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Abstract. In the recent years, reformulating the mathematical description of physical laws in an
algebraic form using tools from algebraic topology gained popularity in computational physics. Physical
variables are defined as fluxes or circulations on oriented geometric elements of a pair of dual interlocked
cell complexes, while physical laws are expressed in a metric-free fashion with incidence matrices. The
metric and the material information are encoded in the discrete counterpart of the constitutive laws
of materials, also referred to as constitutive or material matrices. The stability and consistency of the
method is guaranteed by precise properties (symmetry, positive definiteness, consistency) that material
matrices have to fulfill. The main advantage of this approach is that material matrices, even for arbitrary
star-shaped polyhedral elements, can be geometrically defined, by simple closed-form expressions, in
terms of the geometric elements of the primal and dual grids. That is why this original technique may
be considered as a “Discrete Geometric Approach” (DGA) to computational physics. This paper first
details the set of vector basis functions associated with the edges and faces of a polyhedral primal grid
or of a dual grid. Then, it extends the construction of constitutive matrices for bianisotropic media.
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1. Introduction

In the recent years, methods alternative to the widely used Finite Elements started to thrive and develop
within the computational electromagnetics community. We may mention Yee [32] with the Finite Differences in
Time Domain (FDTD) method, Weiland [13] with the Finite Integration Technique (FIT), Tonti [31] with the
Cell Method (CM), Bossavit [6, 8] with a reinterpretation of Finite Element Method (FEM) and the present
Authors [16, 17, 20] with the Discrete Geometric Approach (DGA).

This paper focuses on DGA, which puts emphasis on the geometric structure hidden behind Maxwell’s equa-
tions. First, physical variables are defined as fluxes or circulations on oriented geometric elements of a pair
of dual interlocked cell complexes. Second, physical laws are expressed in a metric-free fashion with incidence
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matrices. These sparse matrices contain integers that describe how the geometric elements of the grid are inter-
connected together. Third, the metric and the material information are encoded in the discrete counterpart of
the constitutive laws of materials only. This discrete counterpart of material laws, also referred to as constitutive
matrices or discrete Hodge operators [30], have to fulfill precise properties (symmetry, positive definiteness, con-
sistency) to guarantee the stability and consistency of the method [9,27]. The stability enforces the constitutive
matrices to be symmetric and positive definite. The consistency enforces that constitutive matrices exactly map
circulations onto fluxes or vice versa, at least for element-wise uniform fields.

Stable and consistent discrete constitutive equations can be constructed very easily for pairs of orthogonal
Cartesian grids as shown by Yee [32] and Weiland [13]. Besides, as shown by Bossavit [7], the mass matrices
constructed by means of edge and face elements introduced by Whitney and generalized by Nedelec [28, 29],
satisfy both the stability and consistency properties required by DGA [7], for pairs of grids in which the primal
is composed of tetrahedra and the dual grid is obtained according to the barycentric subdivision of the primal.
Unfortunately, this result does not hold in general for edge and face elements relative to different geometries.
For example, the present Authors have proven in [18] that Whitney’s elements for generic hexahedral primal
grids do not satisfy the consistency property required by DGA, for any choice of the dual grid.

The novelty content of this paper is to deduce, in greater details than [20], four general sets of vector functions
for polyhedral primal grids associated with edges and faces of both the primal and of the dual grids. They are
constructed directly in terms of the geometric elements (edges and faces) of the primal and of the dual grids.

We remark that the DGA, CM and FIT methods have been recently reinterpreted, within a unified framework,
as compatible discrete operator schemes [4, 5]. We also mention that our face basis functions only are akin to
the same functions presented in Hybrid Finite Volume (HFV) scheme [23].

We note that some other approaches can be found in literature for generating discrete counterparts of con-
stitutive relations over polyhedral grids, such that the mimetic finite differences [10, 12], the FIT [22] and the
mixed finite elements [25]. However, all of these methods do not lead in general to discrete constitutive relations
satisfying the consistency property required by DGA. A further result of this paper is to extend the construction
of constitutive matrices to bianisotropic media [26].

Numerical experiments demonstrate that the novel discrete constitutive matrices can be computed easily
and very efficiently leading to accurate approximations of the solution of both a magnetostatic and full wave
electromagnetics problem proposed as a benchmark problem.

2. Dual interlocked grids and their geometric properties

Without losing generality, we focus on a primal grid consisting of a single star-shaped polyhedron v, Figure 1.
The geometric elements of the primal grid are nodes, edges, faces and the volume v. We denote a primal edge
with ei, where i = 1, . . . , L, L being the number of edges of v and a primal face with fj , where j = 1, . . . , F , F
being the number of faces of v. The geometric elements of the primal grid as ei, fj are endowed with an inner
orientation [31]. For example in Figure 1 the arrows indicate a possible choice of inner orientations for edge ei

and face fj respectively.
A dual grid, interlocked with the primal grid, is also introduced. Each geometric element of the dual grid is

in a one-to-one correspondence (i.e. dual) with a geometric element of the primal grid. The dual of a primal
volume v is the dual node denoted as ṽ, where symbol “˜” acts on the geometric entity yielding its corresponding
dual. Similarly, the dual of a primal edge ei is the dual face ẽi and the dual of a primal face fj is the dual edge
f̃j , Figure 1.

2.1. Dual grid construction

Contrary to the usual barycentric subdivision of a simplicial primal grid to construct the dual grid, in this
paper we consider a different recipe. We construct the dual grid by first introducing a dual node ṽ located
arbitrarily within v. Then, the geometric construction of dual edges and dual faces is based on the barycen-
tric subdivision of the boundary of v as follows. We introduce the barycenters gei , gfj of ei, fj respectively.
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Figure 1. A polyhedron v. Primal edge ei and the dual face ẽi. Primal face fj and dual edge f̃j.
The barycenters gei and gfj of edge ei and of face fj are also shown.

