u is the electric field. Since e is conservative by assumption, the harmonic field component 
is assumed to be zero. The inverse of the diffusion coefficient, K −1, represents the electrical permittivity, usually denoted 
by ε. The vector variable σ represents the electric displacement vector field, often denoted by d, whereas f is a known 
volumetric source charge density. Thus, (1b) represents Gauss’s law, whereas (1a) results from the composition of the 
constitutive law d = εe and the definition of the scalar potential u.

In electrostatics, the solution of the scalar pure diffusion problem (1) plays a fundamental role, e.g., in the extraction 
of parasitic circuit parameters in integrated circuits [3,4], in the solution of forward problems in Electrical Capacitance To-
mography [5], and in the optimization of epoxy spacers in high-voltage direct current transmission lines [6]. Moreover, 
multi-physics problems involving electrostatics coupled with elastostatics or with the Schrödinger problem are fundamental 
to simulate the behaviour of micro electro mechanical systems (MEMS) [7] and nano-electronic devices [8]. Solving the 
Poisson–Boltzmann electrostatic problem is used to produce an implicit solvation to speed up molecular dynamics simu-
lations, see [9,10]. Finally, the electrostatic problem is similar to the steady-state current conduction problem which has 
applications, e.g., to the solution of forward problems in Electrical Impedance Tomography [11] and to the computation of 
stationary 3D halo currents in fusion devices [12]. In all of the above examples, the exact solution typically contains singu-
larities due to both the geometry and the problem data. Disposing of efficient mesh adaptation strategies is thus paramount 
to benefit from the use of high-order methods.

Several classical methods have been used to numerically solve problem (1) or variations thereof in the context of compu-
tational electromagnetism. A (by far) non-exhaustive list includes, in particular, [13–16,4,17,18] and the high-order method 
of [19]. Such methods are limited to standard element shapes and, in most cases, do not support nonconforming mesh 
refinement. Other methods exist, on the other hand, that support more general meshes, among which we cite, in particular, 
the Discrete Geometric Approach (DGA) of [20] (which, however, is restricted to the lowest-order). Recently, novel paradigms 
have appeared that enable arbitrary approximation orders on general polyhedral meshes. Our focus here is on the Mixed 
High-Order (MHO) method of [1] which, in its lowest-order version, can be linked to the DGA method (cf. Remark 5). 
The MHO scheme considered here has several advantageous features which set it apart from the aforementioned methods: 
(i) Unlike standard finite element methods, it supports fairly general meshes possibly containing polyhedral elements and 
nonmatching interfaces; (ii) unlike the DGA method, it allows arbitrary approximation orders; (iii) these features come at 
only a moderate computational cost thanks to the existence of an equivalent primal formulation (cf. [21]) together with the 
possibility to reduce the global number of degrees of freedom by static condensation.

The main results of this work are new a posteriori error estimate for the MHO method and the use of the corresponding 
estimators in the context of an adaptive resolution algorithm for problems in electrostatics. For the derivation of our error 
estimators, we use a residual-based approach that relies on an abstract estimate inspired by [22]; cf. also [23]. We also 
cite [24] for the idea of relying on the equivalent primal formulation to derive a posteriori bounds for mixed methods. A 
key point to use the abstract error estimate in our context is a new reformulation of the stabilization term in the MHO 
method, which establishes a new connection with the hybridized version studied in [21]. The upper bound thus derived 
has no undetermined constants and, possibly up to minor modifications, also extends to sibling schemes such as the Hybrid 
High-Order method of [25] (cf. also [26]) and the DGA method of [20]. Adaptive resolution methods for related high-order 
polyhedral discretization methods, each with its own distinguishing features, are developed in [27–29].

The performance of the proposed error estimators to drive mesh adaptivity is thoroughly demonstrated on several three-
dimensional academic and industrial test cases. Two strategies are explored for the mesh adaptation: a standard refinement 
procedure based on matching simplicial meshes, and an adaptive coarsening procedure inspired by [30]. The former strat-
egy has a clear interest in engineering applications due to the fact that many efficient, automatic mesh generators exist 
for meshes composed of standard elements. Such mesh generators are also well-integrated in computer-assisted modeling 
chains. The adaptive coarsening strategy, on the other hand, is a new procedure enabled by the availability of polyhedral 
methods which shows promise as a simple means to reduce the number of degrees of freedom without the need to regen-
erate a new mesh. The idea consists in starting from an initial mesh composed of standard elements fine enough to capture 
the geometric features of the domain and the scales of the exact solution, and performing the actual computations on a 
sequence of polyhedral meshes obtained by adaptive coarsening of the former.

Our numerical tests show that the adaptive algorithm delivers a significant advantage with respect to computations 
on uniformly refined mesh sequences, both in terms of error vs. number of degrees of freedom and in terms of error vs. 
computational wall time. In academic test cases with analytical singular solutions, we show in particular that the optimal 
orders of convergence are recovered on sequences of adaptively refined meshes. In the industrial test cases, for which an 
exact solution is not available, we show, on the other hand, that the adaptive algorithm yields a much better approximation 
of the capacitance with respect to computations on uniformly refined meshes.

The paper is organized as follows. In Section 2 we introduce the notion of general mesh along with the principal nota-
tions. In Section 3 we recall the Mixed High-Order method, its equivalent primal reformulation, and we state our a posteriori 
bound in Theorem 2. An extensive numerical validation of an adaptive resolution algorithm based on the estimators of Sec-
tion 3 is presented in Section 4. Section 5 contains the proof of Theorem 2 preceded by the required preparatory material. 
Readers mainly interested in the numerical recipe and results can skip this section at first reading.
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2. Mesh and notations

The domain � is discretized by means of a mesh Th defined as a finite collection of nonempty disjoint open polyhedral 
elements T of boundary ∂T and diameter hT such that � = ⋃

T ∈Th
T and h = maxT ∈Th hT . A mesh face F is defined as 

a hyperplanar closed connected subset of � with positive (d − 1)-dimensional Hausdorff measure and such that (i) either 
there exist distinct T1, T2 ∈ Th such that F ⊂ ∂T1 ∩ ∂T2 and F is called an interface or (ii) there exists T ∈ Th such that 
F ⊂ ∂T ∩ ∂� and F is called a boundary face. Interfaces are collected in the set F i

h , boundary faces in the set Fb
h , and we 

let Fh := F i
h ∪Fb

h . For all T ∈ Th , FT := {F ∈ Fh | F ⊂ ∂T } denotes the set of faces contained in ∂T , and we denote by n∂T

the piecewise constant field on ∂T such that, for all F ∈ FT , n∂T |F = nT F with nT F unit normal vector to F pointing out of 
T . When working with refined mesh sequences (Th)h∈H (where H = {h} denotes a set of positive meshsizes), we assume 
that the regularity assumptions of [31, Definition 1.38] hold.

