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ANA ALONSO RODRÍGUEZ† , ENRICO BERTOLAZZI‡ , RICCARDO GHILONI† , AND

RUBEN SPECOGNA§

Abstract. Let Ω be a bounded domain of R3 whose closure Ω is polyhedral, and let T be a
triangulation of Ω. We devise a fast algorithm for the computation of homological Seifert surfaces
of any 1-boundary of T , namely, 2-chains of T whose boundary is γ. Assuming that the boundary
of Ω is sufficiently regular, we provide an explicit formula for a homological Seifert surface of any
1-boundary γ of T . It is based on the existence of special spanning trees of the complete dual graph
and on the computation of certain linking numbers associated with those spanning trees. If the
triangulation T is fine, the explicit formula is too expensive to be used directly. To overcome this
difficulty, we adopt an easy and very fast elimination procedure, which sometimes fails. In such
a case a new unknown can be computed using the explicit formula and the elimination algorithm
restarts. The numerical experiments we performed illustrate the efficiency of the resulting algorithm
even when the homology of Ω is not trivial and the triangulation T of Ω consists of millions of
tetrahedra.
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1. Introduction. A basic concept of knot theory is that of a Seifert surface. A
Seifert surface of a smooth knot of R3 is an orientable compact smooth surface of
R3 having the knot as its boundary (see [29]). If the Seifert surface has minimum
area, then it is called minimal surface of the knot. The notion of Seifert surface has
a natural counterpart in simplicial homology theory. Let Ω be a bounded domain of
R3 whose closure Ω in R3 is polyhedral, and let T be a triangulation of Ω. A 1-cycle
γ of T is a formal linear combination (with integer coefficients) of oriented edges of
T with zero boundary. The 1-cycle γ is said to be a 1-boundary of T if it is equal
to the boundary of a 2-chain of T , namely, equal to the boundary of a formal linear
combination S of oriented faces of T . If such an S exists, we call it a homological
Seifert surface of γ in T .

Given an orientation of the edges and of the faces of the triangulation T of Ω,
the problem of constructing a homological Seifert surface of γ in T can be formulated
as a linear system with as many unknowns as faces and as many equations as edges
of T . The matrix A of this linear system is the incidence matrix between faces and
edges of T . This matrix is very sparse because it has just three nonzero entries per
column and the number of nonzero entries on each row is equal to the number of faces
incident on the edge corresponding to the row. We are looking for an integer solution
of this sparse rectangular linear system. These kinds of problems are usually solved
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†Dipartimento di Matematica, Università di Trento, Trento 38123, Italy (ana.alonso@unitn.it,

riccardo.ghiloni@unitn.it).
‡Dipartimento di Ingegneria Industriale, Università di Trento, Trento 38123, Italy (enrico.
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using the Smith normal form, a computationally demanding algorithm even in the
case of sparse matrices (see, e.g., [26] and [21, 17]). In this way, the natural linear
algebra formulation of the mentioned problem leads to a high complexity algorithm.

The aim of this paper is to devise a fast and robust algorithm to compute a
homological Seifert surface S of any given 1-boundary γ of T . Here we are not in-
terested in questions concerning the regularity or the minimality of S. Even if the
1-boundary γ of T is a polygonal knot (without self-intersections), in general, our
algorithm gives a homological Seifert surface of γ in T , which is neither a genuine
polyhedral Seifert surface (it may have self-intersections) nor a polyhedral minimal
surface in T . In fact, our motivations for studying homological Seifert surfaces are
completely different, as we explain below. However, we think that, in future inves-
tigations, our approach could be taken as a new starting point to obtain polyhedral
Seifert and minimal surfaces.

The identification of homological Seifert surfaces is a fundamental task in very
different fields.

Let us recall two remarkable examples.
They appear in Stokes’ theorem: given a sufficiently regular vector field Z defined

in Ω and a 1-boundary γ of T , we have that
∮
γ
Z · ds =

∫
S

curlZ · ν, where S is any
homological Seifert surface of γ in T . As a consequence, homological Seifert surfaces
are a powerful tool in computational electromagnetism, in particular for the constru-
ction of vector fields with assigned discrete curl. This is an initialization step required
in many algorithms, because, thanks to Ampère’s law, we know that the curl of the
magnetic field equals the current density (see, e.g., [8, 19, 5]).

Homological Seifert surfaces are also a key point in the construction of bases of the
relative homology group H2(Ω, ∂Ω;Z). Let {σ′m}gm=1 be 1-boundaries of T contained
in ∂Ω whose homology classes in R3 \ Ω form a basis of the first homology group of
R3 \Ω (for a construction of such a basis see, e.g., [20] and [4]). If Sm is a homological
Seifert surface of σ′m in T for each m ∈ {1, . . . , g}, then the Poincaré–Lefschetz and
Alexander duality theorems ensure that the relative homology classes [Sm] of the Sm’s
form a basis of H2(Ω, ∂Ω;Z). We refer the reader to [10, 19] for possible applications
of the surfaces Sm’s.

There is extensive literature concerning the construction of minimal surfaces,
which is a more difficult problem (see [13, 14, 15]). In [31], Sullivan formulated this
problem as a linear programming problem. This idea was developed by Dey, Hirani,
and Krishnamoorthy in [12] and by Dunfield and Hirani in [18] (see also [27, 28]).
However, in the two possible applications of homological Seifert surfaces described
above regarding Stokes’ theorem and the bases of H2(Ω, ∂Ω;Z), the computation of
genuine Seifert surfaces or of minimal surfaces does not offer any advantage. On the
contrary, the inevitable increase of the computational cost needed to obtain such types
of surfaces may prevent their effective use in the mentioned applications.

Even if the question of computing homological Seifert surfaces is very natural
and significant, there are relatively few works on efficient and general algorithms to
compute such surfaces. To the best knowledge of the authors, the first papers on this
subject are those of Allili and Kaczynski [3, 22] (see also [24]). There the motivation for
studying this problem is the computation of the homomorphism induced in homology
by a continuous map, which is an important tool in the theory of dynamical systems
(see [2]). In [3], the authors consider a d-dimensional cycle γ of a rectangular domain Ω
of Rn, equipped with a cubical subdivision. Taking advantage of the product structure
of such a domain and of such a subdivision, they obtain an efficient algorithm to
compute a (d+1)-chain S in Ω with boundary equal to γ. The algorithm proposed by
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Kaczynski in [22] works in polyhedral domains of Rn with trivial homology. It is based
on a reduction strategy introduced in [23], and hence the coefficients used belong to
a field and not to Z. The computational complexity of this algorithm is expected
to be at most cubic in the number of edges of the triangulation of Ω. Potentially,
this complexity is linear in some particular cases (for example, when γ is a trivial
polygonal knot in a triangulated cube Ω of R3). However, numerical experiments are
not reported.

The novelty of the algorithm that we propose and analyze in the paper is the
use of a combinatorial technique, instead of an algebraic one, to greatly improve
computational time. It works in general polyhedral domains of R3 (with ∂Ω satisfying
a mild regularity condition) and it uses integer coefficients. The theoretical worst-
case complexity is cubic. However, making use of breadth-first spanning trees, the
complexity turns out to be linear in all the numerical experiments we performed (see
section 5). It avoids any reduction strategies that are, in fact, quite time-consuming
(see [16] for some numerical experiments comparing different state-of-the-art reduction
strategies). Another feature of our algorithm is that it can be immediately vectorized:
if many homological Seifert surfaces are required on the same triangulation T of Ω,
then all the surfaces can be generated at once. Finally, the algorithm can also be used
to detect if a 1-cycle of T is a 1-boundary of T or not (see Remark 4.2).

Let Ω be a bounded domain of R3 whose closure Ω in R3 is polyhedral, let T
be a triangulation of Ω, and let γ be a 1-boundary of T . A first difficulty to devise
a general and efficient algorithm to compute a homological Seifert surface S of γ in
T is that this problem does not have a unique solution. Indeed, the kernel of the
edge-face incidence matrix A of T is never trivial. If t is the number of tetrahedra
of T and Γ0,Γ1, . . . ,Γp are the connected components of ∂Ω, then ker(A) is a free
abelian group of rank t+ p ; namely, ker(A) is isomorphic to Zt+p. One of its bases is
given by the boundaries of tetrahedra of T and by the 2-chains γ1, . . . , γp associated
with the triangulations of Γ1, . . . ,Γp induced by T . This follows easily from the fact
that the third homology group of Ω is null and the 2-chains γ1, . . . , γp represent a
basis of the second homology group of Ω (see Remark 3.2 below).

