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a b s t r a c t

The time independent Schrödinger equation stems from quantum theory axioms as a par-
tial differential equation. This work aims at providing a novel discrete geometric formula-
tion of this equation in terms of integral variables associated with precise geometric
elements of a pair of three-dimensional interlocked grids, one of them based on tetrahedra.
We will deduce, in a purely geometric way, a computationally efficient discrete
counterpart of the time independent Schrödinger equation in terms of a standard
symmetric eigenvalue problem. Moreover boundary and interface conditions together with
non homogeneity and anisotropy of the media involved are accounted for in a straightfor-
ward manner.

This approach yields to a sensible computational advantage with respect to the finite ele-
ment method, where a generalized eigenvalue problem has to be solved instead. Such a
modeling tool can be used for analyzing a number of quantum phenomena in modern
nano-structured devices, where the accounting of the real 3D geometry is a crucial issue.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, there has been an effort to highlight the geometric structure behind different physical theories. This idea
has a solid physical and mathematical foundation, described in the works of Tonti in electromagnetism and elasticity [1,3–5],
of Bossavit with the understanding of the geometric properties of the finite element method in computational electromag-
netics [6,10], of Di Carlo on heat conduction [7], or of Weiland regarding the Finite Integration Technique on electromagnetic
wave propagation [8,9].

The fundamental geometric structure on which the physical laws of a specific theory are based, allows us to formulate
these laws in a discrete manner with respect to a pair of oriented and staggered cell complexes, one dual to the other, leading
to the so-called Discrete Geometric Approach (DGA) for computational physics (some instances of this discretization process
in the case of Maxwell’s equations, can be found in [10–14]).

In this framework, the purpose of our paper is to show how the modus operandi of the DGA could be conveniently applied
also to the discretization of the time independent Schrödinger equation with respect to a primal cell complex based on tet-
rahedra. In this way, it will be possible to provide a new computationally efficient modeling tool for a number of quantum
phenomena in modern nano-structured devices, where the accounting of the real 3D geometry is a crucial issue [15–17]. In
addition, the treatment of boundary and interface conditions together with non-homogeneity and anisotropy of the media
involved, can also be easily accounted for.

0021-9991/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2010.11.007

⇑ Corresponding author. Tel.: +39 0432 558285; fax: +39 0432 558251.
E-mail addresses: ruben.specogna@uniud.it (R. Specogna), trevisan@uniud.it (F. Trevisan).

Journal of Computational Physics 230 (2011) 1370–1381

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp



Author's personal copy

The paper is organized as follows. We start, in Section 2, with a reformulation of the time independent Schrödinger equa-
tion in terms of scalar, vector and tensor field quantities involved in two different categories of equations: continuous bal-
ance equations and constitutive relations.

In Section 3, after the discretization of the spatial domain into geometric elements such as nodes, edges, faces and vol-
umes of a pair of oriented cell complexes, we will introduce integrals – such as circulations or fluxes – of the introduced field
quantities with respect to nodes, edges, faces and volumes of the pair of cell complexes. In the literature, such working inte-
gral variables are often referred to as Degrees of Freedom (DoFs) or global variables. Then we will form exact discrete coun-
terparts of the balance equations in terms of DoFs and we will construct approximate discrete counterparts of the constitutive
relations transforming the DoFs associated with geometric elements of one cell complex into the corresponding (dual) DoFs
associated with geometric elements of the other cell complex.

In Section 4, we will construct efficiently, in a purely geometric way, the discrete counterpart of the continuous level
Schrödinger equation, by coupling the discrete counterparts of balance equations and constitutive relations. A big advantage
will be apparent, since a standard symmetric eigenvalue problem will be obtained. On the contrary, Finite Elements yield a
more computationally onerous generalized eigenvalue problems [17,18].

Finally, Section 5 will be dedicated to numerical results, where we will analyze, first for reference, the case of a particle with-
in a box; then, we will move on to the analysis of a three-dimensional pyramid-shaped quantum dot heterostructure [16,20].