A dual edge f̃j is a segment whose boundary are the nodes ṽ, gfj . A dual face ẽi is a quadrilateral surface made
of the union of a pair of triangles; one of the triangles has the nodes ṽ, gei , gfj as vertices, similarly for the
other, Figure 1. The only geometric hypothesis on v we assume is that all faces ẽi and edges f̃j are contained
in v. It is straightforward to verify that a sufficient, but not a necessary, condition is the convexity of v [15].

Dual edge f̃j and dual face ẽi are endowed with outer orientation [9,31], in such a way that the pairs (ei, ẽi),
(fj , f̃j) are oriented in a congruent way.

2.2. Geometric properties

Vector ei, denoted in roman type, is the edge vector3 associated with the edge ei. Vector fj is the face vector
associated with the face fj defined as fi =

∫
fj

nds, where n is the unit vector normal to and oriented as fj .

Similarly vector ẽi is the face vector associated with dual face ẽi and f̃j is the edge vector associated with dual
edge f̃j.

We denote with
Te

i = ẽi ⊗ ei (2.1)

the double tensor Te
i obtained from the tensor product ⊗ of the two vectors ei and its dual ẽi, with i = 1, . . . , L.

Its Cartesian components are (Te
i )hk = (ei ⊗ ẽi)hk = (ei)h(ẽi)k, where (ei)h is the hth Cartesian component of

ei, with h, k = 1, . . . , 3. The trace of Te
i is

tei = tr(Te
i ) = ei · ẽi (2.2)

where “·” is the usual inner product between vectors. The product Te
i x between the double tensor Te

i and a
generic vector x is a vector and

Te
i x = (ei · x) ẽi. (2.3)

The identity tensor is denoted by I and I x = x holds. Analogous relations hold by introducing

Tẽ
i = ei ⊗ ẽi (2.4)

for which

Tẽ
i x = (ẽi · x) ei, (2.5)

tẽi = tr(Tẽ
i ) = ẽi · ei (2.6)

3Its amplitude, direction and orientation coincide with the length, direction and orientation of ei respectively.
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with i = 1, . . . , L. Also
Tf

i = f̃i ⊗ fi (2.7)

for which

Tf
i x = (fi · x) f̃i, (2.8)

tfi = tr(Tf
i ) = fi · f̃i (2.9)

with i = 1, . . . , F and

Tf̃
i = fi ⊗ f̃i (2.10)

for which

Tf̃
i x = (̃fi · x) fi, (2.11)

tf̃i = tr(Tf̃
i ) = f̃i · fi (2.12)

with i = 1, . . . , F .
Provided that the dual grid is constructed according to Section 2.1, in papers [15,18] we proved the following

geometric identities
L∑

i=1

ei ⊗ ẽi = |v| I,
F∑

i=1

fj ⊗ f̃j = |v| I, (2.13)

where |v| is the volume of v. Identities (2.13) can now be conveniently rewritten as

Te =
L∑

i=1

Te
i =

L∑
i=1

ẽi ⊗ ei = |v| I, (2.14)

Tẽ =
L∑

i=1

Tẽ
i =

L∑
i=1

ei ⊗ ẽi = |v| I, (2.15)

Tf =
F∑

i=1

Tf
i =

F∑
i=1

f̃i ⊗ fi = |v| I, (2.16)

Tf̃ =
F∑

i=1

Tf̃
i =

F∑
i=1

fi ⊗ f̃i = |v| I. (2.17)

Obviously, tensors Te, Tẽ, Tf , Tf̃ are symmetric and their traces are 3|v|.

2.3. Partition of the polyhedron

We introduce a partition of the polyhedron v into a number of subregions τr
i in a one-to-one correspondence

with the geometric element ei and ẽi, with i = 1, . . . , L. Precisely, subregion τe
i = τ ẽ

i is shown in Figure 2A,
with i = 1, . . . , L; it is a polyhedral region individuated by ei, or equivalently ẽi, formed by a pair of tetrahedra,
each of which having as vertices the dual node ṽ, the pair of nodes bounding ei, and one of the barycenters of
the two primal faces having ei in common.

Lemma 2.1. We have that
tei = tẽi = 3 |τe

i | (2.18)

holds, where |τe
i | is the volume of the subregion τe

i .



GEOMETRICALLY DEFINED BASIS FUNCTIONS FOR POLYHEDRAL ELEMENTS 681

A
B

ṽ
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Figure 2. Subregions τe
i = τ ẽ

i and τf
j = τ f̃

j are shown in detail.

Proof. Firstly, let us consider the case of a subregion τe
i = τ ẽ

i , Figure 2A. For the dual face ẽi, we write
ẽi = ∪2

h=1shi, where shi is one of the two triangular portions forming ẽi; In terms of area vectors we write
ẽi =

∑2
h=1 shi. Then, from the formula giving the volume of a tetrahedron,

ei · ẽi =
2∑

h=1

shi · ei =
2∑

h=1

3 |Vh| = 3 |τe
i | (2.19)

holds, where |Vh| is the volume of one of the two tetrahedra Vh forming τe
i , Figure 3. Then from (2.2) the thesis

follows. �

Analogously Figure 2B, shows subregion τf
j = τ f̃

j , with j = 1, . . . , F ; it is a polyhedral region individuated
by fj or equivalently f̃j , formed by a pyramid having as base the fj face and as apex the dual node ṽ.

Lemma 2.2. We have that
tfi = tf̃i = 3 |τf

i | (2.20)

holds, where |τf
i | is the volume of the subregion τf

i .

Proof. Let us consider the case of a subregion τf
j = τ f̃

j , Figure 2B. From the formula expressing the volume of
a pyramid

fj · f̃j = 3 |τf
j | (2.21)

holds. Then from (2.2) the thesis follows. �

3. Geometrically defined vector basis functions

3.1. Basis functions ve
i (p)

We consider an electric field E(p) in v; in the DGA, circulations of E(p) can be introduced along the primal
edges

Ee
i =

∫
ei

E(p) · de. (3.1)
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Figure 3. Detail of a tetrahedron Vh forming the subregions τe
i = τ ẽ

i .