We additionally assume that the mesh is compatible with the partition P� , meaning that any element T ∈ Th belongs 
to one and only one subdomain �i ∈ P� . As a consequence, the jumps of K can only occur at interfaces. For all T ∈ Th , K T
and K T denote, respectively, the smallest and largest eigenvalues of K T := K |T .

For any subset X ⊂ �, we respectively denote by (·, ·)X and ‖·‖X the standard inner product and norm of L2(X), the 
space of square-integrable functions on X :

(v, w)X :=
∫
X

v w, ‖v‖X := (v, v)
1/2

X .

When X = �, the subscript is omitted. The same notation is used in the vector-valued case L2(X)d . Additionally, when 
X ∈ Th or X ∈ Fh , for any l ∈ N we denote by Pl(X) the space spanned by the restrictions to X of polynomials of total 
degree l, and we introduce the L2-orthogonal projector π l

X : L2(X) → P
l(X) such that, for all w ∈ L2(X),

(π l
X w − w, v)X = 0 ∀v ∈ P

l(X). (2)

For every mesh element T ∈ Th , we also define the space of broken polynomial functions on ∂T :

P
l(FT ) :=

{
v ∈ L2(∂T ) | v |F ∈ P

l(F ) ∀F ∈ FT

}
, (3)

and we denote by π l
∂T the corresponding L2-orthogonal projector such that, for all w ∈ L2(∂T ), (π l

∂T w)|F = π l
F w for all 

F ∈ FT . Finally, we introduce the global spaces of discontinuous polynomial functions of degree l on the mesh Th and on 
its skeleton ∂Th = ⋃

F∈Fh
F :

P
l(Th) :=

{
v ∈ L2(�) | v |T ∈ P

l(T ) ∀T ∈ Th

}
, P

l(Fh) :=
{

v ∈ L2(∂Th) | v |F ∈ P
l(F ) ∀F ∈ Fh

}
. (4)

3. A posteriori error estimate for the Mixed High-Order method

We recall in this section the MHO method, its reformulation as a primal coercive problem, and state our a posteriori 
error estimate.

3.1. The Mixed High-Order method

The MHO method is inspired by the following classical weak formulation of problem (1): Find (σ , u) ∈ � × U such that, 
for all (τ , v) ∈ � × U ,

(K −1σ ,τ ) + (u,∇·τ ) = 0, (5a)

−(∇·σ , v) = ( f , v), (5b)

where � := H(div; �) denotes the space of square-integrable vector-valued functions whose divergence is also square in-
tegrable, while U := L2(�). The idea consists in selecting suitable degrees of freedom (DOFs) inside each element, and in 
using them to locally reconstruct the divergence operator and the vector variable σ . These reconstructions are then used to 
write discrete counterparts of the terms in (5).

Let a polynomial degree k ∈ N be fixed, and consider a mesh element T ∈ Th . The local space of DOFs for the vector 
variable is defined as (cf. Fig. 1),

�k
T := (K T ∇P

k(T )) × P
k(FT ),

with Pk(FT ) given by (3). Notice that element-based DOFs are present only for k ≥ 1 since K T ∇P
0(T ) = {0}. For a collection 

of DOFs in �k , we use the underlined notation τ T = (τ T , τ∂T ), where τ T contains the vector-valued element-based DOFs, 
T
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Fig. 1. Local degrees of freedom in �k
T for k ∈ {0,1,2}.

while τ∂T contains the scalar-valued face-based DOFs (which can be interpreted as the polynomial moments of the outward 
normal component of the vector variable).

The divergence reconstruction operator Dk
T : �k

T → P
k(T ) is such that, for all τ T ∈ �k

T and all q ∈ P
k(T ),

(Dk
T τ T ,q)T = −(τ T ,∇q)T + (τ∂T ,q)∂T . (6)

The right-hand side of (6) is designed to resemble an integration by parts formula where the role of the vector variable 
inside T and on ∂T is played by the element-based and face-based DOFs, respectively. By similar principles, the vector 
variable reconstruction operator Sk

T : �k
T → K T ∇P

k+1(T ) is such that, for all τ T ∈ �k
T and all w ∈ P

k+1(T ),

(Sk
T τ T ,∇w)T = −(Dk

T τ T , w)T + (τ∂T , w)∂T . (7)

Notice that, for all τ T = (τ T , τ∂T ) ∈ �k
T , Sk

T τ T is a polynomial one degree higher than the element-based DOFs τ T .
For all T ∈ Th , the local contribution (K −1σ , τ )T to the first term in (5a) is approximated by the bilinear form mT on 

�k
T × �k

T such that

mT (σ T ,τ T ) := (K −1
T Sk

T σ T , Sk
T τ T )T + s�,T (σ T ,τ T ), (8)

with stabilization bilinear form given by

s�,T (σ T ,τ T ) := (γ∂T (Sk
T σ T ·n∂T − σ∂T ), Sk

T τ T ·n∂T − τ∂T )∂T , γ∂T := hT

K T n∂T ·n∂T
. (9)

In (9), we penalize in a least-square sense the difference between two quantities both of which represent the normal 
component of the vector variable on the boundary of T . This stabilization is required for the bilinear form mT to be 
coercive on �k

T ; cf. [1, Lemma 4].

We next introduce the global space �̂k
h of fully discontinuous DOFs for the vector variable as well as its subspace �k

h
with continuous interface DOFs:

�̂
k
h := ×

T ∈Th

�k
T , �k

h :=
{
τ h ∈ �̂

k
h | ∀F ∈ FT1 ∩FT2 , τ∂T1 |F + τ∂T2 |F = 0

}
.

The approximation of the scalar variable is sought in

Uk
h := P

k(Th). (10)

The MHO method reads: Find (σ h, uh) ∈ �k
h × U k

h such that for all (τ h, vh) ∈ �k
h × U k

h it holds

mh(σ h,τ h) + bh(τ h, uh) = 0, (11a)

−bh(σ h, vh) = ( f , vh), (11b)

with global bilinear forms mh on �̂k
h × �̂

k
h and bh on �̂k

h × U k
h obtained by element-by-element assembly setting

mh(σ h,τ h) :=
∑

T ∈Th

mT (σ T ,τ T ), bh(τ h, vh) :=
∑

T ∈Th

(Dk
T τ T , v T )T ,

where the restrictions to T of the global quantities τ h ∈ �̂
k
h and vh ∈ U k

h have been denoted by τ T and v T , respectively. The 
link with the Discrete Geometric Approach of [20] is detailed in Remark 5 below. Convergence as hk+1 for the vector-variable 
and as hk+2 for the scalar-variable is proved in [1].