2. Time independent Schrödinger equation

In a three-dimensional finite spatial domain D, the time independent Schrödinger equation for a single particle [19], can
be written as:

�r � qðrÞrwðrÞ ¼ ðk� uðrÞÞwðrÞ; ð1Þ

where k is the unknown energy level (eigenvalue) and w(r) is the corresponding eigenfunction evaluated at a point r of D,
individuated by the Cartesian components (x,y,z) of the position vector r1; q(r) is a diagonal2 double tensor whose ijth Carte-
sian component, with i, j = 1, . . . ,3, is

qijðrÞ ¼
�h

2miðrÞ
dij; ð2Þ

where ⁄ is the reduced Plank constant and mi(r) is the effective mass coefficient of the particle, along the ith Cartesian axis,
with i = 1, . . . ,3, assumed here independent of k; dij is the Kronecker symbol. Finally, u(r) denotes the confinement potential
energy term, considered known in this paper.

Of course, boundary conditions on @D must be considered in addition to close the problem; in general, Dirichlet boundary
conditions are imposed on a portion SD of @D by fixing a prescribed value of ðwðrÞÞSD

while, on the remaining part SN of @D,
Neumann boundary conditions ð nðrÞ � qðrÞrwðrÞÞSN

are assigned, n(r) being the outward normal to SN and SD
S

SN = @D.

Fig. 1. Quantum dot domain Dq embedded in a matrix of different material Dm.

1 Vectors and tensors are denoted in roman type.
2 In general, q(r) can also be non diagonal without affecting the results of this work.
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In nano-scale applications, such as pyramid-shaped quantum dots [16,17], since eigenfunction w(r) decays very rapidly
outside the quantum dot, it is reasonable to assume homogeneous Dirichlet boundary conditions on @D. Moreover, the effec-
tive mass of the particle and thus the tensor q ( r) are discontinuous in D. A typical example is an InAs pyramid quantum dot
domain Dq embedded in a cuboid GaAs domain Dm, where Dq

S
Dm = D, Fig. 1. The discontinuity of tensor q(r) yields to the

following interface conditions on surface @Dq

ðwðrÞÞ@Dþq
¼ ðwðrÞÞ@D�q

; ð nðrÞ � qðrÞrwðrÞÞ@Dþq
¼ ðnðrÞ � qðrÞrwð rÞÞ@D�q

; ð3Þ

where n(r) is the normal to @Dq, pointing outward Dq, @Dþq , @D�q denote the positive and negative sides of @Dq respectively;
the first condition expresses the continuity of w(r) across @Dq, while the second condition is usually referred to as Ben Dan-
iel–Duke condition [20]. In the presence of such a surface of discontinuity @Dq, (1) subject to (3) must be solved in Dm [ Dq.

2.1. The Schrödinger equation reformulated

Now, we will reformulate in a slightly different way the left-hand side of (1), in terms of the following relations

�rwðrÞ ¼ aðrÞ; ð4Þ
qðrÞaðrÞ ¼ bðrÞ; ð5Þ
r � bðrÞ ¼ /ðrÞ; ð6Þ

where we introduced the vector fields a(r), b(r) and the scalar field /(r) respectively; while, for the right hand side, we write

nðrÞwðrÞ ¼ /ðrÞ; ð7Þ

where

nðrÞ ¼ ðk� uðrÞÞ ð8Þ

holds. Of course, (4)–(7) are equivalent to (1). From (4), we observe that w(r) acts as a scalar potential for the exact field a(r)
in the contractible domain D; moreover (5) and (7) play the role of constitutive relations between a pair of vector and scalar
fields respectively, q(r) and n(r) being the medium characteristics. This interpretation is an important modeling issue at the
base of the modus operandi of DGA approach.

3. Towards a discrete counterpart of Schrödinger equation

In order to reformulate in a discrete way the Schrödinger equation casted in the form (4)–(7), we need to retrace, in the
following subsections, the fundamental steps at the base of Discrete Geometric Approach [2,1].

3.1. Domain discretization

We introduce in D a primal simplicial cell complex K ¼ fN ; E;F ;Vg, whose geometrical elements are nodes ni 2 N , edges
ej 2 E, faces fh 2 F (triangles), and volumes vk 2 V (tetrahedra), all endowed with an inner orientation [2,22], Fig. 2; the car-
dinality of each set N ; E;F ;V is denoted by N, E, F and V respectively.