Now let us assume that E(p) is uniform in v and thus E does not depend on p. Then by right multiplying (2.14)
by E, from (2.3), (2.14) and (3.1), since Ee

i = E · ei, we obtain

E =
1
|v|

L∑
i=1

Ee
i ẽi. (3.2)

Besides, multiplying on the right by x both members of the identity

I =
Te

j

tej
+

(
I − Te

j

tej

)
(3.3)

and using (2.3), we have that

E =
Ee

j

tej
ẽj +

(
I − Te

j

tej

)
E (3.4)

holds in subregion τe
j , with j = 1, . . . , L. Thus by substituting (3.2) for E in the right hand side of (3.4), we

obtain

E =
L∑

i=1

(
ẽj

tej
δij +

(
I − Te

j

tej

)
ẽi

|v|

)
Ee

i , (3.5)

where δij is the Kronecker symbol, or equivalently

e =
L∑

i=1

ve
i (p)Ee

i , (3.6)

in which

ve
i (p) =

ẽj

tej
δij +

(
I − Te

j

tej

)
ẽi

|v| , for each p ∈ τe
j , with j = 1, . . . , L. (3.7)

Quantities ve
i (p), with i = 1, . . . , L, derived in this way, are vector functions, piece-wise uniform in v and uniform

in each subregion τe
j with j = 1, . . . , L. Moreover, they satisfy the following three properties, fundamental to

construct constitutive matrices for the DGA, as outlined by the authors in [1, 14].
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Property 3.1. The functions ve
i (p), with i = 1, . . . , L are linearly independent, and are such that

∫
ej

ve
i (p) · de = δij (3.8)

holds, for i, j = 1, . . . , L.

Proof. In the subregion τe
j adjacent to ej , we write

∫
ej

ve
i (p) · de =

(
ẽj

tej
δij +

(
I − Te

j

tej

)
ẽi

|v|

)
· ej

= δij +

(
ẽi

|v| −
ej · ẽi

tej |v|
ẽj

)
· ej

= δij +
(

ej · ẽi

|v| − ej · ẽi

|v|
)

= δij .

In the second equality (2.3) has been applied, while in the first and last equalities we used (2.2). Thus (3.8)
holds. As a consequence functions ve

i (p), with i = 1, . . . , L are linearly independent. �

Property 3.2. The functions ve
i (p), with i = 1, . . . , L allow to represent exactly a uniform vector field from its

Degrees of Freedom, according to (3.6).

Proof. The thesis straightforwardly follows from (3.5). �

Property 3.3. The geometric consistency condition [8]

∫
v

ve
i (p) dv = ẽi (3.9)

holds, with i = 1, . . . , L.

Proof. We compute

∫
v

ve
i (p) dv =

L∑
j=1

∫
τe

j

ve
i (p) dv

=
L∑

j=1

(
ẽj

tej
δij +

(
I − Te

j

tej

)
ẽi

|v|

)
|τe

j |

=
L∑

j=1

ẽj

|τe
j |

tej
δij +

⎛
⎝ L∑

j=1

|τe
j |
⎞
⎠ ẽi

|v| −
1
3

⎛
⎝ L∑

j=1

Te
j

⎞
⎠ ẽi

|v|

=
1
3
ẽi + ẽi − 1

3
ẽi = ẽi,

where, in the second equality we used Lemma 2.2 and in the third equality we used the identity (2.14). �
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3.2. Basis functions vf
i (p)

We consider a magnetic induction B(p) in v; in the DGA, fluxes of B(p) can be introduced through the primal
faces

Bf
i =

∫
fi

B(p) · df. (3.10)

Now let us assume that B(p) is uniform in v and thus B does not depend on p. Then by right multiplying (2.14)
by B, from (2.8), (2.14) and (3.10), since Bf

i = B · fi, we obtain

B =
1
|v|

F∑
j=1

Φf
i f̃i. (3.11)

Besides, multiplying on the right by B both members of the identity

I =
Tf

j

tfj
+

(
I − Tf

j

tfj

)
(3.12)

and using (2.8), we have that

B =
Bf

j

tfj
f̃j +

(
I − Tf

j

tfj

)
B (3.13)

holds in subregion τf
j , with j = 1, . . . , F . Thus by substituting (3.11) for B in the right hand side of (3.13), we

obtain

B =
L∑

i=1

(
f̃j
tfj

δij +

(
I − Tf

j

tfj

)
f̃i
|v|

)
Bf

i , (3.14)

where δij is the Kronecker symbol, or equivalently

B =
F∑

i=1

vf
i (p)Bf

i , (3.15)

in which

vf
i (p) =

f̃j
tfj

δij +

(
I − Tf

j

tfj

)
f̃i
|v| , for each p ∈ τf

j , with j = 1, . . . , F. (3.16)

Quantities vf
i (p), with i = 1, . . . , F , derived in this way, are vector functions, piece-wise uniform in v and uniform

in each subregion τf
j with j = 1, . . . , F . Moreover, they satisfy the following three properties, fundamental to

construct constitutive matrices for the DGA, as outlined by the authors in [1, 14].

Property 3.4. The functions vf
i (p), with i = 1, . . . , F are linearly independent, and are such that

∫
fj

vf
i (p) · df = δij (3.17)

holds, for i, j = 1, . . . , F .
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Proof. In the subregion τf
j adjacent to fj, we write

∫
fj

vf
i (p) · df =

(
f̃j
tfj

δij +

(
I − Tf

j

tfj

)
f̃i
|v|

)
· fj

= δij +

(
f̃i
|v| −

fj · f̃i
tfj |v| f̃j

)
· fj

= δij +

(
fj · f̃i
|v| − fj · f̃i

|v|

)
= δij .

In the second equality (2.8) has been applied, while in the first and last equalities we used (2.2). Thus (3.17)
holds. As a consequence functions vf

i (p), with i = 1, . . . , F are linearly independent. �

Property 3.5. The functions vf
i (p), with i = 1, . . . , F allow to represent exactly a uniform vector field from

its Degrees of Freedom, according to (3.15).

