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Advanced geometric formulations for the design of a long defects detection
system

Ruben Specogna* and Francesco Trevisan

University of Udine, via delle Scienze 208, 33100 Udine, Italy

(Received 29 February 2008; final version received 19 May 2008 )

The aim of the paper is to highlight some of the innovative methodologies, techniques and
systems for nondestructive electromagnetic testing, which have been developed in the
framework of the applications of methods of a diagnostics electromagnetic project partially
funded by the Italian Ministry of University and Research.
In particular, we will present the feasibility design of a suitable exciting-receiving coils

configuration able to detect long defects by means of eddy-currents. To solve the forward
eddy-currents problem, advanced analysis tools have been developed and validated.

Keywords: nondestructive testing; eddy-currents; discrete approaches

1. Introduction

The strong international industrial competition forced industrial companies to optimise the

manufacturing processes, in order to reduce the overall manufacturing time. One of the

conditions to be satisfied for this goal is the capability to detect very quickly the product

non-conformities with respect to the assumed standards.

For these reasons, there is a remarkable interest in the techniques for the detection of the

surface defects that can be present during the hot mill rolling process of the steel bars with

circular cross-section (with a diameter from 8 to 80mm, a speed from 5 to 100m/s in the

longitudinal direction and a temperature from 800 to 12008C).

The capability to detect these defects permits a fast and straightforward quality assessment of

the product and provides the possibility to reduce those defects due to a wrong set-up of the

manufacturing process parameters. The defects considered have a depth ranging from 0.1 to

2mm and, even though they have quite different shapes and sizes, they generally correspond to

an interruption of the material continuity (also from the electrical point of view) and lay along an

almost axial direction. Two main categories of surface defects can be considered depending on

their axial length L: the ‘short’ defects, with L ranging from 1 to 20mm and the ‘long’ defects

with L from a metre to tens of metres. In any case, the defect width is much smaller than the two

other dimensions. Short defects can be easily detected using a differential method in which the

signal, after the noise reduction, is compared to a similar signal taken few centimetres away

along the axial direction. On the contrary, so far, no practical solution has been found as regards

to the detection of long defects, for which a differential approach is not suitable.

The motivation of this paper is to develop the feasibility design of an exciting-receiving coil

configuration able to detect the long defects. The numerical simulations have been performed

with a discrete geometric approach [1–4] based on the so-called A–x and T–V formulations1
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described in [5,7,10] and modified in order to represent the effect of source currents in an

integral way. For numerical comparisons, we used an integral formulation [8].

2. Geometric model of the problem

The geometry of the problem consists of a conducting AISI (American Iron and Steel Institute)

310 steel bar, modelled as a conducting cylinder Dc. The radius of the bar is 17mm and the

conductivity is s ¼ 1.236 £ 106 S/m. A longitudinal perfectly insulating defect is assumed,

0.5mm deep from the surface of the cylinder and 0.2mm thick. A pair of source coils Ds (30mm

inner radius, 39mm outer radius, 1.5mm height, 7 turns each) are fed by a sinusoidal current of

I ¼ 200mA per turn with a frequency of f ¼ 100 kHz, Figure 1. They are connected in counter

series and the distance between the two coils is 30mm, see Figure 2(a) and (b).

A set of 12 evenly spaced circular-receiving coils (3mm inner radius, 6.5mm outer radius,

6mm height, 400 turns, lift-off 15mm) with axis directed as the radii of the bar, are considered.

3. Solution of the eddy-current problem

3.1 Introduction to discrete geometric approach

In order to solve the eddy-current problem we resort to the so-called discrete geometric approach

[1–4].

The domain of interest D of the eddy-current problem has been partitioned into a source

region Ds, consisting of a pair of current-driven coils, and of a passive conductive region Dc.

The complement of Dc < Ds in D represents the air region Da. We assume linearity of media, a

permeability m0 in D and a resistivity r in Dc.