From the primal cell complex K, we can construct a barycentric dual complex eK ¼ feV ; eF ; eE ;fN g, whose geometrical ele-
ments are dual nodes ~nk 2 fN , dual edges ~eh 2 eE , dual faces ~f j 2 eF and dual volumes ~v i 2 eV ; the inner orientation of K in-
duces an outer orientation of eK, the cells of K being in a one-to-one correspondence3 with those of eK. A dual node ~nk is
the barycenter of tetrahedron vk, a dual edge ~eh is a broken segment of the line joining the barycenters of a pair of tetrahedra
through the barycenter gfh

of the face fh they have in common. A dual face ~f j is the union of a number of quadrilateral faces,
tailored within each tetrahedron of the cluster of tetrahedra having ej in common; the vertices of each quadrilateral face are
respectively the barycenter of a tetrahedron of the cluster, the midpoint gej

of ej and the barycenters of the pair of primal faces
having ej in common and bounding that tetrahedron, refer to Fig. 2. Finally, a dual volume ~v i is the union of a number of hexa-
hedral subregions tailored within each tetrahedron of the cluster of tetrahedra having ni as common node; each subregion is
delimited by a triple of primal faces having ni in common bounding a tetrahedron of the cluster and by a triple of quadrilateral
faces opposite to ni within that tetrahedron. Without losing generality, it is convenient and computationally efficient to work
element-by-element by restricting K to a single tetrahedron; consequently we focus on the restriction of eK to a single tetrahe-
dron vk, Fig. 2. The restriction in vk of a dual edge is a segment and the restriction of a dual face is a plane quadrilateral surface;
in this way the tangent and normal vectors respectively are well defined.

The interconnections of K are described by incidence matrices; for our purposes, we need matrix G of dimension E � N of
incidence numbers Gji between orientations of pairs (ej, ni), matrix D of dimension V � F of incidence numbers Dkh between
the orientations of pairs (vk, fh) and matrix eD of dimension N � E of incidence numbers between the orientations of pairs
ð~v i;

~f jÞ. Thanks to the duality between K; eK
3 It is often referred to as duality.
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eD ¼ �GT ð9Þ

holds.4

3.2. Integral variables and their association to the elements of K; eK
We introduce array W of dimension N, whose ith entry

Wi ¼ wðrni
Þ; i ¼ 1; . . . ;N ð10Þ

is the value wðrni
Þ assumes in the position rni

of the node ni; clearly, Wi is associated with primal nodes.
Circulation Aj of vector a(r) along a primal edge ej is defined by

Aj ¼
Z

ej

aðrÞ � dl ð11Þ

with j = 1, . . . ,E, and it is associated with primal edges; the array A they form has dimension E. Similarly, but at a different
geometric level, flux Bj of vector b(r) across a dual face ~f j is defined by

Bj ¼
Z

~f j

bðrÞ � ds ð12Þ

with j = 1, . . . ,E, associated with dual faces and the array B they form has dimension E.
Finally, we introduce the integral quantity

Ui ¼
Z

~v i

/ðrÞdv ð13Þ

associated with dual volume ~v i, with i = 1, . . . ,N, and we denote with U the corresponding array they form, of dimension N.
The arrays W, A, B and U of integral variables are often referred to as Degrees of Freedom (DoF) or global variables arrays

and we observe that the arrays A, B are one dual of the other being associated with dual geometric elements of the sets E, eF
respectively; similarly for the pair W, U, being associated with the dual geometric elements of the sets N ; eV respectively.

Fig. 2. Oriented geometric elements of the primal complex K and of the dual complex eK restricted, for clarity, to a single tetrahedron vk.

4 The minus sign comes from the assumption that ni is oriented as a sink, whereas the boundary of ~v i is oriented by the outer normal.
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3.3. Balance equations

Now, according to algebraic topology [2,1], we can straightforwardly construct exact5 discrete counterparts of (4) and (6)
respectively, in terms of the introduced DoF arrays with respect to the topology of the pair of cell complexes K; eK and we obtain

� GW ¼ A; ð14ÞeDB ¼ �GT B ¼ U; ð15Þ

where in (15) we used (9); these relations are independent of the media and metric of the pair of cell complexes in D.