Proof. The thesis straightforwardly follows from (3.14). �

Property 3.6. The geometric consistency condition [8]∫
v

vf
i (p) dv = f̃i (3.18)

holds, with i = 1, . . . , F .

Proof. We compute

∫
v

vf
i (p) dv =

F∑
j=1

∫
τf

j

vf
i (p) dv

=
F∑

j=1

(
f̃j
tfj

δij +

(
I − Tf

j

tfj

)
f̃i
|v|

)
|τf

j |

=
F∑

j=1

f̃j
|τf

j |
tfj

δij +

⎛
⎝ F∑

j=1

|τf
j |
⎞
⎠ f̃i

|v| −
1
3

⎛
⎝ L∑

j=1

Tf
j

⎞
⎠ f̃i

|v|

=
1
3
f̃i + f̃i − 1

3
f̃i = f̃i,

where, in the second equality we used Lemma 2.2 and in the third equality we used the identity (2.14). �

3.3. Basis functions vẽ
i (p)

We consider an electric field D(p) in v; in the DGA, fluxes of D(p) can be introduced through the dual edges

Dẽ
i =

∫
ẽi

D(p) · dẽ. (3.19)

Now let us assume that D(p) is uniform in v and thus D does not depend on p. Then by right multiplying (2.14)
by D, from (2.5), (2.14) and (3.19), since Dẽ

i = D · ẽi, we obtain

D =
1
|v|

L∑
i=1

Dẽ
i ẽi. (3.20)
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Besides, multiplying on the right by D both members of the identity

I =
Tẽ

j

tẽj
+

(
I − Tẽ

j

tẽj

)
(3.21)

and using (2.8), we have that

D =
Dẽ

j

tẽj
ẽj +

(
I − Tẽ

j

tẽj

)
D (3.22)

holds in subregion τ ẽ
j , with j = 1, . . . , L. Thus by substituting (3.20) for D in the right hand side of (3.22), we

obtain

D =
L∑

i=1

(
ẽj

tẽj
δij +

(
I − Tẽ

j

tẽj

)
ei

|v|

)
Dẽ

i , (3.23)

where δij is the Kronecker’s symbol, or equivalently

D =
L∑

i=1

vẽ
i (p)Dẽ

i , (3.24)

in which

vẽ
i (p) =

ej

tẽj
δij +

(
I − Tẽ

j

tẽj

)
ei

|v| , for each p ∈ τ ẽ
j , with j = 1, . . . , L. (3.25)

Quantities vẽ
i (p), with i = 1, . . . , L, derived in this way, are vector functions, piece-wise uniform in v and uniform

in each subregion τ ẽ
j with j = 1, . . . , L. Moreover, they satisfy the following three properties, fundamental to

construct constitutive matrices for the DGA, as outlined by the authors in [1, 14]. The proofs of the properties
will be omitted being similar to those reported in Section 3.1.

Property 3.7. The functions vẽ
i (p), with i = 1, . . . , L are linearly independent, and are such that∫

ẽj

vẽ
i (p) · dẽ = δij (3.26)

holds, for i, j = 1, . . . , L.

Property 3.8. The functions vẽ
i (p), with i = 1, . . . , L allow to represent exactly a uniform vector field from its

Degrees of Freedom, according to (3.24).

Property 3.9. The geometric consistency condition [8]∫
v

vẽ
i (p) dv = ei (3.27)

holds, with i = 1, . . . , L.

3.4. Basis functions v
f̃
i (p)

We consider a magnetic field H(p) in v; in the DGA, circulations of H(p) can be introduced along the dual
edges

H f̃
i =

∫
f̃i

H(p) · df̃. (3.28)



GEOMETRICALLY DEFINED BASIS FUNCTIONS FOR POLYHEDRAL ELEMENTS 687

Now let us assume that H(p) is uniform in v and thus H does not depend on p. Then by right multiplying (2.14)
by H, from (2.11), (2.14) and (3.28), since H f̃

i = H · f̃i, we obtain

H =
1
|v|

F∑
i=1

H f̃
i f̃i. (3.29)

Besides, multiplying on the right by H both members of the identity

I =
Tf̃

j

tf̃j

+

⎛
⎝I − Tf̃

j

tf̃j

⎞
⎠ (3.30)

and using (2.11), we have that

H =
H f̃

j

tf̃j

f̃j +

⎛
⎝I − Tf̃

j

tf̃j

⎞
⎠ H (3.31)

holds in subregion τ f̃
j , with j = 1, . . . , F . Thus by substituting (3.29) for H in the right hand side of (3.31), we

obtain

H =
F∑

i=1

⎛
⎝ f̃j

tf̃j

δij +

⎛
⎝I − Tf̃

j

tf̃j

⎞
⎠ fi

|v|

⎞
⎠ H f̃

i , (3.32)

where δij is the Kronecker’s symbol, or equivalently

H =
F∑

i=1

vf̃
i (p)H f̃

i , (3.33)

in which

vf̃
i (p) =

fj

tf̃j

δij +

⎛
⎝I − Tf̃

j

tf̃j

⎞
⎠ fi

|v| , for each p ∈ τ f̃
j , with j = 1, . . . , F. (3.34)

Quantities vf̃
i (p), with i = 1, . . . , F , derived in this way, are vector functions, piece-wise uniform in v and uniform

in each subregion τ f̃
j with j = 1, . . . , F . Moreover, they satisfy the following three properties, fundamental to

construct constitutive matrices for the DGA, as outlined by the authors in [1, 14]. The proofs of the properties
will be omitted being similar to those reported in Section 3.2.

Property 3.10. The functions vf̃
i (p), with i = 1, . . . , F are linearly independent, and are such that∫

f̃j

vf̃
i (p) · df̃ = δij (3.35)

holds, for i, j = 1, . . . , F .

Property 3.11. The functions vf̃
i (p), with i = 1, . . . , F allow to represent exactly a uniform vector field from

its Degrees of Freedom, according to (3.33).