We introduce in D a pair of interlocked cell complexes [1,2]. One complex is made of

simplexes, i.e., nodes, edges, faces (triangles) and volumes (tetrahedra), while the other is

obtained from it, according to the barycentric subdivision. Each geometric element of a cell

complex is endowed with an orientation [4]. The cell complex whose geometric elements are

endowed with inner orientation is referred to as the primal complex and denoted with K.

Whereas we denote with ~K the cell complex whose geometric elements are endowed with outer

orientation, as the same geometric element of a complex can be thought with two

Figure 1. Geometric model of the detection system. It consists of a pair of transmission coils coaxial with
the steel bar and 12 evenly spaced circular-receiving coils.
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complementary orientations, we may construct two pairs of meshes M0 ¼ ðKs; ~KÞ and

M00 ¼ ðK; ~KsÞ, where the superscript ‘s’ indicates the simplicial complex. The geometric

elements of the primal mesh (Ks forM0 orK forM00) are denoted with n for nodes, e for edges, f

for faces and v for volumes; whereas the geometric elements of the dual mesh ( ~K for M0 or ~Ks

for M00) are denoted with ~n; ~e; ~f; ~n, respectively, Figure 3.

The interconnections between the geometric elements of a complex of M0 or M00 are

described by means of incidence matrices. In particular for the simplicial primal complexKs, we

denote with G the incidence matrix between the orientations of e and n, with C the incidence

matrix between the orientations of f and e and with D the incidence matrix between the

orientations of v and f ; similarly for the simplicial dual complex ~Ks we write ~G; ~C and ~D,

respectively. In particular between the incidence matrices of Ks and ~Ks we have that G ¼ 2 ~G,2

C ¼ ~C; D ¼ ~D hold.

Next, we consider the integrals of the field quantities, also referred to as global variables, for an

eddy-current problemwith respect to the oriented geometric elements of ameshM0orM00, yielding

the degrees of freedom (DoF) arrays (denoted in boldface type); each entry of aDoF array is indexed

over the corresponding geometric element. There is a univocal association between a global variable

and the corresponding geometric element [4], and we denote them by:

. F the array of magnetic induction fluxes associated with f [ D;

. F the array of magnetomotive forces (m.m.f.s) associated with ~e [ D;

. I the array of electric currents associatedwith ~f [ Dc < Ds. InDs we introduce the array Is of

impressed currents;

. U the array of electromotive forces on primal edges e [ Dc.

With respect to the cell complexes previously defined, we recall the algebraic equations

governing the discrete eddy-currents problem in the framework of the discrete geometric

approach [5,7,10].

3.2 A–x formulation

In D we consider the meshM0 and we refer all the incidence matrices to the simplicial complex

Ks. We denote with:

Figure 2. Details of the detection system geometry.
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. A the array of the circulations A of the magnetic vector potential along the primal edges

e [ D;

. x the array of electric scalar potential x associated to primal nodes n [ Dc.

Using the discrete geometric approach, Maxwell’s laws can be written exactly as topological

balance equations between DoFs arrays as

CTF ¼ I; ð1aÞ

F ¼ CA; ð1bÞ

GTI ¼ 0; ð1cÞ

where (1a) is the Ampère’s law at discrete level, (1b) assures that Gauss’ law at discrete level

DF ¼ 0 is satisfied identically (since DC ¼ 0 holds) and (1c) is the continuity law.

The discrete counterpart of the constitutive laws can be written as

F ¼ nF; in D; ð2aÞ

I ¼ sU; in Dc: ð2bÞ

The square matrix n (dim(n) ¼ Nf, Nf being the number of faces in Ks) is the reluctance matrix

such that (2a) holds exactly at least for an element-wise uniform induction field B and magnetic

field H in each tetrahedron and it is the approximate discrete counterpart of the constitutive

relation H ¼ nB at continuous level, n being the reluctivity assumed element-wise a constant.