D.A. Di Pietro, R. Specogna / Journal of Computational Physics 326 (2016) 35–55 39
Fig. 2. Local degrees of freedom in V k
T for k ∈ {0, 1, 2}. Degrees of freedom represented by gray dots can be eliminated locally by the static condensation 

procedure described in [32, Section 2.4].

3.2. Reformulation as a coercive problem

We next discuss a reformulation of (11) as a coercive problem which is required to derive our a posteriori error estimate. 
At the continuous level, this corresponds to eliminating the vector variable σ in (1) and considering the following classical 
primal formulation where the scalar variable u is the sole unknown: Find u ∈ V := H1

0(�) such that, for all v ∈ V ,

a(u, v) := (K ∇u,∇v) = ( f , v), (12)

where H1
0(�) contains square-integrable, finite energy functions which comply with the boundary condition (1c). Classically, 

σ = K ∇u. At the discrete level, the local elimination of the vector variable is performed enforcing the continuity of interface 
DOFs in �k

h by Lagrange multipliers (which can be interpreted as traces of the scalar variable) and inverting inside each 
element T ∈ Th the local constitutive laws expressed by (11a). Here, we only recall the main points and refer the reader 
to [21] for the details.

Define the following space of hybrid DOFs (cf. (10) and (4) for the definitions of the Cartesian factors):

V k
h := Uk

h × P
k(Fh).

For a generic element of V k
h we use the underlined notation vh = ((v T )T ∈Th , (v F )F∈Fh ), and we denote by vh (no underline) 

the broken polynomial function in U k
h obtained from element-based DOFs and such that vh |T = v T for all T ∈ Th . The 

discrete counterpart of u regarded as an element of V is sought in the following subspace V k
h,0 of V k

h incorporating the 
homogeneous Dirichlet condition on ∂�:

V k
h,0 :=

{
vh ∈ V k

h | v F = 0 ∀F ∈ Fb
h

}
.

Let now a mesh element T ∈ Th be fixed. We denote by V k
T the restriction of V k

h to T (cf. Fig. 2) and, for all v T ∈ V k
T , 

we let v∂T be the broken polynomial function on ∂T such that v∂T |F = v F for all F ∈ FT , so that v T = (v T , v∂T ). From 
the scalar variable DOFs in V k

T , we can define a reconstruction of vector variable DOFs in �k
T through the scalar-to-vector 

variable mapping operator ςk
T

: V k
T → �k

T such that, for all v T ∈ V k
T and all τ T ∈ �k

T ,

mT (ςk
T

v T ,τ T ) = −(v T , Dk
T τ T )T + (v∂T , τ∂T )∂T (13a)

= (∇v T ,τ T )T + (v∂T − v T , τ∂T )∂T , (13b)

where we have used the definition (6) of Dk
T τ T with q = v T to pass to the second line. Recalling that the stabilization term 

(9) is designed so that mT is coercive on �k
T , (13) defines a well-posed problem in ςk

T
v T . A high-order reconstruction of 

the scalar variable can then be defined through the operator pk+1
T : V k

T → P
k+1(T ) such that, for all v T ∈ V k

T ,

K T ∇pk+1
T vT = Sk

T (ςk
T

vT ), (pk+1
T vT − v T ,1)T = 0. (14)

Notice that, for a given v T ∈ V k
T , pk+1

T v T is a polynomial one degree higher than the element based DOFs v T . The scalar 
value reconstruction pk+1

T v T can be computed directly from the hybrid DOFs in v T by means of formula (31) below.

Consider the following approximation of (12): Find (σ h, uh) ∈ �̂
k
h × V k

h,0 such that, for all T ∈ Th ,

σ T = ςk
T

uT , (15a)

and, for all vh ∈ V k
h,0,

ah(uh, vh) :=
∑

T ∈Th

aT (uT , v T ) = ( f , vh), (15b)

where the local bilinear form aT on V k × V k is such that
T T
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aT (uT , v T ) := (K T ∇pk+1
T uT ,∇pk+1

T v T )T + sU ,T (uT , vT ), sU ,T (uT , vT ) := s�,T (ςk
T

uT ,ςk
T

v T ). (16)

It can be proved that σ h ∈ �k
h and, recalling that uh ∈ U k

h is the broken polynomial function obtained from element-based 
DOFs in uh , (σ h, uh) ∈ �k

h × U k
h coincides with the solution of (11).

Remark 1 (Implementation). In the practical implementation, the equivalent primal form (15) is used, as it corresponds to 
a coercive problem (as opposed to the mixed form (11), which is a saddle point problem). The size of the linear system to 
solve is further reduced by locally eliminating element-based DOFs by static condensation (represented in gray in Fig. 2). In 
the end, accounting for the strong enforcement of Dirichlet boundary conditions, a matrix of size Ndof × Ndof with

Ndof = card(F i
h) ×

(
k + d − 1

k

)
has to be inverted. The static condensation procedure is analogous to the one described in [32, Section 2.4], to which we 
refer for further details.

3.3. A posteriori error estimate

We state in this section our a posteriori error estimate, whose proof is postponed to Section 5.3. Denote by ∇h the broken 
gradient on the broken Sobolev space H1(Th) := {

v ∈ L2(�) | v |T ∈ H1(T ) ∀T ∈ Th
}

. Let (σ h, uh) ∈ �k
h × V k

h,0 solve (15). We 
introduce the broken polynomial fields σ̂ h ∈ K ∇hP

k+1(Th) and ̂uh ∈ P
k+1(Th) such that, for all T ∈ Th ,

σ̂ h |T = σ̂ T := Sk
T σ T , ûh |T = ûT := pk+1

T uT , (17)

and observe that, by (14),

σ̂ h = K ∇hûh.