A natural strategy to obtain a unique solution S is to add t + p equations, by
setting equal to zero the unknowns corresponding to suitable faces f1, . . . , ft+p of T .
From the geometric point of view, this is equivalent to imposing that the homological
Seifert surface S of γ does not contain the faces f1, . . . , ft+p. Now the problem is to
understand how to choose such faces. Our idea to make this choice is to use a suitable
spanning tree of the dual complex of T . More precisely, we introduce the complete
dual graph of T denoted by A′. Let F be the set of faces of T , F∂ the set of faces of
T contained in ∂Ω, and E∂ the set of edges of T contained in ∂Ω. The dual edge ε′f
of a face f ∈ F and the dual edge ε′` of an edge ` ∈ E∂ are defined in the following
way. If f ∈ F∂ , then it is contained in a unique tetrahedron t and ε′f := {B(f), B(t)},
where B(f) is the barycenter of f and B(t) the barycenter of t. If f is an internal
face of T (namely, f ∈ F \ F∂), then it is the common face of exactly two tetrahedra
t1 and t2, and ε′f := {B(t1), B(t2)}. Similarly, if ` ∈ E∂ , then it is the common edge
of exactly two faces f1, f2 in F∂ , and ε′` := {B(f1), B(f2)}. The vertices of A′ are the
barycenters of tetrahedra of T and the barycenters of faces in F∂ , and the edges of A′
are the dual edges {ε′f}f∈F and {ε′`}`∈E∂

. Let B′ be a spanning tree of A′. Denote by
NB′ the number of faces of T whose dual edge belongs to B′, namely, the number of
edges of B′ not contained in ∂Ω. It is not difficult to see that, for all spanning trees
B′ of A′, NB′ ≥ t+ p. The equality holds true if and only if, for each i ∈ {0, 1, . . . , p},
the graph induced by B′ on Γi is a spanning tree of the graph induced by A′ on Γi
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1162 ALONSO RODRÍGUEZ, BERTOLAZZI, GHILONI, AND SPECOGNA

(see Remark 3.2). If the spanning tree B′ of A′ has the latter property of induced
graphs, then we call it the Seifert dual spanning tree of T (see Definition 3.1).

Our main result, Theorem 3.3, shows that if B′ is a Seifert dual spanning tree,
then, for every 1-boundary γ of T , there exists a unique homological Seifert surface
S of γ in T , which does not contain faces of T whose dual edges belong to B′.
Furthermore, if f is a face of T whose dual edge ε′f does not belong to B′, then
f appears in S with a coefficient equal to the linking number between γ (suitably
retracted inside Ω) and the unique 1-cycle σB′ (ε

′
f ) of A′ with all the edges except

ε′f contained in B′. As a byproduct, in Theorem 3.5, we solve the related problem
concerning the existence and the construction of internal homological Seifert surfaces
of γ, namely, homological Seifert surfaces of γ formed only by internal faces of T .

The construction of Seifert dual spanning trees of T is quite easy and the compu-
tation of the linking number between two simplicial 1-cycles of R3 can be performed
in a very accurate and efficient way (see [6]). However, for a fine triangulation T ,
the number of faces whose dual edge does not belong to a given Seifert dual span-
ning tree of T is very large: it is equal to e − v + 1 − g ≥ 1

2v + 1 − g, where e is
the number of edges of T , v is the number of vertices of T , and g is the first Betti
number of Ω (see section 4). Thus, the use of the explicit formula in terms of link-
ing number turns out to be too expensive. To overcome this difficulty, we adopt an
elimination procedure, similar to the one proposed by Webb and Forghani in [32] for
the solution of three-dimensional magnetostatic problems. When this procedure fails,
one can compute a new unknown by using the explicit formula and then restart the
elimination algorithm. Most often, the elimination procedure itself computes directly
the homological Seifert surfaces. In the numerical experiments we performed, the
elimination procedure fails only in one example where the computational domain is
the complement of a thickened trefoil knot in a cube and the boundary γ embraces
two branches of the knot. In this example it is enough to use the explicit formula
once to restart the elimination algorithm (see section 5.3).

We remark that what is developed in this paper for simplicial complexes extends
to general polyhedral cell complexes, namely, finite regular CW complexes.

The remainder of the paper is organized as follows. In section 2, we specify the
topological requirements on the domain Ω, recall some classical homological notions
and constructions, and introduce some new geometric concepts, such as corner edge,
coil, and plug. Section 3 is devoted to the presentation and the proof of our main
theoretical result (Theorem 3.3) and of some of its consequences (Theorem 3.5 and
Corollary 3.6). In section 4, we describe the above mentioned elimination algorithm
to improve the implementation of our main theorem. Finally, in section 5, we perform
several numerical experiments with the algorithm.

2. Preliminary homological notions. Throughout the remainder of this pa-
per, Ω will denote a bounded polyhedral domain of R3 whose boundary ∂Ω is locally
flat; that is, for every point x ∈ ∂Ω, there exists an open neighborhood Ux of x in
R3 and a homeomorphism φx : Ux −→ R3 such that φx(Ux ∩ ∂Ω) = P , where P is
the coordinate plane {(x, y, z) ∈ R3 | z = 0} (see [9, 7]). This kind of domain includes
all Lipschitz polyhedral domains, but also domains like the crossed bricks (see, e.g.,
Figure 3.1 in [25]).

2.1. Cycles, boundaries, and homological Seifert surfaces. We recall some
notions of homology theory. Most of them are classical and well-known (see, e.g., [26]),
but we recall them in order to fix the notation for the introduction of new concepts
such as corner-free 1-chain and internal homological Seifert surface.
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The basic concept is that of a chain. A 0-chain of R3 is a finite formal linear
combination

∑n
i=1 pivi of points vi ∈ R3 with integer coefficients pi. We denote by

C0(R3,Z) the abelian group of 0-chains of R3.
Given two different points a,b in R3, we denote by [a,b] the oriented segment

of R3 from a to b. The segment of R3 with vertices a, b is called the support of
[a,b] and it is denoted by |[a,b]|. The unit tangent vector τ ([a,b]) of the oriented
segment [a,b] is given by τ ([a,b]) := b−a

|b−a| . A (piecewise linear) 1-chain of R3 is

a finite formal linear combination
∑m
i=1 aiei of oriented segments ei = [ai,bi] of R3

with integer coefficients ai. We identify [b,a] = −[a,b] and we denote by C1(R3,Z)
the abelian group of 1-chains in R3.

Analogously, if a, b, c are three different noncollinear points in R3, we denote
by [a,b, c] the oriented triangle of R3. The triangle of R3 with vertices a,b, c is
called the support of [a,b, c] and it is denoted by |[a,b, c]|. The unit normal vec-
tor ν([a,b, c]) of the oriented triangle [a,b, c] is obtained by the right-hand rule:

ν([a,b, c]) := (b−a)×(c−a)
|(b−a)×(c−a)| . A (piecewise linear) 2-chain of R3 is a finite formal linear

combination
∑p
i=1 bifi of oriented triangles fi = [ai,bi, ci] of R3 with integer coeffi-

cients bi. If ρ : {a,b, c} −→ {a,b, c} is a permutation, we identify [ρ(a), ρ(b), ρ(c)] =
[a,b, c] if ν([ρ(a), ρ(b), ρ(c)]) = ν([a,b, c]), and [ρ(a), ρ(b), ρ(c)] = −[a,b, c] if
ν([ρ(a), ρ(b), ρ(c)]) = −ν([a,b, c]). We denote by C2(R3,Z) the abelian group of
2-chains in R3.

Finally, if a, b, c, d are four different noncoplanar points in R3, we denote
by [a,b, c,d] the oriented tetrahedron of R3. The tetrahedron of R3 with vertices
a,b, c,d is called the support of the oriented tetrahedron [a,b, c,d] and it is denoted
by |[a,b, c,d]|. A (piecewise linear) 3-chain of R3 is a finite formal linear combination∑q
i=1 diti of oriented tetrahedra ti = [ai,bi, ci,di] of R3 with integer coefficients di. If

ρ : {a,b, c,d} −→ {a,b, c,d} is a permutation, we identify [ρ(a), ρ(b), ρ(c), ρ(d)] =
[a,b, c,d] if ρ is an even permutation and [ρ(a), ρ(b), ρ(c), ρ(d)] = −[a,b, c,d] if ρ is
an odd permutation. We denote by C3(R3,Z) the abelian group of 3-chains in R3.

We remark that if all the coefficients in one of the preceding finite formal linear
combinations are equal to zero, then we obtain the null element of the corresponding
abelian group.