The square matrix s ðdimðsÞ ¼ Nec , Nec being the number of edges in Dc) is the conductance

matrix such that (2b) holds exactly at least for an element-wise uniform electric field E and

current density J in each tetrahedron and it is the approximate discrete counterpart of the

constitutive relation J ¼ s E at continuous level, s being the conductance assumed element-wise

a constant. The construction of the constitutive matrices n and s will be described in detail in

Section 2.4.

Figure 3. Mesh M0 is shown on the left side and mesh M00 on the right.
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Next, we recall the discrete Faraday’s law in the frequency domain CU ¼ 2iwF, and using

(1b), we may write

U ¼ 2iw
�
AþGx

�
; ð3Þ

since CG ¼ 0 holds identically.

By substituting (2a), (2b), (3) and (1b) in (1a) we obtain the algebraic equations in a one-to-

one correspondence with the edges and substituting (2b) and (3) in (1b) we obtain the algebraic

equations in a one-to-one correspondence with conductor’s nodes. The final algebraic system,

having A and x as unknowns DoFs arrays, can be written as

ðCTnCAÞe ¼ 0 ;e [ Da;

ðCTnCAÞe ¼ ðIsÞe ;e [ Ds;

ðCTnCAÞe þ iwðsAcÞe þ iwðsGxÞe ¼ 0 ;e [ Dc;

iwðGTsAcÞn þ iwðGTsGxÞn ¼ 0 ;n [ Dc;

ð4Þ

where array Ac is the sub-array of A, associated with primal edges in Dc. With notation (x)k, we

mean the kth row of array x, where k ¼ {e, n} is the label of edge e or of node n.

To close the problem, the boundary conditions must be specified; we impose a zero A on the

primal edges e on the boundary of D. System (4) is singular and, to solve it, we rely on conjugate

gradient (CG) method without gauge condition [23].

3.3 T–V formulation

In D we consider the meshM00 and we refer all the incidence matrices to the simplicial complex
~Ks. We denote with:

. T the array of the circulations of the electric vector potential T along ~e [ Dc < Ds. In Ds

we introduce the array Ts of impressed electric vector potential;

. V the array of magnetic scalar potential V associated with dual nodes ~n [ D.

Again, according to the discrete geometric approach, Maxwell’s laws can be written exactly as

topological balance equations between DoFs arrays as

~GTF ¼ 0; ð5aÞ

F ¼ ~GVþ T; ð5bÞ

~CTU ¼ 2iwF; ð5cÞ

where (5a) is the Gauss’ magnetic law at discrete level and (5c) is the Faraday’s law. We search

for an array T such that ~CT ¼ I; in this way continuity law ~DI ¼ 0 is identically satisfied. In Ds

the circulation of the electric vector potential T has a prescribed value calculated in such a way

that ~CTs ¼ Is. Finally, (5b) satisfies Ampére’s law ð ~CF ¼ IÞ identically since ~C ~G ¼ 0.

The discrete counterpart of the constitutive laws can be written as

F ¼ mF; in D; ð6aÞ

U ¼ rI; in Dc: ð6bÞ
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The square matrix r ðdimðrÞ ¼ Nf c ; Nf c being the number of faces of Ks in Dc) is the resistivity

matrix such that (6b) holds exactly at least for an element-wise uniform current density field J

and electric field E in each tetrahedron and it is the approximate discrete counterpart of the

constitutive relation E ¼ rJ at continuous level, r being the resistivity assumed element-wise a

constant. The square matrix m (dim(m) ¼ Ne, Ne being the number of edges in D) is the

permeance matrix such that (6a) holds exactly at least for an element-wise uniform magnetic

field H and induction field B in each tetrahedron and it is the approximate discrete counterpart of

the constitutive relation B 5 mH at continuous level, m being the permeability assumed element-

wise a constant. The construction of the constitutive matrices r and m will be described in detail

in Section 2.4.