3.4. Constitutive relations

A crucial point of the discretisation process is the computation of discrete counterparts of the constitutive relations (5)
and (7) at continuous level. Such discrete counterparts can be represented as linear operators (matrices in our case) mapping
DoF arrays in a duality relation. Therefore the discrete counterparts for (5) and (7) can be written as:

MA ¼ B; ð16Þ
NW ¼ U; ð17Þ

where M and N are square matrices of dimension E and N respectively, depending on the metric and media properties of the
pair of cell complexes. It is important to note that M and N are approximated discrete counterparts of q(r) and n(r) respec-
tively. There are several approaches, borrowed from different physical theories that can be applied to construct matrix M,
like those described in [21,7,12–14,11]; on the contrary, in this paper, we will follow in sub Section 4.1 a different method-
ology, more efficient from the computational viewpoint. On the other hand, sub Section 4.2 will be dedicated to the compu-
tation of the matrix N.

3.5. A discrete Schrödinger equation

In order to underline the geometric structure behind Schrödinger equation, both in the discrete setting and in the con-
tinuous setting, and to deduce the algebraic system of equations discretizing Schrödinger equation, we will introduce the
so called Tonti’s diagram (for a comprehensive description for other physical theories see [1,3]), specifically tailored for
our problem, Fig. 3.

For time independent problems, the diagram (on the left part of Fig. 3) consists of two vertical pillars, where each DoF
array, typed inside an oval, is associated with the corresponding geometric entity of the primal cell complex K (ni, ej from
top to bottom respectively) and of the dual complex eK (~f j; ~v i from bottom to top respectively). Along a vertical pillar, we
move from the variables associated with a geometric entity to the variable associated with the successive geometric entity,
of the primal or of the dual complex, using the incidence matrices (G, or eD in the specific case). The duality is made evident in
the diagram, where geometric entities and associated DoF arrays, on the left and right parts of the diagram, correspond each
other along horizontal lines. The discrete counterparts of the constitutive relations are represented as horizontal links from
left to right. The association of DoF arrays to the geometric elements of the pair of complexes, induces a similar association
between the corresponding scalar/vector field quantities as shown by the Tonti’s diagram on the right side of Fig. 3; more-
over, the relation between discrete level and continuous level constitutive relations is apparent from the diagram together
with the discrete, metric free, counterparts �G, eD of the continuous level operators �r,r� respectively. Finally, we may de-
duce a discrete counterpart of Schrödinger equation working on the discrete diagram (left part of Fig. 3). By following the
path 1–2–3–4 we obtain

GT MGW ¼ U ð18Þ

which is a discrete counterpart of the left-hand side of (1), while the path 1–4 yields

NW ¼ U; ð19Þ

Fig. 3. Tonti’s diagram for discrete (left side) and continuous (right side) Schrödinger equations.

5 This means that array W is mapped exactly onto array U provided that the fields are locally uniform in tetrahedron vk.
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which is a discrete counterpart of the right hand side of (1). Thus, from (18) and (19) a discrete counterpart of (1) becomes

GT MGW ¼ NW: ð20Þ

3.6. Discrete boundary and interface conditions

Discrete Dirichlet boundary conditions on the portion of boundary SD are imposed by assigning Wi values on the primal
nodes on SD. Homogeneous Dirichlet boundary conditions are simply enforced by skipping the values of Wi relative to primal
nodes on SD. Such Wi are not an unknown of the problem, hence the corresponding equations in (20) are not written.

Discrete Neumann boundary conditions on SN are simply accounted for by assigning the values of Bi associated with addi-
tional boundary dual faces ~f bi on SN in a one-to-one correspondence with the primal nodes on SN, Fig. 4(A); discrete homo-
geneous Neumann boundary conditions on SN are naturally accounted for in (20) since Bi = 0 on ~f bi is assumed.

Discrete interface conditions (3) on discontinuity surfaces in D are automatically accounted for due to the continuity of
the circulations Aj along primal edges ej on such discontinuity surfaces; this yields in turn the continuity of the potential w(r)
on primal nodes belonging to such surfaces. Also the Ben Daniel–Duke interface condition is automatically satisfied in the
discrete setting. To show this, let us consider a primal node ni on a discontinuity surface @Dq, refer to Fig. 4(B), and the cor-
responding dual volume ~v i divided by @Dq in two parts ~vm

i ; ~vq
i in Dm, Dq subregions respectively; dual face ~si in a one-to-one

correspondence with ni lies on @Dq and ~sþi ;~s
�
i denote its two sides. By particularizing (15) for ~vm

i ; ~vq
i we obtain respectivelyX

k2Em
i

�Bm
k � B~si

¼ Um
i ;

X
k2Ep

i

�Bp
k þ B~si

¼ Uq
i ; ð21Þ

where �Bm
k ;�Bp

k are fluxes, weighted by incidence numbers, associated with dual faces in Dm, Dq indexed in the sets Em
i ; E

p
i

respectively; Um
i ;U

q
i are the values variable Ui assumes in Dm, Dq respectively.