Let k ∈ {0, 1, 2, 3} and let c =
∑r
i=1 cizi be a k-chain of R3, where the ci’s are

integers and the zi’s are points, oriented segments, oriented triangles, or oriented
tetrahedra of R3 if k = 0, 1, 2, or 3, respectively. Denote by Ic the set of indices
i ∈ {1, . . . , r} such that ci 6= 0. The support |c| of c is the subset of R3 defined as
the union

⋃
i∈Ic |zi|. In particular |c| = ∅ if c = 0. Moreover |zi| = {zi} (and hence

|c| = {zi ∈ R3 | ci 6= 0}) if k = 0.
For every k ∈ {1, 2, 3}, let us define the boundary operator ∂k : Ck(R3;Z) −→

Ck−1(R3;Z). For every oriented segment e = [a,b], for every oriented triangle f =
[a,b, c], and for every oriented tetrahedron t = [a,b, c,d] of R3, we set ∂1e := b− a,
∂2f := [b, c] − [a, c] + [a,b], and ∂3t := [b, c,d] − [a, c,d] + [a,b,d] − [a,b, c]. Now
we extend these definitions to all the k-chains of R3 by linearity. The reader observes
that ∂1(∂2f) = (b − a) + (c − b) − (c − a) = 0. In this way, by linearity, we have
that ∂1 ◦ ∂2 = 0 on the whole C2(R3;Z). Analogously, we have that ∂2 ◦ ∂3 = 0 on
the whole C3(R3;Z).

A 1-chain γ of R3 is called 1-cycle of R3 if ∂1γ = 0. The 1-chain γ is said to
be a 1-boundary of R3 if there exists a 2-chain S of R3 such that ∂2S = γ. In this
situation, we say that S is a homological Seifert surface of γ in R3. Since ∂1 ◦ ∂2 = 0,
every 1-boundary of R3 is also a 1-cycle of R3. Actually, R3 is contractible (namely,
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it can be continuously deformed to a point) and hence the converse is true as well:
every 1-cycle of R3 is also a 1-boundary of R3. In other words, a 1-chain of R3 has a
homological Seifert surface in R3 if and only if it is a 1-cycle of R3.

Let Y be a subset of R3 and let η be a 1-cycle of R3 with |η| ⊂ Y . We say that
η bounds in Y if η admits a homological Seifert surface S in R3 with |S| ⊂ Y . Given
another 1-cycle η′ of R3 with |η′| ⊂ Y , we say that η and η′ are homologous in Y if
η − η′ bounds in Y .

Let Ω be a fixed bounded polyhedral domain of R3 with locally flat boundary and
let T = (V,E, F,K) be a finite triangulation of Ω, where V is the set of vertices, E
the set of edges, F the set of faces, and K the set of tetrahedra of T .

Let us fix an orientation (namely, an ordering of vertices) of each edge, face, and
tetrahedron of T . This can be done as follows. Choose a total ordering (v1, . . . ,vv)
of the elements of V . If e = {vi,vj} ∈ E is an edge of T with vertices vi,vj with
1 ≤ i < j ≤ v, then e determines the oriented segment [vi,vj ] of R3. Analogously,
the face f = {vi,vj ,vk} ∈ F of T with vertices vi,vj ,vk with 1 ≤ i < j < k ≤ v and
the tetrahedron t = {vi,vj ,vk,vl} ∈ K of T with 1 ≤ i < j < k < l ≤ v determine
the oriented triangle [vi,vj ,vk] of R3 and the oriented tetrahedron [vi,vj ,vk,vl] of
R3, respectively. In what follows, we denote again by e, f , and t an oriented edge of
T , an oriented face of T , and an oriented tetrahedron of T , respectively. We indicate
by E , F , and K the sets of oriented edges, oriented faces, and oriented tetrahedra of
T , respectively.

A k-chain of T is a formal linear combination of vertices in V , oriented edges in
E , oriented faces in F , and oriented tetrahedra in K for k = 0, 1, 2, and 3, respectively.
We denote by Ck(T ;Z) the abelian subgroup of Ck(R3;Z) consisting of all k-chains
of T . Observe that the boundary operators ∂k preserve the chains of T , namely,
∂k(Ck(T ;Z)) ⊂ Ck−1(T ;Z) if k ∈ {1, 2, 3}.

A 1-chain γ of T is called a 1-cycle of T if ∂1γ = 0, and it is called a 1-boundary
of T if there exists a 2-chain S of T such that ∂2S = γ.

Let T∂ = (V∂ , E∂ , F∂) be the triangulation of ∂Ω induced by T . Denote by E∂
and F∂ the sets of oriented edges and of oriented faces of T determined by the edges
in E∂ and the faces in F∂ , respectively. We have

E∂ =
{
e ∈ E

∣∣ |e| ⊂ ∂Ω
}

and F∂ =
{
f ∈ F

∣∣ |f | ⊂ ∂Ω
}
.

A 1-chain of T∂ is a formal linear combination of oriented edges in E∂ and a 2-chain
of T∂ a formal linear combination of oriented faces in F∂ . We denote by Ck(T∂ ;Z) the
abelian subgroup of Ck(T ;Z) consisting of k-chains of T∂ for k = 1, 2. The notions of
1-cycle and 1-boundary of T∂ can be defined in the natural way: a 1-chain γ of T∂ is
a 1-cycle of T∂ if ∂1γ = 0, and it is a 1-boundary of T∂ if there exists a 2-chain S of
T∂ such that ∂2S = γ.

Let us introduce the notions of corner edge, corner face, and corner tetrahedron
of T . Let e = {v,w} be an edge of T . We say that e is a corner edge of T if
e ∈ E∂ and there exist two distinct vertices z∗ and z∗∗ in V∂ \ {v,w} such that the
3-sets f∗ = {v,w, z∗} and f∗∗ = {v,w, z∗∗} are faces of T in F∂ , and the 4-set
t∗ = {v,w, z∗, z∗∗} is a tetrahedron in T . If e has this property, then we call f∗ and
f∗∗ corner faces of T associated with e, and t∗ corner tetrahedron of T associated with
e; see Figure 1. A corner face of T associated with some corner edge of T is called
a corner face of T . Similarly, a corner tetrahedron of T associated with some corner
edge of T is called a corner tetrahedron of T .

We denote by E∠
∂ , F∠

∂ , and K∠
∂ the sets of corner edges, corner faces, and corner

tetrahedra of T , respectively. Moreover, we indicate by E∠
∂ the sets of oriented edges
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e w

v

z∗∗

z∗

t∗

∂Ω

f∗

f∗∗

Fig. 1. The corner edge e and the corner faces f∗ and f∗∗.

in E∂ determined by the corner edges of T . Given a 1-chain γ =
∑
e∈E aee of T ,

we say that γ is corner-free if it does not contain any corner oriented edge, namely,
if ae = 0 for every e ∈ E∠

∂ . Moreover, we call γ internal if it does not contain any
boundary oriented edge, namely, if ae = 0 for every e ∈ E∂ . Evidently, if γ is internal,
then it is also corner-free. Similarly, given a 2-chain S =

∑
f∈F bff of T , we say that

S is internal if it does not contain any boundary oriented face, namely, if bf = 0 for
every f ∈ F∂ . The reader observes that, if T is the first barycentric subdivision of
some triangulation of Ω, then E∠

∂ = ∅ and hence every 1-chain of T is corner-free.
On the other hand, there are examples in which E∠

∂ 6= ∅: if Ω is a tetrahedron of R3

equipped with its natural triangulation T , then E∠
∂ = E∂ 6= ∅.

We conclude this subsection by introducing the notions of homological Seifert
surface and of internal homological Seifert surface.

Definition 2.1. Given a 1-boundary γ of T , we say that a 2-chain S of T is a
homological Seifert surface of γ in T if ∂2S = γ. If, in addition, S is internal, then
we call S an internal homological Seifert surface of γ in T .

2.2. Complete dual graph, coils, and plugs. We begin by describing parts
of the closed block dual barycentric complex of T (see [26, section 64] for the general
definition).

Denote by B : V ∪ E ∪ F ∪ K −→ R3 the barycenter map: if v ∈ V , ` =
{v,w} ∈ E, g = {v,w,y} ∈ F , and t = {v,w,y, z} ∈ K, then we have B(v) = v,
B(`) = (v+w)/2, B(g) = (v+w+y)/3, and B(t) = (v+w+y+z)/4. Extend B to the
oriented edges in E and to the oriented faces in F in the natural way: if e = [v,w] ∈ E
and f = [v,w,y] ∈ F , then we set B(e) := (v + w)/2 and B(f) := (v + w + y)/3.

Let us recall the definitions of dual vertices, dual edges, and dual faces of T . We
equip the dual edges and the dual faces with the natural orientation induced by the
right-hand rule.

• For every tetrahedron t ∈ K, the dual vertex D(t) of T associated with t is
defined as the barycenter of t: D(t) := B(t).
We denote by V ′ the set {D(t) ∈ R3 | t ∈ K} of all dual vertices of T .