By substituting (6a) and (6b) in (5a) we obtain the algebraic equations in a one-to-one

correspondence with the nodes in Dc and Ds and substituting (6a), (6b) and Ampére’s law
~CF ¼ I in (5b) we obtain the algebraic equations in a one-to-one correspondence with the

conductor’s edges. The final algebraic system, having T and V as unknowns DoFs arrays,

becomes

ð ~GTm ~GVÞ~n ¼ 0 ;~n [ Da;

ð ~GTm ~GVÞ~n ¼ 2ð ~GTmTsÞ~n ;~n [ Ds;

ð ~GTm ~GVÞ~n þ ð ~GTmTÞ~n ¼ 0 ;~n [ Dc;

ð ~CTr ~CTÞ~e þ iwðmðTþ ~GVÞÞ~e ¼ 0 ;~e [ Dc: ð7Þ

To compute the array Ts form Is, the technique described in [15] can be used. The boundary

conditions must be specified; T on the dual edges ~e on the boundary ofDc must be zero to avoid a

current flow from the conductor domain to air domain. System (7) is singular and, to solve it, we

rely on CG method without gauge condition.

Figure 4. (a) a dual edge e and the one-to-one corresponding face f; (b) a schematic representation of a
boundary portion of a conductor domain Dc with a hole and the relative thick cut. Each primal face f
composing the cut surface Si is the dual of the thick cut edge ê; (c) the boundary of Si is the line bi

composed by primal edges e.
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3.3.1 T–V formulation with multiply connected regions

It is well known that in the case of multiply connected regions [14], the m.m.f.s along dual edges

~e [ Da cannot be described completely by the magnetic scalar potential alone. Therefore,

according to the classical approach of the thick cuts, we extend the definition of the circulations

T of the electric vector potential along the dual edges ~e [ Da belonging to the so-called thick

cuts regions Dtc. Algorithms to compute Dtc can be found in [17] and [18].

In Figure 4(a), a dual edge ~e and the one-to-one corresponding face f are shown. A surface

obtained by the union of all primal faces f in one-to-one correspondence with dual edges ẽ

belonging to each thick cut region of Dtc is called cut surface. In Figure 4(b), a possible cut

surface Si is depicted in grey and it consists of a collection of a number of primal faces f.

In Figure 4(c), a portion of the boundary bi of Si, composed by primal edges e, is shown.

A formal and detailed description of the formulation is presented in [19], we recall it briefly.

In the case of non-simply connected conductor regions the domain Dtc exists and, to

complete the linear system of equations, additional equations are needed, since additional

unknowns DoFs ðTÞ~e, with ~e [ Dtc, are present. For each cut surface, a non-local Faraday law

(5c) has to be written involving the cut surface Si and its boundary bi:

X
e[bi

seð r ~CTÞe ¼ 2iw
X
f[Si

sfðm ðTþ ~GVÞÞf ;

where se is the incidence number (^1) between the inner orientations of bi and the primal edge

e [ bi and sf is the incidence number (^1) between the inner orientations of the cut surface Si

and the inner orientation of the primal face f [ Si.

The other missing equations have to enforce the circulation of the electric vector potential

along all homologous paths in Da < Dtc to have the same value, because the circulation have to

match the linked current according to the Ampére’s law. This is obtained imposing that the

circulation of electric vector potential associated with dual edges belonging to Si to be the same,

since T ¼ 0 holds outside the thick cut region.

Finally, the boundary conditions to impose are ðTÞ~e ¼ 0 on ~e [ › ðDc < DtcÞ.

3.4 Construction of the constitutive matrices

Classical ways to construct the constitutive matrices n, r and s, m, are the discrete Hodge

technique based on Whitney’s maps, described in [9] or the so called Galerkin Hodge [6], that

produce the same stiffness matrix as the finite elements with first order edge element basis

functions. With the first solution the obtained matrix is non-symmetric, but it is possible to

demonstrate that, if the Whitney’s functions are evaluated in the bary centre of the tetrahedron

the matrix s becomes symmetric [10].