Property 3.12. The geometric consistency condition [8]∫
v

vf̃
i (p) dv = fi (3.36)

holds, with i = 1, . . . , F .
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4. Constitutive matrix

4.1. E, H to D, B constitutive relations

We consider a single polyhedron v, where vector fields D, H, E, B exists, related by the constitutive relations

D = εE + ξH, (4.1)
B = ζE + μH

ε, ξ, ζ, ν being double tensors, assumed homogeneous in v, representing the material property. Various physical
properties are satisfied by these tensors [26]. In particular, considering non-dispersive materials for the sake of
simplicity, the existance of a non-negative energy implies that matrix

α =
[

ε ξ
ζ μ

]

is symmetric positive-definite.
Now, we focus on the pairs of geometric elements ei, ẽi, one dual of the other, with i = 1, . . . , L and fi,

f̃i, one dual of the other, with i = 1, . . . , F and we introduce the corresponding pair of degrees of freedom
Ee

i =
∫

ei
E · de, Dẽ

i =
∫

ẽi
D · dr and Bf

i =
∫

fi
B · df, H f̃

i =
∫

f̃i
H · df. We denote in boldface type the arrays

Ee, Dẽ, of dimension L, formed by Ee
i , Dẽ

i respectively, and Bf , Hf̃ , of dimension F , formed by Bf
i , H f̃

i . We
introduce the discrete counterpart of (4.1) in v as

Dẽ ∼= Mee(ε)Ee + Mef̃ (ξ)Hf̃ , (4.2)

Bf ∼= Mf̃e(ζ)Ee + Mf̃ f̃ (μ)Hf̃ ,

where Mee(ε) is a constitutive matrix of dimension L×L, Mef̃ (ξ) is a constitutive matrix of dimension L×F ,
Mf̃e(ζ) is a constitutive matrix of dimension F × L, and Mf̃ f̃ (μ) is a constitutive matrix of dimension F × F .
Equations (4.2) holds only approximately, yielding the well known constitutive error affecting the overall discrete
problem [1,9]. The general case in which ξ = ζ �= 0 is typical of bianistropic electromagnetic media, while the
simpler case in which ξ = ζ = 0 is more common and is typical of isotropic and anisotropic electromagnetic
media.

As shown in [7, 9, 27] for anisotropic media and in [1] for bianisotropic media, the aim is to construct a
constitutive matrix

A =

[
Mee(ε) Mef̃ (ξ)
Mf̃e(ζ) Mf̃ f̃ (μ)

]
(4.3)

which complies with the following requirements: (i) it is symmetric, (ii) it is positive definite and (iii) it is such
that equations (4.2) hold exactly at least for uniform fields E, H, D, B related by (4.1) in v. The requirements
(i) and (ii) are the discrete couterpart of the symmetric, positive definite property for α. They are fundamental
to guarantee the stability of the discretized equations while the last requirement iii) guarantees the consistency
of the discretized equations in the DGA.

In order to comply with these requirements, we will resort to the so called energetic approach proposed
in [1, 14, 16–18] which relies solely on Properties 3.1.1, 3.1.2 and 3.1.3 for the vector basis functions ve

i (p)
with i = 1, . . . , L, and Properties 3.4.1, 3.4.2 and 3.4.3 for the vector basis functions vf̃

i (p) with i = 1, . . . , F .
According to such energetic approach, the number

M ee
ij (ε) =

∫
v

ve
i (p) · εve

j(p) dv (4.4)
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is the i, j entry of constitutive matrix Mẽe(ε), the number

M ef̃
ij (ξ) =

∫
v

ve
i (p) · ξvf̃

j (p) dv (4.5)

is the i, j entry of constitutive matrix Mẽf̃ (ξ), the number

M f̃e
ij (ζ) =

∫
v

vf̃
i (p) · ζve

j(p) dv (4.6)

is the i, j entry of constitutive matrix Mfe(ζ), the number

M f̃ f̃
ij (μ) =

∫
v

vf̃
i (p) · μvf̃

j (p) dv (4.7)

is the i, j entry of constitutive matrix Mf̃ f̃ (μ). It is noted that, interestingly, the integrations in (4.4)-(4.7) can
be performed exactly, the vector basis function ve

i (p), vf̃
i (p) being piece-wise uniform.

As it is well known [27], discrete constitutive equations over a pair of dual grids are straightforwardly achieved
by combining the discrete constitutive equations over the single primal volumes v, rewritten in such a way that
quantities Dẽ, Hf̃ , computed over the dual elements ẽi, f̃i, are expressed as a function of quantities Ee, Bf ,
computed over the primal elements ei, fi. This expression can be easily derived, for each element v separately,
by rewriting (4.2) in the form

Dẽ = (Mee(ε) − Mef̃ (ξ)Mf̃ f̃ (μ)−1Mf̃e(ζ))Ee + Mef̃ (ξ)Mf̃ f̃ (μ)−1 Bf , (4.8)

Hf̃ = −Mf̃ f̃ (μ)−1Mf̃e(ζ)Ee + Mf̃ f̃ (μ)−1 Bf .

4.2. E, B to D, H constitutive relations

In a similar way, a discrete constitutive relation can be derived by rewriting (4.1) in the alternative form

D = (ε − ξμ−1ζ)E + ξμ−1B, (4.9)
H = −μ−1ζE + μ−1B,

as it is always possible since the α matrix is symmetric, positive definite, and by applying the energetic approach
to these equations to get

Dẽ = Mee(ε − ξμ−1ζ)Ee + Mef (ξμ−1)Bf , (4.10)

Hf̃ = Mfe(−μ−1ζ)Ee + Mff (μ−1)Bf ,

in which

M ee
ij (ε − ξμ−1ζ) =

∫
v

ve
i (p) · (ε − ξμ−1ζ

)
ve

j(p) dv (4.11)

is the i, j entry of constitutive matrix Mẽe(ε − ξμ−1ζ), the number

M ef
ij (ξμ−1) =

∫
v

ve
i (p) · ξμ−1vf

j (p) dv (4.12)

is the i, j entry of constitutive matrix Mef (ξμ−1), the number

Mfe
ij (−μ−1ζ) = −

∫
v

vf
i (p) · μ−1ζve

j(p) dv (4.13)
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is the i, j entry of constitutive matrix Mfe(ζ), the number