• For every oriented face f = [v,w,y] ∈ F , the oriented dual edge D(f) of
T associated with f is the element of C1(R3;Z) defined as follows: if K(f)
denotes the set {t ∈ K

∣∣ {v,w,y} ⊂ t}, namely, the set of tetrahedra of T
incident on f , we set

D(f) :=
∑

t∈K(f)

sign
(
ν(f) · τ ([B(f), B(t)])

)
[B(f), B(t)],
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y

v

B(f)

t1 B(t2)

w

B(t1)

t2

f
y

v

w

∂Ω

t

B(f)

B(t)

f

D(f)
D(f)

Fig. 2. The dual edge D(f) in the case of an internal face (on the left) and in the case of a
boundary face (on the right).

where sign : R \ {0} −→ {−1, 1} denotes the function given by sign(s) := −1
if s < 0 and sign(s) := 1 otherwise.
D(f) can be described as follows. If the (oriented) face f is internal, then f is
the common face of two tetrahedra t1 and t2 of T , and the support of D(f) is
the union of the segment joining B(f) with B(t1) and of the segment joining
B(f) and B(t2); see Figure 2 (on the left). If f is a boundary face, then f
is a face of just one tetrahedron t, and the support of D(f) is the segment
joining B(f) with B(t); see Figure 2 (on the right). In both cases, D(f) is
endowed with the orientation induced by f via the right-hand rule.
We denote by E ′ the set {D(f) ∈ C1(R3;Z) | f ∈ F} of all oriented dual edges
of T . Moreover, we call a (nonoriented) dual edge of T a 2-subset {v′, w′} of
R3 such that {v′, w′} = |∂1e′| for some e′ ∈ E ′. We indicate by E′ the set of
all (nonoriented) dual edges of T .

• For every oriented edge e = [v,w] ∈ E , the oriented dual face D(e) of T as-
sociated with e is the element of C2(R3;Z) defined as follows: if F (e) denotes
the set {f ∈ F | {v,w} ⊂ f}, namely, the set of faces of T incident on e, then
we set

D(e) :=
∑

f∈F (e)

∑

t∈K(f)

sign
(
τ (e) · ν([B(e), B(f), B(t)])

)
[B(e), B(f), B(t)];

see Figure 3. The reader observes that the support of D(e) is the union of
triangles of R3 with vertices B(e), B(f), and B(t), where f varies in F (e)
and t in K(f). Such triangles are oriented by e via the right-hand rule.
We denote by F ′ the set {D(e) ∈ C2(R3;Z) | e ∈ E} of all oriented dual faces
of T .

The preceding three definitions determine the bijection D : K ∪ F ∪ E −→ V ′ ∪
E ′ ∪ F ′ such that D(K) = V ′, D(F) = E ′, and D(E) = F ′.

We need also to describe part of the closed block dual barycentric complex of the
triangulation T∂ of ∂Ω induced by T . Recall that V∂ , E∂ , and F∂ denote the sets of
vertices, oriented edges, and oriented faces of T∂ , respectively.

Let us define the dual vertices and the oriented dual edges of T∂ .
• For every oriented face f ∈ F∂ , the dual vertex D∂(f) of T∂ associated with
f is defined as the barycenter of f : D∂(f) := B(f).
We denote by V ′∂ the set {D∂(f) ∈ R3 | f ∈ F∂} of all dual vertices of T∂ .

• For every oriented edge e ∈ E∂ , the oriented dual edge D∂(e) of T∂ associated
with e is the element of C1(R3;Z) defined as follows. Let f1 and f2 be the
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B(f)

B(t)

B(e)
D(e)

t

f

e

∂Ω

B(f)

B(t)

B(e)
D(e)

t

f

e

Fig. 3. The dual face D(e) in the case of an internal edge together with its boundary ∂2D(e)
in red (on the left) and in the case of a boundary edge (on the right).

∂Ω B(f2)
B(f1)

B(e)

D∂(e)

f1
n(f1)

n(f2)

f2

e

Fig. 4. The boundary dual edge D∂(e).

oriented faces in F∂ incident on e, and let n(f1) and n(f2) be the outward
unit normals of ∂Ω at B(f1) and at B(f2), respectively. Then we set

D∂(e) :=

2∑

i=1

sign
(
τ (e) · (n(fi)× τ ([B(e), B(fi)]))

)
[B(e), B(fi)].

D∂(e) can be described as follows. By interchanging f1 with f2 if necessary,
we can suppose that f1 is on the left of e and f2 on the right of e with respect
to the orientation of ∂Ω induced by its outward unit vector field. Then we
have

D∂(e) = [B(f1), B(e)] + [B(e), B(f2)];

see Figure 4.
We denote by E ′∂ the set {D∂(e) ∈ C1(R3;Z) | e ∈ E∂}, namely, the set of all
oriented dual edges of T∂ . Moreover, we call a (nonoriented) dual edge of T∂
a 2-subset {v′,w′} of V ′∂ such that {v′,w′} = |∂1e′| for some e′ ∈ E ′∂ . We
indicate by E′∂ the set of all (nonoriented) dual edges of T∂ .

Let us give four definitions, which will prove to be useful later.

Definition 2.2. We call A′ := (V ′ ∪ V ′∂ , E′ ∪ E′∂) complete dual graph of T . A
1-chain of A′ is a formal linear combination of oriented dual edges in E ′ ∪ E ′∂ with
integer coefficients. A 1-chain γ of A′ is called 1-cycle of A′ if ∂1γ = 0. We denote
by C1(A′;Z) the abelian subgroup of C1(R3;Z) consisting of all 1-chains of A′ and by
Z1(A′;Z) the abelian subgroup of Z1(R3;Z) consisting of all 1-cycles of A′.
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e∗

w

B(f∗)B(t∗)

e∗∗t∗ B(f∗∗)

∂Ω

f∗ ∈ F∠
∂

f∗∗ ∈ F∠
∂

y

v

w

∂Ω

t

B(f)

B(t)

f ∈ F∂ \ F∠
∂

e′

Fig. 5. A regular plug e′ (on the left) and two corner plugs e∗ and e∗∗ (on the right).

Definition 2.3. For every e ∈ E, we define the coil of e (in T ), denoted by
Coil(e), as the 1-cycle of A′ given by Coil(e) := ∂2D(e).

In Figure 3, in red, we show the coil of an internal edge on the left and of a
boundary edge on the right. The reader observes that, for every e ∈ E∂ , Coil(e)−D∂(e)
is a 1-chain of A′, whose expression as a formal linear combination contains only
oriented edges in E ′, namely, Coil(e) − D∂(e) =

∑
e′∈E′∪E′∂ ae

′e′ for some (unique)

integer ae′ such that ae′ = 0 for every e′ ∈ E ′∂ .
Let us introduce the notion of plug of T .

Definition 2.4. Given a dual edge e′ ∈ E′, we say that e′ is a plug of T if there
exists a face f ∈ F∂ such that e′ = {B(f), B(t)}, where t is the unique tetrahedron
in T containing f . Such a plug e′ is said to be induced by f . The plug e′ is called
corner plug of T if it is induced by a corner face f ∈ F∠

∂ ; see Figure 5 (on the right).
On the contrary, if the face inducing e′ belongs to F∂ \ F∠

∂ , then e′ is called regular
plug of T ; see Figure 5 (on the left).

Let JT be the set of all plugs of T , and let J∠
T and JrT be the subsets of JT

consisting of corner plugs and of regular plugs of T , respectively.

Definition 2.5. Given a subset J of JT , we say that J is a plug-set of T if, for
every e′, e′′ ∈ J with e′ 6= e′′, e′ and e′′ do not have any vertex in common, namely,
e′∩e′′ = ∅. Moreover, we say that such a plug-set J is maximal if there is no plug-set
of T that strictly contains J .

Remark 2.6. Notice that a regular plug does not intersect any other plug so if
E∠
∂ = ∅ (or, equivalently, if K∠

∂ = ∅), then all the plugs of T are regular and hence
the set JT itself is the unique maximal plug-set of T . Suppose E∠

∂ 6= ∅. In this case,
a subset J of JT is a maximal plug-set of T if and only if it can be constructed as
follows. For every t ∈ K∠

∂ , choose one of the corner faces of T contained in t and
denote it by f∠

t . Define F∠ := {f∠
t ∈ F∠

∂ | t ∈ K∠
∂ } and indicate by J ′ the set of corner

plugs of T induced by the corner faces in F∠. Then J = JrT ∪ J ′.
In Figure 6 we consider a mesh where there are no regular plugs, JrT = ∅. On the

left we show the set JT with 12 elements. On the right we show a maximal plug-set;
it has 4 elements that are one plug for each one of the corner tetrahedra of the mesh.