Here, we will consider another original solution that uses the edge and face vector base

functions defined in [11–13]. As proven in the above cited papers, these base functions assure

that symmetry, positive-definiteness, and consistency3 properties are satisfied for all constitutive

matrices.

To construct m and r, we will refer to a single tetrahedron ~vwith a uniform permeability m or

resistivity r; the constitutive matrices for the overall mesh of tetrahedra are obtained by

summing up the contributions from the single elements. We will denote with ~n the four dual

nodes of tetrahedron ~v and with v the four primal volumes in ~v; each v is a hexahedron in a

one-to-one correspondence with a node ~n. We denote with V the volume of ~v.
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3.4.1 Resistance constitutive matrix

The entries of matrix r, of dimension 4 £ 4 for tetrahedron ~v, are computed as

rij ¼

ð
~v

v~fi ·rv~fi dv; ð8Þ

where v~fi is the face vector function associated with the dual face
~fi of tetrahedron ~v; the nodes of

the face ~fi are denoted with ~na; ~nb; ~nc, respectively. The support of v~fi is the union of the three

primal volumes having a non–null intersection with face ~fi; we denote these primal volumes as

va, vb, vc and the corresponding dual nodes as ~na; ~nb; ~nc, respectively. We also denote with

~er; ~es; ~et; the edge vectors associated with edges ~er; ~es; ~et; drawn from the nodes ~na; ~nb; ~nc; and not
belonging to the boundary of ~fi.

Then, the face vector function v~fi attached to ~fi is defined as

v~fi ðpÞ ¼

~D~vi
~Gra

~er
3V

; if p [ va;

~D~vi
~Gsb

~es
3V

; if p [ vb;

~D~vi
~Gtc

~et
3V

; if p [ vc;

8>>><
>>>: ð9Þ

where ~D~vi is the incidence number between outer orientations of the pair ~v and ~fi; ~Gra is the

incidence number between outer orientations of the pair ~er; ~na and similarly for the others.

3.4.2 Permeance constitutive matrix

The entries of matrix m, of dimension 6 £ 6 for tetrahedron ~v, are computed as

mij ¼

ð
~v

v~ei·mv~ej dv; ð10Þ

where v~ei is the edge vector function associated with the dual edge ~ei of tetrahedron ~v; the nodes

of the edge ~ei are denoted with ~na; ~nb, respectively. The support of v~ei is the union of the two

primal volumes having a non-null intersection with edge ~ei; we denote these primal volumes as

va; vb and the corresponding dual nodes as ~na; ~nb, respectively. We also denote with ~fr, ~fs the face

vectors4 associated with the faces ~fr, ~fs. The face ~fr has one vertex only coincident with the node

~na and the face ~fs has one vertex only coincident with the node ~nb.

Then, the edge vector function v ~ei attached to ~ei is defined as

v~eiðpÞ ¼

~Gia
~D~vr

~fr
3V

; if p [ va

~Gib
~D~vs

~fs
3V

; if p [ vb;

8<
: ð11Þ

where ~Gia is the incidence number between ~ei and ~na, ~D~vr is the incidence number between ~v

and ~fr.
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3.4.3 Reluctance and conductance matrices

Since both n and r are defined using face functions, while s and m are defined using edge

functions, we can calculate n and s from the previous formulas with:

nij ¼

ð
~v

v~fi ·n v~fj dv; ð12Þ

and

sij ¼

ð
~v

v~ei ·sv~ej dv; ð13Þ

so, for example, n and r differ only by the material constant that is element-wise uniform by

hypothesis.