To treat the stabilization term in the spirit of [32], we will also need the boundary residual operator rk
∂T : Pk(FT ) → P

k(FT )

such that, for all λ ∈ P
k(FT ),

rk
∂T λ := πk

∂T

(
λ − pk+1

T (0, λ) + πk
T pk+1

T (0, λ)
)

, (18)

and its adjoint r∗,k
∂T satisfying

∀λ ∈ P
k(FT ), (rk

∂T λ,μ)∂T = (λ, r∗,k
∂T μ)∂T ∀μ ∈ P

k(FT ). (19)

Finally, we recall the following local Poincaré and Friedrichs inequalities, valid for all T ∈ Th and all ϕ ∈ H1(T ):

‖ϕ − π0
T ϕ‖T ≤ CP,T K −1/2

T hT ‖K
1/2

T ∇ϕ‖T , (20)

‖ϕ − π0
T ϕ‖∂T ≤ C

1/2

F,T K −1/2

T h
1/2

T ‖K
1/2

T ∇ϕ‖T . (21)

In (20), CP,T = π−1 if T is convex (cf. [33,34]), while we refer to [24] for upper bounds on nonconvex elements. In (21), 
CF,T = CP,T (hT |∂T |d−1|T |−1

d )(2d−1 + CP,T ) when T is a simplex, while, for more general element shapes, it can be bounded 
in terms of CP,T , d, k and the mesh regularity parameter.

Theorem 2 (Error upper bound). Let (σ , u) ∈ � × U and (σ h, uh) ∈ �k
h × V k

h,0 solve (5) and (15), respectively (so that, in particular, 
u ∈ V solves (12) and (σ h, uh) ∈ �k

h × U k
h solves (11)). Let u∗

h be an arbitrary function in V . Then, it holds

‖K −1/2(σ − σ̂ h)‖ = ‖K 1/2∇h(u − ûh)‖ ≤ η :=
⎧⎨⎩ ∑

T ∈Th

[
η2

nc,T + (
ηres,T + ηsta,T

)2
]⎫⎬⎭

1/2

, (22)

where the local nonconformity, residual and stabilization estimators are such that, for all T ∈ Th, letting u∗
T := u∗

h |T ,

ηnc,T := ‖K
1/2

T ∇(̂uT − u∗
T )‖T , (23a)

ηres,T := CP,T K −1/2

T hT ‖( f + ∇·σ̂ T ) − π0
T ( f + ∇·σ̂ T )‖T , (23b)

ηsta,T := C
1/2

F,T K −1/2

T h
1/2

T ‖r∗,k
∂T (σ∂T − σ T ·n∂T )‖∂T . (23c)
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The efficiency of the above estimators can be proved by standard techniques based on the use of bubble functions; cf., 
e.g., [35]. Providing the details lies outside of the scope of the present, application-oriented paper. The use of the a posteriori 
error estimators of Theorem 2 in the context of adaptive mesh refinement is exemplified in Algorithm 1 below (cf. Section 4
for further details).

Several remarks are of order.

Remark 3 (V -conforming potential reconstruction u∗
h). The V -conforming potential u∗

h ∈ V used for the actual computation of 
the estimator ηnc,T in Section 4 is obtained as follows: If Th is a matching simplicial mesh, we simply set

u∗
h := Ik+1

av ûh,

where, for any polynomial degree l ≥ 1, Il
av denotes the averaging operator on the standard Lagrange finite element space 

P
l(Th) ∩ V such that, for all vh ∈ P

l(Th) and all interpolation node N inside �,

(Il
av vh)(N) := 1

card(TN)

∑
T ∈TN

vh |T (N),

where TN ⊂ Th collects the simplices to which N belongs, while (Il
av vh)(N) := 0 if N ∈ ∂�. Clearly, u∗

h ∈ V since u∗
h is con-

tinuous in � and it vanishes on ∂�. On general meshes, u∗
h can be obtained using the averaging operator on a conforming 

simplicial submesh of the computational mesh Th . When performing adaptive coarsening as in Section 4.1.3, the underlying 
matching simplicial mesh can be used for this purpose.

Remark 4 (Alternative form for ηsta,T ). By virtue of equation (33) below, ηsta,T can take the following alternative form, which 
is more convenient for the implementation since it does not require the construction of the operator r∗,k

∂T :

ηsta,T := C
1/2

F,T

(
K T

K T

)1/2

s�,T (σ T ,σ T )
1/2. (24)

When the diffusion coefficient K is strongly anisotropic, however, the form (23c) may be preferable since it yields a sharper 
estimate.

Remark 5 (A posteriori error estimate for the DGA method). Assume that, for every mesh element T ∈ Th , there exists a point 
xT with respect to which T is star-shaped. In this case, the DGA method is intimately linked to the lowest-order version 
of the MHO method (11) corresponding to k = 0. Indeed, it can be proved that the sole difference consists in replacing the 
stabilization parameter γ∂T defined in (9) by γ dga

∂T ∈ P
0(FT ) such that, for all F ∈FT ,

γ
dga
∂T |F = hT F

dKT F
,

where hT F = dist(xT , F ) and KT F := h2
T F

(
K −1

T (xF − xT )·(xF − xT )
)−1

with xF denoting the barycenter of F . For a regular 

mesh, γ dga
∂T is equivalent to γ∂T up to factors that depend on the mesh regularity parameter and on the anisotropy ratio 

of K T . Scanning the proofs of Lemma 8 and of Theorem 2 below, one can check that this change has no effect on the 
expressions (23) of the estimators (including ηsta,T ).

Remark 6 (A posteriori error estimate for the HHO method). In [25], a primal Hybrid High-Order method is proposed whose 
formulation is analogous to (15b) except that the bilinear form aT defined by (16) is replaced by

ahho
T (uT , v T ) := (K T ∇pk+1

T uT ,∇pk+1
T v T )T + shho

U ,T (uT , vT ).

A quick inspection reveals that the sole difference with respect to (16) lies in the (equivalent uniformly in h) stabilization 
bilinear form

shho
U ,T (uT , v T ) := (

γ −1
∂T πk

∂T (u∂T − p̂k+1
T uT ),πk

∂T (v∂T − p̂k+1
T v T )

)
∂T ,

with p̂k+1
T v T := v T + (pk+1

T v T − πk
T pk+1

T v T ). The a posteriori error estimate (22) holds for the HHO method provided we 
modify the stabilization estimator (23c) as follows:

ηhho
sta,T := C

1/2

F,T K −1/2

T h
1/2

T ‖r∗,k
∂T (γ −1

∂T rk
∂T (u∂T − uT ))‖∂T .

To prove this result, it suffices to replace equation (32) in the proof of Theorem 2 given in Section 5.3 below by the following 
formula proved in [32, Section 3.1]:

shho
U ,T (uT , v T ) = (

r∗,k
∂T (γ −1

∂T rk
∂T (u∂T − uT )), v∂T − v T

)
∂T .
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4. Numerical results

In this section we present an extensive panel of numerical tests for a resolution algorithm where local mesh adaptation 
is driven by the a posteriori error estimators of Theorem 2. All the test cases presented here are fully three-dimensional, 
and include both academic and industrial problems.