Flux B~si
is associated with ~si and, of course, it is continuous between the ~sþi ;~s

�
i sides of ~si as the Ben Daniel–Duke condition

prescribes at a discrete level. When assembling the balance equation for the entire dual volume ~v i ¼ ~vm
i

S
~vq

i , (22) yieldsX
k2Ei

�Bk ¼ Ui; ð22Þ

where Ui ¼ Um
i þUq

i holds in ~v i; E i being the set of primal edges drawn from ni.

4. Efficient computation of GTMG and N matrices

Here, we will compute in a purely geometric way both the so called stiffness matrix GTMG on the left-hand side of (20)
and the matrix N on the right-hand side. The geometric approach we pursue leads to an efficient computation of the stiffness
matrix in terms of the geometric entities of the primal cell complex and to a diagonal matrix N; therefore (20) will yield to a

Fig. 4. (A): Additional dual boundary face ~f bi in a one-to-one correspondence with node ni on SN � @D and the corresponding dual volume ~v i are shown. (B):
A dual volume ~v i in a one-to-one correspondence with node ni on @Dq is exploded for clarity, together with the pair of sides ~sþi ;~s

�
i of the dual face ~si in a one-

to-one correspondence with ni.
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classical eigenvalue problem; on the contrary, a Finite Elements discretization leads to a generalized eigenvalue problem,
which is more onerous to solve.

In the following, without loosing generality, we will focus on a single tetrahedron vk of the primal complex, Fig. 5. With
respect to vk we will compute local (GTMG)k and (N)k matrices, with k = 1, . . . ,V; the corresponding global matrices GTMG and
N are easily deduced, by adding the local contributions from each tetrahedron of the complex according to a standard assem-
bling process.

At the base of the computation there is the assumption of local uniformity of scalar, vector and tensor field quantities
within each tetrahedron vk with k = 1, . . . ,V, since, within a small enough region, any regular field quantity can be approxi-
mated by a uniform field.

4.1. Computation of local stiffness matrix

We denote with ni, i = 1, . . . ,4, the four nodes of tetrahedron vk and introduce the pair eni
p ; f

ni
p

� �
formed by a primal edge eni

p

and a not coplanar primal face f ni
p of vk, having node ni in common, with p = 1, . . . ,3, i = 1, . . . ,4, Fig. 5(A); correspondingly,

eni
p ; f

ni
p denote edge vector6 and face vector7 associated with eni

p ; f
ni
p respectively. Then the following, purely geometric, tensor

identity8

X3

p¼1

Dkpfni
p � Gpieni

p ¼ 3 Ijvkj; ð23Þ

holds, where symbol� denotes the tensor product, I is the identity tensor, jvkj is the volume of vk, Gpi is the incidence number
(±1) between the inner orientations of eni

p and ni, while Dkp is the incidence number (±1) between the inner orientations of vk

and f ni
p . By right multiplying (23) by vector a(r) locally uniform in vk, we obtain

a ¼ 1
3jvkj

X3

p¼1

DkpGpiA
ni
p fni

p ; ð24Þ

where we used (11). Now, denoting with (ni, nm) the boundary nodes of the edge ep, with i, m = 1, . . . ,4 and m – i, then

Gpi ¼ �Gpm ð25Þ

holds; using (14) for the case of tetrahedron vk and (25), we obtain

Ani
p ¼ GpiðWni

�Wnm Þ: ð26Þ

Substituting (26) for Ani
p in (24), we write

a ¼ 1
3jvkj

X3

p¼1

Dkp fni
p ðWni

�Wnm Þ: ð27Þ

Since

Fig. 5. Primal and dual complexes limited to a single tetrahedron vk.