3.5 Integral representation of sources

3.5.1 A–x

Thanks to the linearity of media, we can express the array A as A ¼ Ar þ As, where As is the

array of circulations of the contribution to the magnetic vector potential produced by the source

currents in Ds and Ar is the array of circulations of the contribution to the magnetic vector

potential due to the eddy-currents in Dc. Therefore, we have that

ðCTnCAsÞe ¼ ðIsÞe ðCTnCArÞe ¼ 0 ;e [ Ds;

ðCTnCAsÞe ¼ 0 ðCTnCArÞe ¼ ðIÞe ;e [ Dc;
ð14Þ

holds where I is the array of eddy-currents crossing ~f inDc. Each entry (As)i of the arrayAs can be

pre-computed as ðAsÞi ¼
Ð
eiAs·dl; where ei is a primal edge in D and As is the magnetic vector

potential due to the known source current density in Ds. In our case, we have stranded circular

coils and As can be computed in closed form in terms of the elliptic integrals of the first and

second kind [16].

In this way, we can rewrite system (4) by removing the source currents from its right hand

side, obtaining

ðCTnCArÞe ¼ 0 ;e [ D2 Dc;

ðCTnCArÞe þ iwðsAcrÞe þ iwðsGxÞe ¼ v ;e [ Dc;

iwðGTsAcrÞn þ iwðGTsGxÞn ¼ w ;n [ Dc; ð15Þ

where v ¼ 2 iw(sAcs)e and w ¼ iw(GTv)e.

3.5.2 T–V

In order to avoid the specification of the array Ts in (7), we adopt an integral representation of the

effect of the source currents inDs. Thanks to the linearity of media, we can express the DoF array

F of m.m.f.s along dual edges as F ¼ Fs þ Fr, where Fs is the array of m.m.f.s produced by the

source currents in Ds and Fr is the array of m.m.f.s due to the eddy-currents in Dc. Each entry Fs

of the array Fs can be computed as Fs ¼
Ð
~e
Hs·dl, where Hs is the magnetic field expressed by the

Biot–Savart law from the source currents in Ds and ~e is a dual edge. Applying Ampere’s law
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we have that

ð ~CFsÞ~f ¼ ðIsÞ~f ð ~CFrÞ~f ¼ 0 ;~f [ Ds;

ð ~CFsÞ~f ¼ 0 ð ~CFrÞ~f ¼ ðIÞ~f ;~f [ Dc;

ð ~CFsÞ~f ¼ 0 ð ~CFrÞ~f ¼ 0 ;~f [ Da < Dtc: ð16Þ

Therefore, the following potentials can be used: ðFrÞ~e ¼ ð ~GVÞ~e with ~e [ ðDa 2 DtcÞ< Ds

and ðFrÞ~e ¼ ðTr þ ~GVÞ~e with ~e [ Dc < Dtc, where Tr is the array of the circulation of the

electric vector potential due to the eddy-currents in Dc. Therefore, (7) can be rewritten,

respectively, as

ð ~GTm ~GVÞ~n ¼ 2ð ~GTmFsÞ~n ;~n [ ðDa 2 DtcÞ;

ð ~GTm ~GVÞ~n þ ð ~GTmTcÞ~n ¼ 2ð ~GTmFsÞ~n ;~n [ Dc < Dtc < Ds;

ð ~CTr ~CTcÞ~e þ iwmðTc þ ~GVÞ~e ¼ 2iwðmFsÞ~e ;~e [ Dc: ð17Þ

In the case of non-simply connected conductor region, the domainDtc exists and, like we already

showed, additional equations have to be written for each dual edge ~e [ Dtc [19].