When working with matching simplicial meshes, mesh generation and adaptive refinement are performed using the 
open source software Netgen [36]. Each new mesh is produced by specifying the local meshsize in the barycenters of the 
elements. We have found good results by refining at each iteration the 5% of elements T where the local error measured 

by the quantity 
[
η2

nc,T + (ηres,T + ηsta,T )2
]1/2

is larger (cf. (23) for the definitions of the local estimators). The implemented 
automatic mesh adaptivity procedure is summarized in Algorithm 1.

Algorithm 1 Pseudocode of the automatic mesh adaptivity procedure.
1: Set a tolerance ε > 0 and a maximum number of iterations Nmax

2: Generate an initial coarse mesh T (0)

h , set n ← 0, and let T (n)

h ← T (0)

h
3: repeat
4: Solve the electrostatic problem formulated in primal form (15) on T (n)

h

5: for T ∈ T (n)

h do

6: Compute and store the local estimator ηT :=
[
η2

nc,T + (ηres,T + ηsta,T )2
]1/2

(cf. (23))

7: end for
8: for T ∈ T (n)

h do
9: if ηT is in the top 5% then

10: Set a target diameter of hT /2
11: else
12: Set a target diameter of hT

13: end if
14: end for
15: Set n ← n + 1 and generate a novel mesh T (n)

h by using the target element diameters
16: until η < ε (cf. (22)) or n > Nmax

All the sparse linear systems are solved with the algebraic multigrid solver AGMG [37] by stopping the iterations once 
the relative residual reaches 1 · 10−8. The computations were run on a laptop equipped with an Intel Core i7-3720QM 
processor clocked at 2.60 GHz and 16 Gb of RAM.

The implementation relies on the primal reformulation (15). We measure the error in the energy- and L2-norms defined 
as, respectively,

een := ‖K 1/2∇h(u − ûh)‖, eL2 := ‖u − ûh‖,

where u denotes the exact solution while ûh is defined by (17). We also monitor the approximation of the electrostatic 
energy E := 1

2 a(u, u) −( f , u) defined as Eh := 1
2 ah(uh, uh) −( f , uh). This error measure is very important in electromagnetic 

applications given that most global quantities of interest, such as the capacitance considered in the industrial test cases of 
Section 4.2, are related to it. The displayed results also include the computational time defined as the total wall time needed 
for the simulation, including the pre-processing (mesh generation and creation of mesh incidences), the assembly of the 
sparse matrix, the solution of the linear system, and the post-processing (computation all the local variables, electrostatic 
energy, error estimators data storage).

4.1. Test cases with analytical solution

The performance of the adaptive method is first assessed on two problems for which an analytical solution is available.

4.1.1. Cube benchmark
To demonstrate the orders of convergence of the MHO method for smooth solutions on uniformly refined meshes, we 

numerically solve problem (1) on the unit cube � = (0, 1)3 with K = I 3 and the right-hand f selected so that the exact 
solution is

u = sin(πx1) sin(πx2) sin(πx3).

We evaluate the convergence rates for polynomial degrees 0 ≤ k ≤ 4 using a sequence of four uniformly refined tetrahedral 
meshes. The convergence results displayed in Figs. 3a–b confirm the theoretical predictions of [1, Theorems 6 and 7] for the 
convergence rates both in energy- and L2-norms.

Figs. 3c–d show the convergence in energy norm with respect to Ndof and the total computational wall time, respectively. 
Notice that, for k ≥ 1, the linear system solution time has a suboptimal scaling with respect to the number of unknowns. 
This could probably be improved resorting to a discretization-tailored geometric multigrid method (an investigation on this 
subject is presently ongoing).
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Fig. 3. Results for the cube benchmark described in Section 4.1.1.

Fig. 3e shows the difference between the estimated total electrostatic energy and the true one. Finally, Fig. 3f represents 
the convergence of the computed electrostatic energy with respect to Ndof.

4.1.2. Fichera corner benchmark (adaptive mesh refinement)
To demonstrate the effectiveness of our adaptive algorithm, we next consider a problem with a known singular solution 

and show that optimal orders of convergence (in terms of error vs. Ndof) are recovered when considering adaptively refined 
mesh sequences. Our focus is on the so-called Fichera corner problem [38], which consists in solving problem (1) on the 
domain � = (−1, 1)3 \ [0, 1]3 with f = − 3

4

(
x2

1 + x2
2 + x2

3

)−3/4
, K = I 3, and inhomogeneous Dirichlet boundary conditions 

chosen to comply with the solution

u(x1, x2, x3) = 4
√

x2
1 + x2

2 + x2
3.

The convergence results displayed in Figs. 4a–b confirm that optimal convergence rates in both the energy- and L2-norms 
are recovered on adaptively refined mesh sequences. Fig. 4c shows the convergence of the electrostatic energy with respect 
to Ndof, whereas Fig. 4d displays the convergence of the energy error with respect to the total computational wall time.

The efficiency index η/‖K 1/2∇h(u − ûh)‖ is in most cases between one and three, see Fig. 4e. The fact that the efficiency 
index is not monotonically decreasing when refining is justified since each mesh is generated from scratch by using a 
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Fig. 4. Results for the Fichera corner benchmark described in Section 4.1.2.

scalar field that represents the required local meshsize. As a result, the mesh regularity parameter remains bounded but not 
constant when refining, which has an effect on the related quantities that appear in the error estimate. Nonconforming local 
mesh refinement could successfully address this problem, but this feature is not presently available in our implementation.

Fig. 5 shows the distribution of the total error (a) and of its estimate (b) after two levels of mesh refinement. It can be 
seen that the error distribution is well-captured by the estimators of Theorem 2. Finally, Fig. 6 represents a sequence of 
eight adaptively refined meshes. Notice that, as expected, refinement occurs mainly in the vicinity of the reentrant corner.

4.1.3. Fichera corner benchmark (adaptive mesh coarsening)
The possibility to handle polyhedral elements offered by the MHO method paves the way to adaptive mesh coarsening 

in the spirit of [30]; cf. also [39]. The idea consists in starting from a fine mesh (chosen, e.g., to accurately represent the 
geometric features of the domain or to capture the finest scales in the solution) and solve the problem on a polyhedral 
mesh obtained by selectively merging the fine elements into polyhedral conglomerates. If the coarsening procedure is well-
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Fig. 5. Distribution of the total error (left) and of its estimate (right) after two levels of mesh refinement for the Fichera corner benchmark described in 
Section 4.1.2.

designed, one can achieve a precision comparable to that of a computation on the fine mesh, but for a smaller number of 
DOFs.