2.3. Linking number and retractions. We begin by recalling the notion of
linking number. See, e.g., Rolfsen [29, pp. 132–136] and Seifert and Threlfall [30,
sections 70, 73, 77].
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(a) (a)

Fig. 6. The whole set of plugs (on the left) and a maximal plug set (on the right).

Consider two 1-cycles γ and η of R3 with disjoint supports, namely, |γ| ∩ |η| = ∅.
A possible geometric way to define the linking number κ̀(γ, η) between γ and η is

as follows. Choose a homological Seifert surface Sη =
∑k
q=1 bqfq of η in R3. It is

well-known (and easy to see) that there exists a 1-cycle γ̂ =
∑h
p=1 âpêp homologous

to γ in R3 \ |η| (and “arbitrarily close to γ” if necessary), which is transverse to Sη
in the following sense: for every p ∈ {1, . . . , h} and for every q ∈ {1, . . . , k}, the
intersection |êp| ∩ |fq| is either empty or consists of a single point, which does not
belong to |∂1êp| ∪ |∂2fq|.

For every p ∈ {1, . . . , h} and for every q ∈ {1, . . . , k}, define Lpq := 0 if |êp|∩|fq|=∅
and Lpq := sign(τ (êp) · ν(fq)) otherwise. The linking number κ̀(γ, η) between γ and
η is the integer defined as follows:

(2.1) κ̀(γ, η) :=

h∑

p=1

k∑

q=1

âpbqLpq.

This definition is well-posed: it depends only on γ and η, not on the choice of Sη
and of γ̂. The reader observes that the preceding construction fully justifies the usual
heuristic description of the linking number between γ and η as the number of times
that γ winds around η.

The linking number has some remarkable properties. It is “symmetric,” κ̀(γ, η) =

κ̀(η, γ), and “bilinear,” κ̀(aγ, η) = a κ̀(γ, η) for every a ∈ Z and, if γ∗ ∈ Z1(R3;Z)
with |γ∗| ∩ |η| = ∅, κ̀(γ + γ∗, η) = κ̀(γ, η) + κ̀(γ∗, η).

The linking number is a homological invariant in the following sense: if a 1-cycle
γ∗ of R3 is homologous to γ in R3 \ |η|, then

(2.2) κ̀(γ, η) = κ̀(γ∗, η).

In particular, we have

(2.3) κ̀(γ, η) = 0 if γ bounds in R3 \ |η|.

The linking number can be computed via an integral formula. Write γ and η
explicitly: γ =

∑n
i=1 aiei and η =

∑m
j=1 cjgj for some integers ai, cj and for some

oriented segment ei = [ai,bi] and gj = [cj ,dj ] of R3. The following Gauss formula
holds:

(2.4) κ̀(γ, η) =
1

4π

n∑

i=1

m∑

j=1

aicj

(∫ 1

0

∫ 1

0

ei(r)− gj(s)
|ei(r)− gj(s)|3

× ~ei
)
· ~gj dr ds,
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1170 ALONSO RODRÍGUEZ, BERTOLAZZI, GHILONI, AND SPECOGNA

where ~ei := bi−ai, ~gj := dj−cj and ei(r) := ai+r~ei, gj(s) := cj+s~gj for r, s ∈ [0, 1].
The computational cost is of the order of the product of the number of edges in the
support of the two 1-cycles, namely, nm.

Retractions. Now we define two “retraction operators” R+ : Z1(T ;Z) −→
Z1(R3;Z) and R− : Z1(A′;Z) −→ Z1(R3;Z), and we prove a useful invariance prop-
erty of certain linking numbers with respect to the application of such “retractions.”

Let us define R+. For every oriented edge e = [v,w] in E∂ , choose a tetrahedron
te ∈ K incident on e (namely, {v,w} ⊂ te), denote by de the barycenter of the
triangle of R3 of vertices v, w, B(te), and define the 1-chain r+(e) of R3 and the
oriented triangle Se of R3 by setting

r+(e) := [v,de] + [de,w] and Se := [v,de,w].

The reader observes that ∂2Se = r+(e)− e; see Figure 7.
Given ξ =

∑
e∈E αee ∈ Z1(T ;Z), we define

R+(ξ) :=
∑

e∈E\E∂
αee+

∑

e∈E∂
αer+(e).

Evidently, R+(ξ) belongs to Z1(R3;Z) and R+(ξ)− ξ is a 1-boundary of R3:

(2.5) R+(ξ)− ξ = ∂2
(∑

e∈E∂ αeSe
)
.

Now we introduce R−. First, we recall that since ∂Ω is assumed to be locally
flat, we know that it has a collar in R3 \ Ω (see [9]), namely, there exists an open
neighborhood U of ∂Ω in R3 \ Ω and a homeomorphism ψ : ∂Ω× [0, 1) −→ U , called
collar of ∂Ω in R3 \ Ω, such that ψ(x, 0) = x for every x ∈ ∂Ω.

Let e′ ∈ E ′∂ . By definition of E ′∂ , there exist unique e ∈ E∂ and f1, f2 ∈ F∂ such
that e′ = D∂(e) = [B(f1), B(e)] + [B(e), B(f2)]. Thanks to the existence of a collar
of ∂Ω in R3 \ Ω, one can choose a point xe′ ∈ R3 \ Ω arbitrarily close to B(e) with
the following property: if S′e′ is the 2-chain of R3 defined by setting

(2.6) S′e′ := [B(f1),xe′ , B(e)] + [B(e),xe′ , B(f2)],

then Ω ∩ |S′e′ | = |e′|. Denote by r−(e′) the 1-chain [B(f1),xe′ ] + [xe′ , B(f2)] of R3;
see Figure 7. Observe that ∂2S

′
e′ = r−(e′)− e′.

∂Ω
B(te)

de

te

r+(e)
Se

e
v

w

∂Ω B(f2)
B(f1)

B(e)

e′ ∈ D∂(e)

f1

xe′

f2

e

r−(e′)S′e′

Fig. 7. On the left is the 1-chain r+(e) and the oriented triangle Se. On the right is the 1-chain
r−(e′) and the 2-chain S′

e′ .
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For every ξ′ =
∑
e′∈E′∪E′∂ α

′
e′e
′ ∈ Z1(A′;Z), we define

(2.7) R−(ξ′) :=
∑

e′∈E′
α′e′e

′ +
∑

e′∈E′∂

α′e′r−(e′).

We remark that R−(ξ′) is a 1-cycle of R3 and R−(ξ′)− ξ′ is a 1-boundary of R3:

(2.8) R−(ξ′)− ξ′ = ∂2

(∑
e′∈E′∂ α

′
e′S
′
e′

)
.

The following result holds true.

Lemma 2.7. For every ξ ∈ Z1(T ;Z) and for every ξ′ ∈ Z1(A′;Z), we have

κ̀(R+(ξ), ξ′) = κ̀(ξ,R−(ξ′)).

Proof. First, observe that |R+(ξ)| ∩ |ξ′| = ∅, |ξ| ∩ |R−(ξ′)| = ∅ and hence the
linking numbers κ̀(R+(ξ), ξ′) and κ̀(ξ,R−(ξ′)) are defined. Moreover, we have

(2.9) |R+(ξ)| ∩
⋃

e′∈E′∂

|S′e′ | = ∅

and

(2.10) |R−(ξ′)| ∩
⋃

e∈E∂
|Se| = ∅.

By combining points (2.8) and (2.10), we obtain that ξ′ and R−(ξ′) are homolo-
gous in R3 \|R+(ξ)|. Thanks to (2.2), we infer that κ̀(R+(ξ), ξ′) = κ̀(R+(ξ), R−(ξ′)).
Similarly, points (2.5), (2.9), and (2.2) ensure that κ̀(ξ,R−(ξ′)) = κ̀(R+(ξ), R−(ξ′)).
It follows that κ̀(R+(ξ), ξ′) = κ̀(ξ,R−(ξ′)), as desired.

Remark 2.8. We have introduced the retraction R− in order to simplify the proof
of some results. However, it will never be used in the construction of the homological
Seifert surfaces presented below.

We will provide an explicit formula for a homological Seifert surface where,
roughly speaking, the coefficients of the faces in the surface are the linking num-
ber between a 1-chain ξ of T and a 1-chain ξ′ of A′. If e ∈ E∂ belongs to ξ and
e′ = D∂(e) belongs to ξ′, then |ξ| and |ξ′| intersect at B(e) and it is necessary to
replace e or e′ with its retraction. The previous lemma showed that it is equivalent to
pull e inside the domain (see Figure 7 on the left) and to compute κ̀(R+(ξ), ξ′) or to
push e′ outside the domain (see Figure 7 on the right) and to compute κ̀(ξ,R−(ξ′)).