3.6 Calculation of the induced voltage

For the calculation of the induced voltage with both formulations, we sub-divide the coil in a

series ofM sub-coils. Each sub-coil has a cross-section area Si such that
PM

i¼1Si ¼ S, S being the

total area of the cross-section of the coil. The voltage induced at the terminals of the ith sub-coil

can be determined by

Ui ¼ 2iwFi ¼ 2iwNi

ð
ci

A·dI;

where ci is the circumference coaxial with the coil and passing through the barycentre of the

considered sub-coil and A is the total magnetic vector potential; Ni is the number of turns relative

to the ith sub-coil defined as Ni ¼ (Si/S)N, N being the total number of turns. The vector potential

is calculated in the point P by

AðPÞ ¼ AsðPÞ þ ArðPÞ ¼ AsðPÞ þ
m0

4p

ð
Dc

JðP0Þ

jP2 P0j
dV;

where As and Ar are the magnetic vector potentials produced in P, respectively, by the source

currents in Ds and the eddy-currents J in Dc.

4. Numerical results

When detecting long defects, a reference signal for each coil is not available, therefore it is not

possible to use a differential detection system.

To have an estimate of the expected voltage variations in the coils due to the presence of the

defect, we computed the voltage variations DU ¼ Ud 2 U0 between the voltage on each coil Ud

when the defect is present and the voltage U0 on the same coil without the defect present.

To this aim we need to solve a pair of eddy-currents problems with the GAME (geometrical

approach for Maxwell equations) code [20] with both A–x and T–V formulations and integral
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representation of sources. In NDT (nondestructive testing) applications, the GAME code has

been validated in [5,21,22].

The defect has been modelled as a volume discretised with a collection of tetrahedra.

The unstructured mesh used consists of 218,685 tetrahedrons, 256,984 edges and 37,629 nodes,

yielding 285,285 DoF for the A–x formulation and 222,410 DoF for the T–V. The time to solve

each linear system, obtained from the same mesh, on a P4 3GHz laptop, 2Gb RAM, is 126 s for

the T–x formulation, while the A–x formulation takes 176 s.

We apply also the CARIDDI code [8] implementing the integral formulation to the system

under test, splitting the current into a perturbed and an unperturbed solution. Due to the

symmetry of the excitation and pickup coils with respect to the conductive region, the memory

storage and computational time can be reduced by discretising only one-eighth of the steel

cylinder. The mesh used for the perturbed solution is localised near the flaw, allowing for both an

increase of accuracy and a reduction of the numbers of unknowns.

It is also interesting to test different positions of the defect in relation to the coil’s arrangement.

Thanks to the integral representation of the sources, instead of moving the defect it is simpler to

move the set of coils keeping always the samemesh. In Figure 2(a), one can see the 2 positions of the

defect that have been tested:D1 is themost sensible position (the defect is just under the coil #4) and

D2 is the less sensible position (the defect is between coil #3 and coil #4).

The compared results are shown in Figure 5.

To detect the defect location an inversion technique based on neural networks can be used,

thus this configuration has the potential advantage of indicating also the location of the defect.

Figure 5. Voltage variation on each of the 12 receiving coils for the two positions of the defect D1 and D2.
The numerical results obtained with the GAME and CARIDDI codes are in a good agreement with each
other.
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5. Conclusions

The paper describes two discrete geometric formulations tailored to solve a nondestructive

eddy-currents testing problem for the long defect detection during the hot steel-bar production.

The numerical results are in agreement with each other and demonstrate that the two

formulations can be considered as useful tools for the numerical modelling and design of

eddy-currents diagnostics devices.

In particular it is well known that, like in the framework of Finite Elements, using the

average solution obtained by two complementary formulations yields a considerably reduced

error in respect to the one obtained using results of each formulation separately.

This motivates an investment in the more complicated, at least when dealing with non-

simply connected domains, T–V formulation.

Notes

1. These formulations are part of the GAME (geometric approach for Maxwell equations) code developed
by R. Specogna and F. Trevisan with the partial support of MIUR (Italian Ministry for University and
Research).

2. The minus sign comes from the assumption that inner/outer orientations of a node are opposite.
3. A precise definition of the notion of consistency for constitutive matrices is given in [3].
4. This is a vector normal to the face oriented as the outer orientation of the face and with amplitude equal

to the area of the face.
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