6 It is the vector having as amplitude the length of the edge, directed and oriented as the edge.
7 It is the vector having as amplitude the area of the face, normal to the face and oriented in a congruent way as the orientation of the face.
8 The identity stems from the geometric interpretation of a triple of vectors forming a base in R3 and the triple of vectors forming its reciprocal base [23].
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X4

h¼1

Dkhfh ¼ 0 ð28Þ

holds for a tetrahedron, where fh is the area vector of the face fh bounding vk, then (27) becomes

a ¼ 1
3jvkj

X4

j¼1

Dkjf jWnj
; ð29Þ

where fj denotes the area vector of face fj opposite to node nj.
Next, assuming a material tensor q(r) locally uniform in vk, (5) implies the local uniformity of b ( r) in vk and (12) yields

Bni
p ¼ ~fni

p � qa; i ¼ 1; . . . ;4; ð30Þ

where ~fni
p is the area vector associated with dual face ~f ni

p in a one-to-one correspondence with eni
p , with p = 1, . . . ,3, Fig. 5(B). By

particularizing (15) for vk and node ni, we write9

�
X3

p¼1

GipBni
p ¼ Uk

i ; ð31Þ

where we used (9), and substituting (30) for Bni
p (31) yields

�
X3

p¼1

Gip
~fni

p � q a ¼ Uk
i : ð32Þ

Now, from elementary geometry, we observe that the amplitude of area vector Si ¼ �
P3

p¼1Gip
~fni

p coincides with the area of
the triangle Si having as vertices the midpoints ge

ni
p

of the triple of edges eni
p drawn from the common node ni and that from

(9) �Gip ¼ eDpi holds, with p = 1, . . . ,3, Fig. 6; in turns the area of Si is 1
3 of the area of fi and in terms of area vectors

�
X3

p¼1

Gip
~fni

p ¼
1
3

Dki f i ð33Þ

holds, Dki being the incidence number between vk and fi, with i = 1, . . . ,4.
Finally, by substituting (33) and (29) for a in (32), we obtain

Fig. 6. Triangle Si having as vertices the midpoints ge
ni
p

of the triple of edges eni
p drawn from the common node ni; the area of triangle Si is 1/3 of the area of fi.

9 The contributions due to the fluxes across the portions of the primal faces f ni
p
T

~v i , with p = 1, . . . ,3, are omitted, since they cancel out in the assembly
process of the entire dual volume.

R. Specogna, F. Trevisan / Journal of Computational Physics 230 (2011) 1370–1381 1377
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1
9jvkj

X4

j¼1

Dkif i � qDkj f jWnj
¼ Uk

i ; ð34Þ

It is important to note, that (34) is an exact discrete counterpart of (4)–(6) or, equivalently, of the left-hand side of (1) in vk,
provided that a(r), b(r), q(r) are locally uniform in vk.

Therefore, from (34), the entry ðGT MGÞkij of a local symmetric stiffness matrix for tetrahedron vk, expressed efficiently in a
pure geometric way, is given by:

ðGT MGÞkij ¼
1

9jvkj
Dkif i � qDkjf j; i; j ¼ 1; . . . ;4: ð35Þ

4.2. Computation of local N matrix

We introduce in a tetrahedron vk a scalar function wi( r), attached to a primal node ni, defined as

wiðrÞ ¼
1 if r 2 ~v i

0 elsewhere

�
; ð36Þ

~v i being the dual volume corresponding to ni, Fig. 5. These base functions are able to represent exactly a locally uniform sca-
lar field w(r) in vk as

wðrÞ ¼
X4

j¼1

wjðrÞWj; ð37Þ

where we used (10). Next, using constitutive Eqs. (7), (13) yields

Ui ¼
Z

~v i

nðrÞwðrÞdv : ð38Þ

By substituting (8) for n(r) and assuming a locally uniform w(r) in ~v i, for i = 1, . . . , 4, (38) becomes