3. The main results.

3.1. The statements. Consider the complete dual graph A′ = (V ′∪V ′∂ , E′∪E′∂)
of T . Choose a spanning tree B′ = (V ′ ∪ V ′∂ , E′S) of A′ and denote by E ′S the set of
oriented dual edges in E ′ ∪ E ′∂ corresponding to E′S; namely, we set E ′S := {e′ ∈
E ′ ∪ E ′∂ | |∂1e′| ∈ E′S}. We call E ′S set of oriented dual edges of B′.

Fix a dual vertex a′ ∈ V ′ ∪ V ′∂ , which we consider a root of B′. Let us give
the rigorous definition of “(unique) 1-chain C ′v′ of B′ from the root a′ to another
vertex v′.” Consider a dual vertex v′ in V ′ ∪ V ′∂ . First, suppose v′ 6= a′. Since B′
is a tree, there exist, and are unique, a positive integer m and an ordered sequence
(w′0,w

′
1, . . . ,w

′
m) of vertices in V ′∪V ′∂ such that w′0 = a′, w′m = v′, w′i 6= w′j for every

i, j ∈ {0, 1, . . . ,m} with i 6= j and {w′k−1,w′k} ∈ E′S for every k ∈ {1, . . . ,m}. In this

D
ow

nl
oa

de
d 

05
/1

8/
17

 to
 1

58
.1

10
.1

1.
25

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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way, for every k ∈ {1, . . . ,m}, there exist, and are unique, e′k ∈ E ′S and δk ∈ {−1, 1}
such that ∂1(δke

′
k) = w′k −w′k−1. We can now define C ′v′ ∈ C1(A′;Z) as follows:

(3.1) C ′v′ :=

m∑

k=1

δke
′
k.

Evidently, we have ∂1(C ′v′) = v′ − a′. If v′ = a′, then we define C ′v′ as the zero
1-chain in C1(A′;Z).

For every oriented dual edge e′ ∈ E ′∪E ′∂ with ∂1e
′ = v′−w′, we define the 1-cycle

σB′ (e
′) of A′ by setting σB′ (e

′) := C ′w′ + e′ − C ′v′ .
The reader observes that σB′ (e

′) depends only on B′ and on e′, and not on the
chosen root a′ of B′. Moreover, if e′ ∈ E ′S, then σB′ (e

′) = 0.
Denote by Γ0,Γ1, . . . ,Γp the connected components of ∂Ω. For every i ∈ {0, 1, . . . ,

p}, we define V ′∂,i as the set of vertices in V ′∂ belonging to Γi and E′∂,i as the set of dual
edges {v′,w′} in E′∂ such that {v′,w′} ⊂ Γi. Indicate by A′i the graph (V ′∂,i, E

′
∂,i).

It is the graph induced by A′ on Γi.

Definition 3.1. Let B′ = (V ′ ∪V ′∂ , E′S) be a spanning tree of A′. We say that B′
is a Seifert dual (barycentric) spanning tree of T if it restricts to a spanning tree on
each connected component Γi of ∂Ω, more precisely, if

(3.2) (V ′∂,i, E
′
S ∩ E′∂,i) is a spanning tree of A′i for every i ∈ {0, 1, . . . , p}.

This kind of dual spanning tree is also used in computational electromagnetism;
see, for instance, [1].

Remark 3.2. We pointed out in the introduction that, given a spanning
tree B′ of A′, the number NB′ of oriented faces of T whose dual edge belongs to
B′ is ≥ t + p, where t is the number of tetrahedra of T . Moreover, the equality holds
if and only if B′ is a Seifert dual spanning tree of T . The following simple argument
of graph theory explains why. Let i ∈ {0, 1, . . . , p}. Indicate by v′i the number of
vertices of A′i or, equivalently, the number of faces of F∂ contained in Γi. Evidently,
the number of vertices of A′ is t +

∑p
i=0 v

′
i. Denote by B′i the graph induced by B′

on Γi and by ki the number of connected components of B′i. Bearing in mind that
B′ is a spanning tree of A′, we infer at once that B′i is a subgraph of A′i with the
same vertices as A′i, whose connected components are trees. In particular, B′i is a
spanning tree of A′i if and only if ki = 1. Since in a finite tree the number of edges
is equal to the number of vertices minus 1, we have that the number of edges of B′ is
(t +

∑p
i=0 v

′
i)− 1 and the number of edges of B′i is v′i − ki. It follows that

NB′ = (t +
∑p
i=0 v

′
i)− 1−∑p

i=0(v′i − ki) = t− 1 +
∑p
i=0 ki ≥ t + p

and NB′ = t + p if and only if each ki is equal to 1 or, equivalently, if and only if the
graph B′i is a spanning tree of A′i for each i ∈ {0, 1, . . . , p}, namely, if B′ is a Seifert
dual spanning tree of T .

The reader observes that a Seifert dual spanning tree of T always exists and it is
easy to construct. Indeed, it suffices to choose a spanning tree B′i of each A′i and to
extend the union of the B′i’s to a spanning tree of the whole A′.

Our main result reads as follows.

Theorem 3.3. Let B′ = (V ′∪V ′∂ , E′S) be a Seifert dual spanning tree of T and let
E ′S be its set of oriented dual edges. Then, for every 1-boundary γ of T , there exists,
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and is unique, a homological Seifert surface S =
∑
f∈F bff of γ in T such that bf = 0

for every f ∈ F with D(f) ∈ E ′S. Moreover, we have

(3.3) bf = κ̀
(
R+(γ), σB′ (D(f))

)
.

for every f ∈ F .

We consider also the problem of the existence and of the construction of internal
homological Seifert surfaces. To this end, we need a definition, in which we will employ
the notion of maximal plug-set of T introduced in Definition 2.5.

Definition 3.4. Given a spanning tree B′ = (V ′ ∪ V ′∂ , E′S) of A′, we say that B′
is a strongly-Seifert dual (barycentric) spanning tree of T if it satisfies (3.2) and the
set E′S of its edges contains a maximal plug-set of T .

Once again, strongly Seifert dual spanning trees of T always exist and are easy to
construct. Let i ∈ {0, 1, . . . , p}. Choose a spanning tree B′i = (V ′∂,i, E

′
S,i) of each A′i.

Denote by JrT,i the set of regular plugs of T induced by the faces f ∈ F∂ \ F∠
∂ with

f ⊂ Γi. Let K∂,i be the set of tetrahedra t ∈ K such that t contains at least one face
in Γi and let K∠

∂,i := K∂,i∩K∠
∂ . For every t ∈ K∠

∂,i, choose one of the corner faces of T
contained in t and denote it by f∠

t,i. Let J ′i be the set of corner plugs of T induced by
the chosen corner faces {f∠

t,i}t∈K∠
∂,i

, let J ′′i := JrT,i ∪ J ′i , and let V ′′i be the set of dual

vertices of T of the form B(t) with t ∈ K∂,i, namely, V ′′i = {B(t) ∈ V ′ | t ∈ K∂,i}. By
construction, the graph B′′i := (V ′∂,i∪V ′′i , E′S,i∪J ′′i ) is a tree containing B′i. Moreover,
it is immediate to verify that, for every i, j ∈ {0, 1, . . . , p} with i 6= j, B′′i and B′′j have

neither vertices nor edges in common. In particular, the set
⋃p
i=0 J

′′
i is a maximal

plug-set of T . Now one can extend the union of the B′′i ’s to a spanning tree of A′,
which turns out to be a strongly Seifert dual spanning tree of T .

The reader observes that the maximal plug-set of T contained in the set of edges
of a given strongly Seifert dual spanning tree of T , which exists by definition, is
unique.

As a consequence of Theorem 3.3, we have the following result, which settles
the above-mentioned problem of the existence and of the construction of internal
homological Seifert surfaces.

Theorem 3.5. The following assertions hold:
(i) A 1-boundary of T has an internal homological Seifert surface in T if and

only if it is corner-free.
(ii) Let B′ = (V ′ ∪ V ′∂ , E′S) be a strongly Seifert dual spanning tree of T and let
E ′S be its set of oriented dual edges. Then, for every corner-free 1-boundary
γ of T , there exists, and is unique, an internal homological Seifert surface
S =

∑
f∈F bff of γ in T such that bf = 0 for every f ∈ F with D(f) ∈ E ′S.

Moreover, each coefficient bf satisfies formula (3.3).

In particular, we have the following.

Corollary 3.6. The following assertions hold:
(i) Every internal 1-boundary of T has an internal homological Seifert surface

in T .
(ii) If T is the first barycentric subdivision of some triangulation of Ω, then every

1-boundary of T has an internal homological Seifert surface in T .