M f̃ f̃
ij (μ−1) =

∫
v

vf̃
i (p) · μ−1vf̃

j (p) dv (4.14)

is the i, j entry of constitutive matrix Mff̃ (μ−1).
As it can be verified by examples, constitutive relations (4.2), (4.10) are in general different and thus provide

different counterparts of constitutive relations. Also by using Properties 3.1.1, 3.1.2 and 3.1.3 for the vector
basis functions ve

i (p) with i = 1, . . . , L, and Properties 3.2.1, 3.2.2 and 3.2.3 for the vector basis functions vf
i (p)

with i = 1, . . . , F . and by rewriting (4.8), in such a way that Dẽ, Bf are expressed as a function of Ee, Hf̃ as
in (4.2), it can be proven that properties i), ii), iii) hold for the resulting discrete constitutive relations.

4.3. D, B to E, H constitutive relations

In a similar way, a different constitutive relation can be derived by rewriting (4.1) in the alternative form

E = ε−1D − ξμ−1B, (4.15)
H = −μ−1ζE + (ε − ξμ−1ζ)B,

as it is always possible since the α matrix is symmetric, positive definite, and applying the energetic approach
directly to these equations to get

Ee = Mẽẽ(ε−1)Dẽ − Mẽf̃ (ε−1ξ)Hf̃ , (4.16)

Bf = Mf̃ ẽ(ζε−1)Dẽ + Mf̃ f̃ (μ − ζε−1ξ)Hf̃ ,

in which

M ẽẽ
ij (ε−1) =

∫
v

vẽ
i (p) · ε−1vẽ

j(p) dv (4.17)

is the i, j entry of constitutive matrix Mẽẽ(ε−1), the number

M ẽf̃
ij (ε−1ξ) =

∫
v

vẽ
i (p) · ε−1ξvf̃

j (p) dv (4.18)

is the i, j entry of constitutive matrix Mẽf̃ (ε−1ξ), the number

M f̃ ẽ
ij (ζε−1) =

∫
v

vf̃
i (p) · ζε−1vẽ

j(p) dv (4.19)

is the i, j entry of constitutive matrix Mf̃ ẽ(ζε−1), the number

M f̃ f̃
ij (μ − ζε−1ξ) =

∫
v

vf̃
i (p) · (μ − ζε−1ξ

)
vf̃

j (p) dv (4.20)

is the i, j entry of constitutive matrix Mff̃ (μ − ζε−1ξ).
As it can be verified by examples, constitutive relations (4.10) are in general different with respect to previous

constitutive relations (4.2), (4.10). By using Properties 3.3.1, 3.3.2 and 3.3.3 for the vector basis functions vẽ
i (p)

with i = 1, . . . , L, and Properties 3.4.1, 3.4.2 and 3.4.3 for the vector basis functions vf
i (p) with i = 1, . . . , F .

and by rewriting (4.16), in such a way that Dẽ, Bf are expressed as a function of Ee, Hf̃ as in (4.2), it can be
proven that properties i), ii), iii) hold for the resulting discrete constitutive relations. Also by rewritten (4.22)
in such a way that quantities Dẽ, Hf̃ , are expressed as a function of quantities Ee, Bf , the discrete constitutive
equations over a pair of dual grids can be straightforwardly achieved by combining the discrete constitutive
equations over the single primal volumes v.
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4.4. Alternative D, B to E, H constitutive relations

Lastly, a different discrete constitutive relation can be derived by rewriting (4.1) in the alternative form

E = (ε − ξμ−1ζ)−1D − ε−1ξ(μ − ε−1ζ)−1B, (4.21)
H = −μ−1ζ(ε − ξμ−1ζ)−1D + (μ − ζε−1ξ)−1B,

as it is always possible since the α matrix is symmetric, positive definite, and applying the energetic approach
directly to these equations to get

Ee = Mẽẽ((ε − ξμ−1ζ)−1)Dẽ − Mẽf (ε−1ξ(μ − ε−1ζ)−1)Bf , (4.22)

Hf = −Mfẽ(μ−1ζ(ε − ξμ−1ζ)−1)Dẽ + Mff((μ − ζε−1ξ)−1)Bf ,

in which

M ẽẽ
ij ((ε − ξμ−1ζ)−1) =

∫
v

vẽ
i (p) · (ε − ξμ−1ζ)−1vẽ

j(p) dv (4.23)

is the i, j entry of constitutive matrix Mẽẽ((ε − ξμ−1ζ)−1), the number

M ẽf
ij (ε−1ξ(μ − ε−1ζ)−1) =

∫
v

vẽ
i (p) · ε−1ξ(μ − ε−1ζ)−1vf

j (p) dv (4.24)

is the i, j entry of constitutive matrix Mẽf (ε−1ξ(μ − ε−1ζ)−1), the number

Mfẽ
ij (μ−1ζ(ε − ξμ−1ζ)−1) =

∫
v

vf
i (p) · μ−1ζ(ε − ξμ−1ζ)−1vẽ

j(p) dv (4.25)

is the i, j entry of constitutive matrix Mfẽ(μ−1ζ(ε − ξμ−1ζ)−1), the number

Mff
ij ((μ − ζε−1ξ)−1) =

∫
v

vf
i (p) · (μ − ζε−1ξ)−1vf

j (p) dv (4.26)

is the i, j entry of constitutive matrix Mff ((μ − ζε−1ξ)−1).
As it can be verified by examples, constitutive relations (4.22) are in general different with respect to previous

constituive relations (4.2), (4.10), (4.16). By using Properties 3.3.1, 3.3.2 and 3.3.3 for the vector basis functions
vẽ

i (p) with i = 1, . . . , L, and Properties 3.2.1, 3.2.2 and 3.2.3 for the vector basis functions vf
i (p) with i =

1, . . . , F . and by rewriting (4.8), in such a way that Dẽ, Bf are expressed as a function of Ee, Hf̃ as in (4.2), it
can be proven that properties i), ii), iii) hold for the resulting discrete constitutive relations. Also by rewritten
(4.22) in such a way that quantities Dẽ, Hf̃ , are expressed as a function of quantities Ee, Bf , the discrete
constitutive equations over a pair of dual grids can be straightforwardly achieved by combining the discrete
constitutive equations over the single primal volumes v.