In our case, we start from a tetrahedral mesh consisting of 51,534 nodes and 2.72 · 105 tetrahedra, and we create an 
initial agglomerated mesh with a modified version of MGridGen [40] by setting a typical agglomeration target of 1,024 
tetrahedra per coarse element. An adaptive mesh sequence is then generated by locally reducing the local meshsize by 
the same procedure as for the standard meshes considered in the previous section. Fig. 7a shows on the left the initial 
polyhedral mesh and on the right the one obtained at the final refinement step. Fig. 7b displays the fields u∗

h defined as 
in Remark 3 (i.e., by an averaging interpolation on the matching simplicial submesh) corresponding to the two meshes of 
Fig. 7a.

In order to assess the efficiency of the adaptive coarsening procedure, we compare the results with a sequence of 
meshes obtained by uniform coarsening of the same initial mesh (i.e., the size of the agglomerated elements is not adapted 
in accordance with the distribution of the error). Figs. 8a–b show the energy- and L2-errors as functions of the number of 
DOFs on both the adaptively and uniformly agglomerated mesh sequences. In Fig. 8, one can see that a similar precision in 
the energy-norm as the one achievable on the fine mesh is obtained for less than a half of the number of DOFs. The gain 
is even larger when considering the L2-norm. Similar considerations hold for the error on the electrostatic energy depicted 
in Fig. 8c. In all the cases, the error stagnates when the finest possible derefinement (corresponding to the elements of the 
initial mesh) is achieved. In order to go further with the error reduction, one would need in this case to adaptively refine 
the initial mesh. Finally, we observe that the efficiency index depicted in Fig. 8d follows a decreasing path and tends to 1 
when refining.

4.2. Modeling of industrial devices

We next assess the performance of our adaptive method on two industrial applications: the modeling of a comb drive 
and of a MEMS device. The electric permittivity is assumed to be homogeneous and isotropic, i.e., ε = ε Id , and we take for 
ε its value in the vacuum, 8.85 · 10−12 F/m.

4.2.1. Comb drive benchmark
Comb drives are capacitive actuators that exploit electrostatic forces between two electrically conductive combs. We 

solve the electrostatic problem described in [41], in which the potentials on two comb electrodes are set to 0 V and 1 V, 
respectively, see Fig. 9. The two conductors are placed in the center of a cube of 1 mm of edge. On the boundary of the 
cube a potential of 0 V is set.

We monitor the numerical approximation of capacitance, i.e., the ability of the system to store electrostatic energy in 
the form of an electrical charge. In many applications arising in physics and engineering practice this is the most important 
quantity that the simulation estimates, see for example [3].

The total capacitance C is computed as 2 Eh , given that the voltage imposed between the two comb electrodes is 1 V. 
Figs. 10a–b show the convergence of the capacitance with respect to Ndof and the total computational wall time, respec-
tively. Our results are in accordance with the ones presented in [41], and the accuracy has been largely improved thanks to 
the use of high-order approximations combined with adaptivity.

Fig. 11 shows the discrete scalar potential and the corresponding local size of the mesh on a slice of the computa-
tional domain. Notice that refinement mainly happens around the corners, where singularities of the exact solution can be 
expected.
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Fig. 6. Example of eight meshes refined adaptively for the Fichera corner benchmark described in Section 4.1.2.

Finally, Fig. 12 shows how the different components (pre-processing, assembly, solution and post-processing) contribute 
to the final computational wall time for 0 ≤ k ≤ 2. We observe that for k = 0 the pre-processing is the dominating compo-
nent, whereas for k ≥ 1 most of the time is spent solving the global linear system.

4.2.2. Electrostatic MEMS switch benchmark
The second industrial test case is the capacitive MEMS switch benchmark described in [16], see Fig. 13. The MEMS is 

composed by a perforated top plate (475 μm height, 275 μm width, thickness 4 μm) suspended by a set of beams over a 
bottom plate (485 μm height, 285 μm width, thickness 0.5 μm, gap 3 μm). The dimension of the holes in the top plate is 
25 × 25 μm2 with a pitch of 50 μm. The MEMS is placed in the center of a cube with edge length of 20 mm on which a 
potential of 0 V is set. We solve the electrostatic problem in which the potentials on the two electrodes are set to 0 V and 
1 V, respectively, see again Fig. 13.
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(a) On the left: Initial coarse mesh with agglomerated elements containing about 1,024 tetrahedral elements each. On the right: The mesh obtained after 
running the adaptivity refinement iterations.

(b) On the left: Interpolated potential u∗
h (cf. Remark 3) on the first mesh of Fig. 7a. On the right: Potential u∗

h on the second mesh of Fig. 7a.

Fig. 7. Results for the Fichera corner benchmark with adaptive mesh coarsening and k = 0, cf. Section 4.1.3.

Figs. 15a–b show the convergence of the capacitance with respect to Ndof and the total computational wall time, respec-
tively. The obtained results are in accordance with the ones presented in [16], and, for a given precision, a gain in terms of 
computational wall-time is reported increasing the approximation order.

Fig. 14 shows the discrete scalar potential and the corresponding local size of the mesh on a slice of the computational 
domain. Finally, Fig. 16 shows how the different components (pre-processing, assembly, solution and post-processing) con-
tribute to the final computational wall time for 0 ≤ k ≤ 2. In this case, the algebraic multigrid solver displays a better scaling 
with respect to Ndof.

5. A posteriori error analysis

This section contains the proof of Theorem 2 preceded by the required auxiliary results.

5.1. Abstract estimate

We extend the bilinear form a defined by (12) to H1(Th) × H1(Th) by replacing the standard gradient operator ∇
by its broken counterpart ∇h defined in Section 3.3. Denoting by u ∈ V the unique solution of the continuous primal 
problem (12), for a generic broken polynomial function vh ∈ P

l(Th), l ≥ 1, we define the residual R(vh) ∈ H−1(�) such that, 
for all ϕ ∈ H1(�),

〈R(vh),ϕ〉−1,1 := a(u − vh,ϕ) = ( f ,ϕ) − a(vh,ϕ), (25)
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Fig. 8. Results for the Fichera corner benchmark (see Section 4.1.2) with agglomerated polyhedral elements.

Fig. 9. The geometry of the comb drive benchmark described in Section 4.2.1. Additional data to reproduce this benchmark can be found in [41].

Fig. 10. Results for the comb drive benchmark described in Section 4.2.1.
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Fig. 11. Results for the comb drive benchmark described in Section 4.2.1. Top: The potential in a slice of the computational domain. Bottom: The mesh is 
automatically adapted on suitable corners. The color represents h−1

T (arbitrary units). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 12. Computing wall time vs Ndof for the comb drive benchmark described in Section 4.2.1.

where 〈·, ·〉−1,1 denotes the duality product between H−1(�) and H1(�). The following estimate is inspired by [22, 
Lemma 4.4]; cf. also [31, Lemma 5.44] and [42, Theorem 7.6].