3.2. The proofs. We begin by proving Theorem 3.3. First, we need three pre-
liminary lemmas.
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Let B′ = (V ′ ∪ V ′∂ , E′S) be a Seifert dual spanning tree of T and let E ′S be its set
of oriented dual edges. We define G := {f ∈ F |D(f) 6∈ E ′S} and, for every f ∈ F , we
simplify the notation by writing σ(f) in place of σB′ (D(f)).

Lemma 3.7. For every f, g ∈ G, we have

κ̀
(
∂2f,R−(σ(g))

)
=

{
1 if f = g,
0 if f 6= g.

Proof. Let f, g ∈ G and let v′,w′ ∈ V ′ ∪ V ′∂ such that ∂1D(g) = v′ − w′. By
definition of σ(g), there exist, and are unique, an integer ` ≥ 2, a (` + 1)-tuple
of pairwise disjoint vertices (p′0, p

′
1, . . . , p

′
`) of V ′ ∪ V ′∂ and, for every i ∈ {1, . . . , `},

δi ∈ {−1, 1}, and e′i ∈ E ′S such that p′0 = v′, p′` = w′, ∂1(δie
′
i) = p′i − p′i−1 for every

i ∈ {1, . . . , `} and σ(g) = D(g) +
∑`
i=1 δie

′
i.

There are only two cases in which the intersection |f | ∩ |R−(σ(g))| is nonempty,
and hence the linking number κ̀(∂2f,R−(σ(g))) may be different from zero.

Case 1. Assume f = g. In this case, we have that |f | ∩ |R−(σ(g))| = {B(f)}.
We must prove that κ̀(∂2f,R−(σ(g))) = 1. Suppose that f 6∈ F∂ . Observe that the
intersection between f and R−(σ(g)) is not transverse, because D(g) = [w′, B(f)] +
[B(f),v′]. Let a′1 be a point of the segment |[w′, B(f)]| different from B(f), let b′1 be
a point of the segment |[B(f),v′]| different from B(f), and let γ̂1 be the 1-cycle of R3

defined by setting

γ̂1 := [w′, a′1] + [a′1, b
′
1] + [b′1,v

′] +
∑̀

i=1

δir−(e′i) ;

see Figure 8 on the left. If a′1 and b′1 are chosen sufficiently close to B(f), we have that
γ̂1 is homologous to R−(σ(g)) in R3 \ |∂2f |, it intersects f transversely in one point
belonging to |[a′1, b′1]| \ {a′1, b′1}, and sign(τ ([a′1, b

′
1]) · ν(f)) = 1. By the definition of

linking number, we infer that κ̀(∂2f,R−(σ(g))) = 1.
Suppose now that f ∈ F∂ . Changing the orientation of f if necessary, we may also

suppose that v′ = B(f). It follows that p′1 is the barycenter of an oriented face f1 in E∂
having an (oriented) edge e in common with f and hence δ1r−(e′1) = [v′,xe′1 ]+[xe′1 , p

′
1]

for some point xe′1 ∈ R3 \Ω close to B(e) (see subsection 2.3 for the definition of r−).
Let us proceed as above. Choose a point a′2 ∈ |[w′,v′]| \ {v′} close to v′ and a point
b′2 ∈ |[v′,xe′1 ]| \ {v′} close to v′. Then the 1-cycle γ̂2 of R3 defined by setting

γ̂2 := [w′, a′2] + [a′2, b
′
2] + [b′2,xe′1 ] + [xe′1 , p

′
1] +

∑̀

i=2

δir−(e′i)

(see Figure 8 on the right) is homologous to R−(σ(g)) in R3 \ |∂2f |, it intersects f
transversely in one point belonging to |[a′2, b′2]|\{a′2, b′2}, and sign(τ ([a′2, b

′
2])·ν(f)) = 1.

It follows that κ̀(∂2f,R−(σ(g))) = 1, as desired.
Case 2. Assume that f 6= g, f ∈ F∂ and there exists h ∈ {1, . . . , `− 1} such that

p′h = B(f) and both e′h and e′h+1 belong to E ′∂ . We know that δhr−(e′h) = [p′h−1,xe′h ]+

[xe′h , p
′
h] and δh+1r−(e′h+1) = [p′h,xe′h+1

] + [xe′h+1
, p′h+1] for some xe′h ,xe′h+1

∈ R3 \ Ω.
In particular, we have

R−(σ(g)) = c+ [p′h−1,xe′h ] + [xe′h , p
′
h] + [p′h,xe′h+1

] + [xe′h+1
, p′h+1],

where c := D(g) +
∑
i∈{1,...,`}\{h,h+1} δir−(e′i). Let a′3 ∈ |[xe′h , p

′
h]| \ {p′h}, let b′3 ∈

|[p′h,xe′h+1
]| \ {p′h}, and let γ̂3 be the 1-cycle of R3 defined by setting

γ̂3 := c+ [p′h−1,xe′h ] + [xe′h , a
′
3] + [a′3, b

′
3] + [b′3,xe′h+1

] + [xe′h+1
, p′h+1];
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v′

B(f)
w′

a′1
b′1

f

γ̂1

∂Ω

v′

w′

f

xe′1

b′2

a′2

γ̂2

Fig. 8. The 1-cycles γ̂1 (on the left) and γ̂2 (on the right).

∂Ω
p′h

p′h−1
p′h+1

xe′h xe′h+1

b′3a′3

f

γ̂3

Fig. 9. The 1-cycle γ̂3.

see Figure 9. If a′3 and b′3 are chosen sufficiently close to p′h, then γ̂3 is homolo-
gous to R−(σ(g)) in R3 \ |∂2f | and it does not intersect |f |. It follows that κ̀(∂2f,
R−(σ(g))) = 0.

This completes the proof.

Lemma 3.8. Let ξ =
∑
e∈E αee be a 1-cycle of T . Then, for every e∗ ∈ E, we

have

(3.4) κ̀
(
ξ,R−(Coil(e∗))

)
= αe∗ .

In particular, ξ = 0 if and only if κ̀(ξ,R−(Coil(e∗))) = 0 for every e∗ ∈ E.

Proof. Fix e∗ ∈ E , a spanning tree (V,L) of the graph (V,E) such that |∂1e∗| 6∈ L
and a vertex a ∈ V , which is a root of (V,L). Denote by L the set of oriented edges
in E determined by the corresponding edges in L, namely, L := {e ∈ E | |∂1e| ∈ L}.
For every v ∈ V , denote by Cv the (unique) 1-chain of T such that |Cv| ⊂

⋃
e∈L |e|

and ∂1Cv = v− a. Given e = [ae,be] ∈ E , we denote by σe the 1-cycle of T given by
σe := Cae

+ e− Cbe
.

By hypothesis, ξ is a 1-cycle of T and hence 0 = ∂1ξ =
∑
e∈E αe(be − ae) in

C0(T ;Z). Since Cae and Cbe depend only on ae and be, respectively, it follows that
0 =

∑
e∈E αe(Cbe − Cae) in C1(T ;Z) as well. In this way, we obtain that

∑

e∈E
αeσe =

∑

e∈E
αe(Cae

+ e− Cbe
) = ξ −

∑

e∈E
αe(Cbe

− Cae
) = ξ.

Then κ̀(ξ,R−(Coil(e∗))) =
∑
e∈E αe κ̀(σe, R−(Coil(e∗))). Thanks to the latter

equality, it suffices to show that
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κ̀
(
σe, R−(Coil(e∗))

)
=

{
1 if e = e∗,
0 if e 6= e∗.

To do this, we use an argument similar to the one employed in the proof of the
preceding lemma. However, contrarily to such a proof, we omit the details concerning
the construction of “small deformations of σe” to obtain transversality. If e ∈ L,
then e 6= e∗ (because e∗ 6∈ L), σe = 0, and hence κ̀(σe, R−(Coil(e∗))) = 0. If
e 6∈ L ∪ {e∗}, then |σe| ∩ |D(e∗)| = ∅, so κ̀(σe, R−(Coil(e∗))) = 0. Suppose e =
e∗ ∈ E \ E∂ . In this case, we have that R−(Coil(e)) = Coil(e) = ∂2D(e) and |σe| ∩
|D(e)| = {B(e)}. By (2.1), it follows immediately that κ̀(σe, R−(Coil(e))) = ±1.
The sign of such a linking number is positive, because the triangles forming D(e)
were oriented by e via the right-hand rule. Finally, consider the case in which e =
e∗ ∈ E∂ . By construction (see Definition 2.3 and points (2.6) and (2.7)), we have that
R−(Coil(e)) = ∂2(D(e) + S′D∂(e)

) and |σe| ∩ |D(e) + S′D∂(e)
| = {B(e)}. Once again,

we infer that κ̀(σe, R−(Coil(e))) = 1.