5. Numerical results

The introduced constitutive matrices can be used to solve various problems arising in computational physics.
Here we focus on a reference magnetostatic problem which is solved by using a pair of complementary geometric
formulations. The two formulations are based on circulation on primal edges of a magnetic vector potential A
and on a magnetic scalar potential Ω defined in primal nodes respectively; see for example [24] for a detailed
description. The magnetostatic formulations need the reluctance and the permeance constitutive matrices de-
scribed in what follows.
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5.1. Reluctance matrix using vf
i

The reluctance matrix ν = Mff̃ (ν) for polyhedron v relates the magnetic induction flux Φi associated with
fi with the magneto-motive forces (m.m.f.s) Fi associated with f̃i, with i = 1, . . . , F , where ν is the uniform
reluctivity in v; dim(ν) = F holds. The entries of ν are

νij = Mff̃
ij (ν) =

∫
v

vf
i · νvf

j dv.

5.2. Reluctance matrix using vf̃
i

As a first step we construct the permeance matrix μ̃ = Mf̃f (ν−1) for the polyhedron v relating the m.m.f.s
Fi with the magnetic induction fluxes Φi, with i = 1, . . . , F ; dim(μ̃) = F holds. The entries of μ̃ are

μ̃ij = M f̃f
ij (ν−1) =

∫
v

vf̃
i · μvf̃

j dv,

where μ = ν−1 is the uniform permeability in v. As a second step, we invert μ̃ obtaining the reluctance matrix
ν̃ = μ̃−1 = (Mf̃f (ν−1))−1; ν̃ is an alternative constitutive matrix with respect to ν.

5.3. Permeance matrix using ve
i

The permeance matrix μ = Meẽ(μ) for polyhedron v relates the m.m.f.s Fi associated with ei with the
magnetic induction fluxes Φi associated with ẽi, with i = 1, . . . , L; dim(μ)=L holds. The entries of μ are

μij = M eẽ
ij (μ) =

∫
v

ve
i · μve

j dv.

5.4. Permeance matrix using vẽ
i

As a first step, we construct matrix ν̃ = Mẽe(μ−1) for polyhedron v relating Φi with Fi; dim(ν̃)=L holds.
The entries of ν̃ are

ν̃ij = M ẽe
ij (μ−1) =

∫
v

vẽ
i · νvẽ

j dv.

As a second step, we invert ν̃ obtaining the permeance matrix μ̃ = (Mẽe(μ−1))−1 = ν̃−1. Again, μ̃ is an
alternative constitutive matrix with respect to μ.

5.5. Patch test

To test the consistency numerically, firstly we consider a static case, where the actual fields are uniform.
In the cubical domain D we constructed an Cartesian primal complex consisting of 3×3×3 cubical elements,

see Figure 4a. By randomly displacing some nodes, we obtain a new deformed primal complex K made of 27
hexahedra, see Figure 4b. Then, we apply the subgridding technique [19] by subdividing the central hexahedron
in 64 hexahedra and the hexahedron below in 8 hexahedra, see Figure 4c. The final grid is formed by 97 cells, 369
faces, 478 edges, and 195 nodes. The boundary conditions are set in order to generate in D a uniform magnetic
induction field B of amplitude 1 T and pointing down the vertical axis. The linear systems of equations arising
from the magnetostatic problem discretized by the DGA using both complementary formulations [8,24] on the
polyhedral primal complex K are solved using the reluctance and permeance constitutive matrices described
in Sections 5.1, 5.2 and 5.3, 5.4, respectively. It is possible to see in Figure 4d that the uniform field solution
of the magnetostatic problem is interpolated exactly in the whole domain D, by using both formulations and
constitutive matrices constructed by means of basis functions of the primal or dual complex.

5.6. A magnetostatic problem

We will now move to a non-uniform field problem. The reluctance and permeance constitutive matrices
described in Sections 5.1, 5.2 and 5.3, 5.4, respectively, are used to solve a reference magnetostatic problem
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(a)
(b)

(c)
(d)

Figure 4. (a) A cube D is partitioned into 27 cubes. (b) Some of the nodes are randomly
displaced to obtain 27 hexahedra. (c) Two hexahedra are subdivided in 64 and 8 hexahedra,
respectively, by a subgridding technique. (d) The uniform field, solution of the magnetostatic
problem, is interpolated exactly in all D.

Figure 5. The trace on the boundary of the domain box of the grid obtained by the subgridding
of an initial hexahedral grid and successive hexahedral splitting is shown.

consisting in a sphere of radius R = 0.35 m made of linear magnetic medium with relative permeability μr =
1000 immersed in air. Only 1/8 of the problem is meshed with a grid made of 26 121 polyhedra, 85 507 faces,
88 317 edges, and 28 932 nodes. The primal grid is obtained by means of the subgridding of an initial coarse
hexahedral grid and by cutting each hexahedra intersecting the spherical surface by means of triangles [19], as
shown in Figure 5.

In Figure 6, the polyhedral grid of the sphere and the triangular faces bounding the spherical surface are
represented. This kind of polyhedral elements provide a very good tessellation of the spherical surface avoiding
the staircase effect.

An external uniform induction field B = Bz ẑ, Bz = 1 T being the field component along the vertical axis, is
enforced by boundary conditions.

The magnetostatic problem has been solved with two different formulations, which employ different kind of
constitutive matrices.