Ui ¼ kwðrÞj~v ij �
Z

~v i

uð rÞwðrÞdv : ð39Þ

From the identity
R

vk
wiðrÞdv ¼ j~v ij applied to the first addendum of (39), we may write

Ui ¼ k
Z

vk

wiðrÞwðrÞdv �
Z

~v i

uðrÞwðrÞdv ð40Þ

and by substituting in (40), (37) for w(r), we obtain

Ui ¼
X4

j¼1

k
Z

vk

wiðrÞwjð rÞdv �
Z

~v i

wjðrÞuðrÞdv
" #

Wj ¼ ð41Þ

X4

j¼1

kdij
jvkj

4
Wj �

X4

j¼1

dij

Z
~v i

uðrÞdvWj; ð42Þ

where we used the geometric identity jvkj ¼ 4j~v ij, for i = 1, . . . ,4.
Again, it is important to note, that (42) is an exact10 discrete counterpart of (7) or, equivalently, of the right hand side of (1)

in vk, provided that w(r) is locally uniform in vk.
Therefore, from (42), the entry ðNÞkij of a local diagonal matrix Nk for tetrahedron vk, expressed efficiently in a purely geo-

metric way, is given by:

ðNÞkij ¼ dij
jvkj

4
k� dij

Z
~v i

uðrÞdv : ð43Þ

Such a relation, suggests to express the local matrix Nk as the sum of a pair of diagonal matrices

ðNÞk ¼ kðNÞ0k � ðNuÞk; ð44Þ

whose entries are dij
jvk j

4 ; dij
R

~v i
uðrÞdv respectively.

In this paper we will assume an element wise uniform potential energy u(r) distribution in each vk; therefore for the en-
tries of (Nu)k we simply write dij

jvk j
4 uk, where uk is the uniform value u(r) assumes in vk.

10 This means that array W is mapped exactly onto array U provided that the fields are locally uniform in tetrahedron vk.
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4.3. The discrete eigenvalue problem

For tetrahedron vk, from (35) and (44) a generalized eigenvalue problem is obtained as

ððGT MGÞk þ ðNuÞkÞWk ¼ kðNÞ0kWk; ð45Þ

Wk being a local array of the Wk
i values, with i = 1, . . . ,4, in the nodes of vk; by assembling the contributions from (45) primal

volume by primal volume, for k = 1, . . . ,V, we obtain the final global generalized eigenvalue problem

ðGT MGþ NuÞW ¼ kN0W; ð46Þ

that can be easily transformed into a standard one, since N0 is diagonal and positive-definite; we may write

ðN0Þ�1=2ðGT MGþ NuÞðN0Þ�1=2W0 ¼ kW0; ð47Þ

where we set W0 = (N0)1/2W. We observe that there is no need to compute the matrix products in (47); it is enough to mul-
tiply each non-zero ij-entry of the sparse matrix (GTMG + Nu) by ðN0Þ�1=2

i ðN0Þ�1=2
j with i, j = 1, . . . ,N, where ðN0Þ�1=2

i denotes the
ith diagonal element of (N0)�1/2.

5. Numerical results

The formulation described in this paper has been integrated into the GAME (Geometric Approach to Maxwell’s Equations)
code [24] developed by the Authors. The software has been implemented in Fortran 90 and the Intel Fortran 90 Compiler has
been used to produce the executable. The TRLan [25] software library has been employed to solve the discrete eigenvalue
problem (47). The hardware used for the computations consists of an Intel Core 2 Duo T7700 2.4 GHz laptop with 4 GB of
RAM.

To validate the results produced by the described formulation, a particle in a box benchmark – which admits an analytical
solution [19] – has been first analyzed. This benchmark consists of a cube of edge d = 10 nm in which the energy u = 0 eV is
assumed. In our test, the material property q is described by the homogeneous, anisotropic diagonal tensor q = diag
(0.04159,0.20053,0.20053).

As a second benchmark, the pyramidal quantum dot presented in [16] has been considered. It consists of a pyramid InAs
quantum dot (pyramid base d = 12.4 nm, pyramid height h = 6.2 nm, qInAs = 1.5877) placed in a GaAs matrix (dbox = 24.8 nm,
hbox = 18.6 nm, qGaAs = 0.5687), see Fig. 7. The energy of uInAs = 0 eV is considered in the quantum dot subregion Dq, while
uGaAs = 0.77 eV is fixed in the surrounding matrix subregion Dm. On each boundary node ni on the boundary of the cubical
domain D, homogeneous Dirichlet boundary conditions Wi = 0 have been imposed. The obtained results from the two bench-
marks in term of the three smaller eigenvalues are shown in Tables 1 and 2 respectively. In these Tables, the pre-processing
time tP accounts for the time spent for the assembling of the sparse matrices in (47), while tS is the time spent by the eigen-
value solver (TRLan).