Lemma 7 (Abstract estimate). Let u ∈ V solve the continuous primal problem (12). Then, for any vh ∈ P
l(Th), l ≥ 1, it holds

‖K 1/2∇h(u − vh)‖2 ≤ inf
ϕ∈V

‖K 1/2∇h(ϕ − vh)‖2 +
⎧⎨⎩ sup

ϕ∈V , ‖K 1/2∇ϕ‖=1

〈R(vh),ϕ〉−1,1

⎫⎬⎭
2

. (26)
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Fig. 13. The geometry of the MEMS switch benchmark described in Section 4.2.2 (all lengths are in μm). Additional data to reproduce this benchmark can 
be found in [16].

Proof. Let ψ ∈ V be such that

a(ψ, z) = a(vh, z) ∀z ∈ V .

We observe that ψ is well-defined since the bilinear form a defined by (12) is V -coercive, and we classically have

‖K 1/2∇h(vh − ψ)‖2 = inf
ϕ∈V

‖K 1/2∇h(vh − ϕ)‖2. (27)

Additionally,

‖K 1/2∇(u − ψ)‖ ≤ sup
ϕ∈V , ‖K 1/2∇ϕ‖=1

a(u − ψ,ϕ) = sup
ϕ∈V , ‖K 1/2∇ϕ‖=1

〈R(vh),ϕ〉−1,1, (28)

where the conclusion follows using the definition of ψ followed by (25). Finally, since (vh −ψ) is by definition a-orthogonal 
to functions in V , using the Pythagorean theorem, we have

‖K 1/2∇h(u − vh)‖2 = ‖K 1/2∇h(vh − ψ)‖2 + ‖K 1/2∇(u − ψ)‖2. (29)

To conclude, it suffices to use (27) and (28), respectively, to bound the terms in the right-hand side of (29). �
5.2. Reformulation of the stabilization bilinear form

To treat the stabilization term, we need a reformulation and a bound for the local stabilization bilinear form s�,T defined 
by (9). For use in the proof, we observe that, recalling the definition (2) of πk

T and plugging the definition (6) of Dk
T into 

the definition (7) of Sk
T , it holds for all τ T ∈ �k

T and all w ∈ P
k+1(T ),

(Sk τ ,∇w)T = (τ T ,∇πk w)T + (τ∂T ,πk w − πk w)∂T . (30)
T T T ∂T T
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Fig. 14. Results for the MEMS switch benchmark described in Section 4.2.2. Top: The potential in a slice of the computational domain. Bottom: The mesh is 
automatically adapted on suitable corners. The color represents h−1

T (arbitrary units). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 15. Results for the MEMS switch benchmark described in Section 4.2.2.
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Fig. 16. Computing wall time vs Ndof for the MEMS switch benchmark described in Section 4.2.2.

Additionally, we note the following characterization of pk+1
T proved as in [21, Section 3.2.2]: For all v T ∈ V k

T and all w ∈
P

k+1(T ),

(K T ∇pk+1
T vT ,∇w)T = −(v T ,∇·(K T ∇w))T + (v∂T , K T ∇w·n∂T )∂T . (31a)

= (K T ∇v T ,∇w)T + (v∂T − v T , K T ∇w·n∂T )∂T . (31b)

We are now ready to state the following lemma.

Lemma 8 (Reformulation of s�,T ). For all τ T ∈ �k
T and all v T ∈ V k

T , the bilinear form s�,T defined by (9) satisfies

s�,T (τ T ,ςk
T

v T ) = (r∗,k
∂T (τ∂T − τ T ·n∂T ), v∂T − v T )∂T , (32)

with scalar-to-vector variable operator ςk
T

defined by (13) and adjoint boundary residual operator r∗,k
∂T defined by (19). Additionally, it 

holds

‖r∗,k
∂T (τ∂T − τ T ·n∂T )‖∂T ≤ ‖τ∂T − Sk

T τ T ·n∂T ‖∂T . (33)

Proof. Let τ T ∈ �k
T and v T ∈ V k

T and set, for the sake of brevity,

v̂ T := pk+1
T v T , v̂ T := v T + (̂vT − πk

T v̂ T ). (34)

Using the definitions (8) of the symmetric bilinear form mT (with σ T = ςk
T

v T ) and (13b) of the scalar-to-vector variable 
operator ςk

T
, we get

(Sk
T τ T , K −1

T Sk
T (ςk

T
vT ))T + s�,T (τ T ,ςk

T
v T ) = (τ T ,∇v T )T + (τ∂T , v∂T − v T )∂T . (35)

Hence, rearranging the terms and recalling that, by virtue of (14) and (34),

K −1
T Sk

T (ςk
T

v T ) = ∇pk+1
T v T = ∇ v̂ T ,

it is inferred

s�,T (τ T ,ςk
T

v T ) = (τ T ,∇v T )T + (τ∂T , v∂T − v T )∂T − (Sk
T τ T ,∇ v̂ T )T

= (τ T ,∇(v T − πk
T v̂ T ))T + (τ∂T , v∂T − πk

∂T v̂ T − v T + πk
T v̂ T )∂T

= (τ T ,∇(̂v T − v̂ T ))T + (τ∂T ,πk
∂T (v∂T − v̂ T ))∂T

= (∇·τ T , v̂ T − v T )T + (τ∂T − τ T ·n∂T ,πk
∂T (v∂T − v̂ T ))∂T ,

(36)

where we have used (30) with w = v̂ T to pass to the second line, equation (34) together with the fact that τ∂T ∈ P
k(FT )

to pass to the third, and the characterization (31a) of ̂v T = pk+1
T v T with K T ∇w = τ T together with integration by parts for 

the term (̂v T , ∇·τ T )T to conclude. Recalling (34) and observing that ∇·τ T ∈ P
k−2(T ), it is readily inferred that

(∇·τ T , v̂ T − v T )T = (∇·τ T , v̂ T − πk
T v̂ T )T = 0
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by definition (2) of πk
T . Hence, (36) becomes

s�,T (τ T ,ςk
T

v T ) = (τ∂T − τ T ·n∂T ,πk
∂T (v∂T − v̂ T ))∂T . (37)

We now observe that

v∂T − v̂ T = v∂T − v T − pk+1
T (v T , v∂T ) + πk

T pk+1
T (v T , v∂T )

= v∂T − v T −�������
pk+1

T (v T , v T |∂T ) − pk+1
T (0, v∂T − v T |∂T ) +��������

πk
T pk+1

T (v T , v T |∂T )