The A formulation searches for a DoF-array A of the circulations A of the magnetic vector potential along
the primal edges e of the mesh such that

CTF = I (a), F = ν Φ (b), Φ = CA (c), (5.1)

hold, where (5.1a) is the Ampère’s Law at discrete level, I is the array of known solenoidal currents I crossing
the dual faces, F is the array of magneto-motive forces on dual edges, Φ is the array of magnetic fluxes on primal
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Figure 6. Detail of the polyhedral grid and its trace on the interface surface between sphere
and air.

faces and C is an incidence matrix containing the incidences between each face-edge pair. Finally, (5.1c) assures
that Gauss’s Law at discrete level DΦ = 0 is identically satisfied, since DC = 0 holds. By substituting (5.1b)
and (5.1c) in (5.1a), we obtain the algebraic system

CT νCA = I, (5.2)

for which the boundary conditions must be specified in terms of A on the primal edges on the boundary of D.
The Ω formulation searches a DoF-array Ω of magnetic scalar potentials Ω associated with the nodes n such

that
GT Φ = 0 (a), Φ = μF (b), F = GΩ + T (c) (5.3)

hold, where (5.3a) is Gauss’ Law at discrete level, G is the incidence matrix that stores the incidences between
each edge-node pair and Φ is the array of magnetic fluxes on dual faces. F is the array of magneto-motive forces
on primal edges, whereas T is the known array of the circulations T of the electric vector potential along primal
edges. The array T satisfies the following property CT = I, where I is the array containing the known solenoidal
currents on primal faces. T may be obtained by back-substitution only, i.e. without solving any global system,
as indicated in [21]. Finally, (5.3c) assures that Ampère’s Law at discrete level CF = I is identically satisfied,
since CG = 0 holds. Then by substituting (5.3b) and (5.3c) in (5.3a), we obtain the system of equations

GT μGΩ = −GT μT, (5.4)

where the boundary conditions must be specified in terms of Ω on the nodes on the boundary of D.
The magnetostatic problem using the A formulation [24] consists of 88 317 unknowns and it is solved in about

3.1 s and 5.3 s, using the ν and ν̃, respectively. The magnetostatic problem using the Ω formulation [24] consists
of 28 932 unknowns and it is solved in about 0.9 s and 1.8 s, using the μ and μ̃, respectively. Figure 7 shows the
computed component Bz along the z axis of B using both complementary magnetostatic formulations, along a
number of sample points on a horizontal line. In the same Figure, Bz has been compared with the analytical
solution showing very good agreement. Table 1 contains the numbers of iterations needed by the Conjugate
Orthogonal Conjugate Gradient (COCG) method to converge at the solution of the linear systems of equations
together with the error in energy norm, evaluated by using

εB =

√√√√∫D ν |B − Bref |2 dV∫
D

ν |Bref |2 dV
,

which also shows a very good agreement with the analytical solution.
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Figure 7. The computed Bz components by the complementary magnetostatic formulations on
a number of sample points along a line are shown and compared with the analytical solutions.

Table 1. COCG iterations and errors in energy norm for each proposed constitutive matrix.

Constitutive matrix ν ν̃ μ μ̃

Formulation [24] A A Ω Ω
Unknowns 88 317 88 317 28 932 28 932
COCG iterations 106 193 74 157
εB [%] 0.60 0.86 0.43 0.78

6. Full wave electromagnetics problem in bianisotropic medium

A full wave electromagnetic problem in the frequency domain is considered in the waveguide Ω shown in
Figure 8. Half of the waveguide is empty and half is filled with a lossless reciprocal bianisotropic material, having
tensors ¯̄ε and ¯̄ν of vacuum and

¯̄ξ = ¯̄ζ = iκ

⎡
⎣ 1 1 0

1 1 0
0 0 1

⎤
⎦ ,

where κ is a material dependent parameter. The fundamental Transverse Electrical mode (TE10) is applied at
the input port, while at the output port a Perfect Electric Conductor (PEC) condition is set. The waveguide is
meshed with tetrahedra defining a primal grid G and a barycentric dual grid G̃ is adopted. The discretization is
made by the the proposed DGA approach.

This approach searches the DoF-array U of the circulations of the electric field along the primal edges e of
the mesh such that

CU = −iωΦ (a), Ψ = εU + ξΦ (b), F = ζU + νΦ (c), CTF = iωΨ (d), (6.1)

hold, where ω is angular frequency, (6.1a) is Faraday’s Law at discrete level, Ψ is the array of electric dispacement
fluxes on dual faces, F is the array of magneto-motive forces on dual edges, Φ is the array of magnetic induction
fluxes on primal faces and C is an incidence matrix containing the incidences between each face-edge pair.
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Figure 8. Benchmark’s problem.
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Figure 9. Susceptance Im(Y ) at the TE10 port as a function of material parameter κ, for
increasingly refined meshes. Percent differences with respect to the FEM solution are shown by
thin dashed lines.

Finally, (6.1d) is Ampère−Maxwell’s law at discrete level. By substituting (6.1b), (6.1c), (6.1d) in (6.1a), we
obtain the algebraic system

(CT νC − iω(CT ζ + ξC) − ω2ε)U = 0 (6.2)

for which the boundary conditions must be specified in terms of U on the primal edges on the boundary of D.
The susceptance Im(Y (ω)) at the input port of the structure has been evaluated by determining the flux of

Poynting’s vector across it. The results for two grids with 35 934 and 55 456 edges, are compared in Figure 9 with
an accurate FEM solution, as a function of κ. The construction and the solution of each system of equations
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over the finer grid, by the Matlab direct solver, required about 5 s. The variation in storage requirements and
computational times with respect to the case of isotropic materials is negligible.

7. Conclusion

New vector basis functions, which allow one to construct stable and consistent discrete constitutive equations
for the Discrete Geometric Approach to computational electromagnetics even with bianisotropic media, have
been introduced. The corresponding material matrices are obtained efficiently by a simple closed-form geometric
construction. The results obtained by such constitutive matrices, considering both a magnetostatic and full wave
electromagnetics benchmark problem, are in good agreement with the reference solutions.
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