In Fig. 8, the convergence of the error on the smallest eigenvalue is shown for the particle in a box benchmark with the
mesh refinement. The mean length lmed of the mesh edges is considered to quantify the grain of the mesh during the refine-
ment process. The error �k1 between the computed k1 and analytical reference kref values of the first eigenvalue, has been
evaluated as �k1 ¼ ðk1 � kref Þ=kref . The O(h2) curve represents the second order rate of convergence.

Fig. 7. Median cross-section of the three-dimensional geometry of the considered pyramidal quantum dot subregion Dq in the surrounding matrix Dm.
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6. Conclusions

We proposed a novel interpretation of the time independent Schrödinger equation which puts the spot of the light on the
geometrical structure behind the variables and the balance laws of a physical theory, instead of the usual differential formu-
lation. In this way, we introduced scalar and vector field quantities together with their edge, face and volume integrals univ-
ocally associated with the corresponding geometric elements of a pair of interlocked grids, the primal consisting of
tetrahedra. This aspect is emphasized by constructing the Tonti’s diagram, both at continuous and at discrete levels.

We also demonstrated how to geometrically and efficiently build a discrete counterpart of the Schrödinger equation to-
gether with boundary and interface conditions at discrete level; such a discrete counterpart is exact for element wise uniform
fields in each tetrahedron. The proposed approach leads to a standard symmetric eigenvalue problem, the matrix on the right
hand side being diagonal. Computationally, this is a big advantage compared with Finite Elements, where a symmetric gen-
eralized eigenvalue problem is obtained instead. Dealing with a generalized eigenvalue problem requires to store also the
FEM ‘‘mass matrix’’ on the right-hand side, which has the same sparsity pattern (and hence the same memory occupation)
as the ‘‘stiffness matrix’’ on the left-hand side. Hence, the memory requirements of DGA are exactly half of those of FEM and
the mass matrix needs not to be assembled. On the contrary, Finite Elements need to convert the generalized eigenvalue
problem to a standard eigenvalue problem by means of the Cholesky factorization which, notoriously, is heavy to be com-
puted and it could be numerically unstable.

Table 1
Convergence with mesh refinement of the three smaller eigenvalues for the particle in a box benchmark.

V N tP [s] tS [s] k1 (% error) k2 (% error) k3 (% error)

928 254 <1 <1 0.04164 (�4.68) 0.05342 (�4.61) 0.06999 (�8.53)
9073 1884 <1 <1 0.04320 (�1.10) 0.05531 (�1.23) 0.07556 (�1.27)
83,493 15,578 <1 2.1 0.04355 (�0.31) 0.05581 (�0.34) 0.07624 (�0.38)
104,325 20,176 <1 3.3 0.04357 (�0.27) 0.05580 (�0.34) 0.07623 (�0.38)
393,453 71,642 <1 24.1 0.04364 (�0.12) 0.05592 (�0.13) 0.07646 (�0.09)
1,199,652 214,965 3.4 140.2 0.04366 (�0.06) 0.05596 (�0.07) 0.07648 (�0.07)
Analytic – – – 0.04368 (-) 0.05600 (-) 0.07652 (-)

Table 2
Convergence with mesh refinement of the three smaller eigenvalues for the pyramidal quantum dot benchmark.

V N tP [s] tS [s] k1 k2 k3

70,439 12,434 <1 <1 0.4014 0.6428 0.6431
150,000 26076 <1 3.9 0.3956 0.6405 0.6405
293,482 50,670 <1 10.6 0.3939 0.6396 0.6396
811,552 139,462 2.1 71.2 0.3923 0.6388 0.6388
1,301,216 222,515 3.8 228.1 0.3920 0.6386 0.6386
Ref. [16] – – – 0.3911 0.6380 0.6380

Fig. 8. Convergence of the error on the smallest eigenvalue (k1) with mesh refinement for the particle in a box benchmark.
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Finally, the approach proposed in this paper allows complex structures to be modeled, such as pyramidal quantum dots,
in a reduced computational time, while keeping a second order convergence rate; it can also be profitably coupled with an
electrostatics model, to solving a coupled Schrödinger-Poisson problem.
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