+ πk
T pk+1

T (0, v∂T − v T |∂T )

= (v∂T − v T ) − pk+1
T (0, v∂T − v T |∂T ) + πk

T pk+1
T (0, v∂T − v T |∂T ),

(38)

where we have used the definition (34) of v̂ T in the first line and (31b) to infer that pk+1
T (v T , v T |∂T ) = v T , hence also 

pk+1
T (v T , v T |∂T ) −πk

T pk+1
T (v T , v T |∂T ) = v T − v T = 0, so that the third and fifth terms in the second line cancel. Plugging (38)

into the right-hand side of (37), and recalling the definitions (18) of the boundary residual operator rk
∂T and (19) of its 

adjoint r∗,k
∂T , we conclude that

s�,T (τ T ,ςk
T

v T ) = (τ∂T − τ T ·n∂T , rk
∂T (v∂T − v T ))∂T = (r∗,k

∂T (τ∂T − τ T ·n∂T ), v∂T − v T )∂T ,

which proves (32).
To prove (33), we combine (35) with (32) and use (31b) for v̂ T = pk+1

T v T (with K T ∇w = Sk
T τ T ) to infer

(r∗,k
∂T (τ∂T − τ T ·n∂T ), v∂T − v T )∂T = (τ T ,∇v T )T + (τ∂T , v∂T − v T )∂T − (Sk

T τ T ,∇ v̂ T )T

= (τ T − Sk
T τ T ,∇v T )T + (τ∂T − Sk

T τ T ·n∂T , v∂T − v T )∂T ,

which, letting v T be such that v T = 0 and v∂T = r∗,k
∂T (τ∂T − τ T ·n∂T ), yields

‖r∗,k
∂T (τ∂T − τ T ·n∂T )‖2

∂T = (τ∂T − Sk
T τ T ·n∂T , r∗,k

∂T (τ∂T − τ T ·n∂T ))∂T ,

and (33) follows using the Cauchy–Schwarz inequality. �
5.3. Proof of Theorem 2

We are now ready to prove our main result.

Proof of Theorem 2. We invoke the abstract estimate (26) with vh = ûh to infer

‖K −1/2(σ − σ̂ h)‖2 = ‖K 1/2∇h(u − ûh)‖2 ≤
∑

T ∈Th

η2
nc,T +

⎧⎨⎩ sup
ϕ∈V , ‖K 1/2∇ϕ‖=1

〈R(̂uh),ϕ〉−1,1

⎫⎬⎭
2

. (39)

To conclude, it suffices to estimate the last term. Let ϕ ∈ V . By definition (25) of the residual, we have,

〈R(̂uh),ϕ〉−1,1 = ( f ,ϕ) − a(̂uh,ϕ) = ( f ,ϕ) − (K ∇hûh,∇ϕ) = ( f ,ϕ) − (σ̂ h,∇ϕ). (40)

We proceed to find an upper bound for the last term in the right-hand side. We start by observing that

( f ,ϕ) − (σ̂ h,∇ϕ) =
∑
T ∈Th

{
( f ,ϕ)T − (σ̂ T ,∇ϕ)T

} =
∑

T ∈Th

{
( f + ∇·σ̂ T ,ϕ)T − (σ̂ T ·n∂T ,ϕ)∂T

}
, (41)

where we have used element-by-element integration by parts to conclude. Let now ϕ
T

∈ V k
h,0 be such that, for all T ∈ Th ,

ϕT := π0
T ϕ, ϕ∂T := πk

∂T ϕ. (42)

We have that∑
T ∈Th

(π0
T ( f + ∇·σ̂ T ),ϕ)T =

∑
T ∈Th

{
( f ,ϕT )T + (∇·σ̂ T ,ϕT )T

}
=

∑
T ∈Th

{
aT (uT ,ϕ

T
) −�����

(σ̂ T ,∇ϕT )T + (σ̂ T ·n∂T ,ϕT )∂T

}
=

∑
T ∈Th

{
(K T ∇ûT ,∇pk+1

T ϕ
T
)T + sU ,T (uT ,ϕ

T
) + (σ̂ T ·n∂T ,ϕT )∂T

}
=

∑ {
�������
(K T ∇ûT ,∇ϕT )T + (σ̂ T ·n∂T ,ϕ∂T )∂T + s�,T (σ T ,ςk

T
ϕ

T
)
}

,

T ∈Th
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where we have used the primal reformulation (15) of problem (11) together with integration by parts and ∇ϕT = ∇π0
T ϕ = 0

in the second line, the definition (16) of the bilinear form aT in the third line, and the characterization (31b) of pk+1
T with 

v T = ϕ
T

and w = ûT together with K T ∇ûT = σ̂ T and the definition (16) of sU ,T and σ T = ςk
T

uT (cf. (15a)) to conclude. 
Hence, observing that σ̂ T |∂T ·n∂T ∈ P

k(FT ) (so that (σ̂ T ·n∂T , ϕ∂T )∂T = (σ̂ T ·n∂T , ϕ)∂T by (42) and the definition of πk
∂T ) and 

rearranging, we have

0 =
∑
T ∈Th

(π0
T ( f + ∇·σ̂ T ),ϕ)T −

∑
T ∈Th

{
(σ̂ T ·n∂T ,ϕ)∂T + s�,T (σ T ,ςk

T
ϕ

T
)
}

. (43)

Subtracting (43) from (41), and using formula (32) proved in Lemma 8 with v T = ϕ
T

and τ T = σ T for the term involving 
s�,T , it is inferred

(σ − σ̂ h,∇ϕ) =
∑

T ∈Th

{
(( f + ∇·σ̂ T ) − π0

T ( f + ∇·σ̂ T ),ϕ − π0
T ϕ)T + (r∗,k

∂T (σ∂T − σ T ·n∂T ),ϕ − π0
T ϕ)∂T

}
,

where we have used the fact that r∗,k
∂T (σ∂T −σ T ·n∂T ) ∈ P

k(FT ) and (42) to write ϕ instead of ϕ∂T in the last term. Therefore, 
using the Cauchy–Schwarz inequality followed by the local Poincaré (20) and Friedrichs (21) inequalities for the first and 
second terms, respectively, it is inferred

|(σ − σ̂ h,∇ϕ)| ≤
⎧⎨⎩ ∑

T ∈Th

(
ηres,T + ηsta,T

)2

⎫⎬⎭
1/2

× ‖K 1/2∇ϕ‖. (44)

To conclude, use (44) to estimate the right-hand side of (40) and plug the resulting bound into (39). �
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