Lemma 3.9. Let γ be a 1-boundary of T . Then, for every e′ ∈ E ′∂ , we have

κ̀
(
γ,R−(σB′ (e

′))
)

= 0 .

Proof. If e′ ∈ E ′S, then σB′ (e
′) = 0 and the result is trivial. Choose e′ ∈ E ′∂ \E ′S and

indicate by i the unique index in {0, 1, . . . , p} such that |∂1e′| ∈ E′∂,i or, equivalently,
|e′| ⊂ Γi. Since B′∂,i := (V ′∂,i, E

′
S ∩E′∂,i) is a spanning tree of A′i, there exists a unique

vertex b′i in V ′∂,i such that |C ′b′i | ⊂
⋃
e′∈E′ |e′|; namely, in the expression of C ′b′i , the

oriented dual edges in E ′∂ appear with null coefficients (see (3.1) for the definition of
C ′b′i). Let E ′∂,i be the set of oriented dual edges in E ′∂ corresponding to the edges in

E′∂,i, namely, E ′∂,i := {e′ ∈ E ′∂ | |∂1e′| ∈ E′∂,i}. For every v′ ∈ V ′∂,i, denote by c′i,v′ the
unique 1-chain of B′∂,i from b′i to v′. Let e′ ∈ E ′∂,i with ∂1e

′ = v′ −w′. Observe that
C ′v′ = C ′b′i + c′i,v′ , C

′
w′ = C ′b′i + c′i,w′ and hence

σB′ (e
′) = c′i,w′ + e′ − c′i,v′ .

It follows that |σB′ (e′)| ⊂ Γi and hence |R−(σB′ (e
′))| ⊂ (R3 \ Ω) ∪ V ′∂,i. Since ∂Ω has

a collar in R3 \ Ω, it is easy to find a 1-cycle η of R3 such that |η| ⊂ R3 \ Ω and η is
homologous to R−(σB′ (e

′)) in (R3 \Ω)∪V ′∂,i ⊂ R3 \ |γ|. Thanks to (2.2), we infer that

κ̀(γ,R−(σB′ (e
′))) = κ̀(γ, η). On the other hand, by hypothesis, γ bounds in Ω. Since

Ω ⊂ R3 \ |η|, γ bounds in R3 \ |η| as well. Equality (2.3) ensures that κ̀(γ, η) = 0, as
desired.

We are now in position to prove our results.

Proof of Theorem 3.3. We start by proving the uniqueness of the solution. Sup-
pose that S =

∑
f∈F bff is a homological Seifert surface of γ in T such that bf = 0

for every f with D(f) ∈ E ′S, namely, for every f ∈ F \ G. We must show that
bf = κ̀(R+(γ), σ(f)) for every f ∈ G. The reader observes that if f ∈ F \ G,
then σ(f) = 0 and hence κ̀(R+(γ), σ(f)) is automatically equal to 0 = bf . Choose
f∗ ∈ G. By Lemma 2.7, we infer that κ̀(R+(γ), σ(f∗)) = κ̀(γ,R−(σ(f∗))) =

κ̀(
∑
f∈G bf∂2f,R−(σ(f∗))) =

∑
f∈G bf κ̀(∂2f,R−(σ(f∗))) .

Now Lemma 3.7 implies that
∑
f∈G bf κ̀(∂2f,R−(σ(f∗))) = bf∗ . In this way, we

have that κ̀(R+(γ), σ(f∗)) = bf∗ for every f∗ ∈ G, as desired.
It remains to prove that if bf := κ̀(R+(γ), σ(f)) for every f ∈ G, then the

boundary of the 2-chain S :=
∑
f∈G bff of T is equal to γ. This is equivalent to
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CONSTRUCTION OF 2-CHAINS WITH PRESCRIBED BOUNDARY 1177

showing that the 1-cycle η := γ − ∂2S = γ − ∑f∈G bf ∂2f of T is equal to the
zero 1-chain of T . Thanks to Lemma 3.8, this is in turn equivalent to showing that

κ̀(η,R−(Coil(e))) = 0 for every e ∈ E .
Fix e ∈ E and write Coil(e) explicitly as follows: Coil(e) =

∑
e′∈E′∪E′∂ a

′
e′e
′ for

some (unique) integer a′e′ . For every e′ ∈ E ′∪E ′∂ , denote by v′(e′) and w′(e′) the dual
vertices in V ′ such that ∂1e

′ = v′(e′) −w′(e′). Since Coil(e) is a 1-cycle of A′ (a 1-
boundary of A′ indeed), we have that 0 = ∂1Coil(e) =

∑
e′∈E′∪E′∂ a

′
e′(v

′(e′)−w′(e′)).

It follows that
∑
e′∈E′∪E′∂ a

′
e′(C

′
v′(e′) − C ′w′(e′)) = 0 as well, and hence

Coil(e) =
∑

e′∈E′∪E′∂

a′e′e
′ −

∑

e′∈E′∪E′∂

a′e′(C
′
v′(e′) − C ′w′(e′)) =

∑

e′∈E′∪E′∂

a′e′σB′ (e
′).(3.5)

In this way, in order to complete the proof, it suffices to prove that κ̀(η,R−(σB′ (e
′))

= 0 for every e′ ∈ E ′ ∪ E ′∂ .
We distinguish three cases: e′ ∈ E ′S, e′ ∈ E ′ \ E ′S, and e′ ∈ E ′∂ \ E ′S.
If e′ ∈ E ′S, then σB′ (e

′) = 0 and hence κ̀(η,R−(σB′ (e
′))) = 0.

If e′ ∈ E ′ \ E ′S, then e′ = D(f∗) for some (unique) f∗ ∈ G. Bearing in mind
Lemma 3.7, we obtain

κ̀
(
η,R−(σB′ (e

′))
)

= κ̀
(
η,R−(σ(f∗))

)

= κ̀
(
γ,R−(σ(f∗))

)
−
∑

f∈G
bf κ̀

(
∂2f,R−(σ(f∗))

)

= bf∗ − bf∗ = 0.

Finally, if e′ ∈ E ′∂ \ E ′S, then Lemma 3.9 ensures that κ̀(η,R−(σB′ (e
′))) = 0,

because η is a 1-boundary of T .

We conclude with the proofs of Theorem 3.5 and its Corollary 3.6.

Proof of Theorem 3.5. Let γ be a 1-boundary of T . It is evident that the bound-
ary of any internal 2-chain of T cannot contain oriented edges determined by corner
edges of T . Hence if γ admits an internal homological Seifert surface in T , then it
must be corner-free.

Suppose γ is corner-free. Let B′ = (V ′ ∪ V ′∂ , E′S) and E ′S be as in the statement
of point (ii), and let J be the maximal plug-set of T contained in E′S. Write J as in
Remark 2.6: J = JrT ∪ J ′, where J ′ is the set of corner plugs of T belonging to J .
Denote by F∠ the set of corner faces of T inducing the corner plugs in J ′.

By Theorem 3.3, there exists, and is unique, a homological Seifert surface S =∑
f∈F bff of γ in T such that bf = 0 for every f ∈ F with D(f) ∈ E ′S. Moreover,

each bf satisfies formula (3.3).
We must prove that S is internal; namely, bf = 0 for every f ∈ F∂ . Since

J ⊂ E′S, it suffices to show the following: if g is an oriented face in F∂ such that
the corresponding (nonoriented) face belongs to F∠

∂ \ F∠, then bg = 0. Let g be
such an oriented face in F∂ . Then there exist vertices v,w, z∗, z∗∗ ∈ V∂ ∩ Γi for
some (unique) i ∈ {0, 1, . . . , p} such that the tetrahedron {v,w, z∗, z∗∗} of T is a
corner tetrahedron, its face {v,w, z∗} belongs to F∠, and the oriented face in F
corresponding to {v,w, z∗∗} is equal to g. Indicate by f the oriented face in F
corresponding to {v,w, z∗}, by e the oriented edge in E∂ corresponding to {v,w},
by e′ the oriented dual edge D∂(e) in E ′∂ , and by v′,w′ the vertices in V ′∂ such that
∂1(e′) = v′−w′. Observe that there exist, and are unique, s1, s2 ∈ {−1, 1} such that

(3.6) Coil(e) = e′ + s1D(f) + s2D(g).
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e w

v

z∗∗

z∗

t∗

∂Ω

f

g

e′
D(f) v′

w′

e′

D(g)

Fig. 10. The coil of the corner edge e in terms of e′, D(f), and D(g).

For instance, in Figure 10 we have f = [v,w, z∗] and g = [w,v, z∗∗] so s1 = 1 and
s2 = −1.

In particular, since ∂1(Coil(e)) = 0, we have

(3.7) v′ −w′ = ∂1(−s1D(f)− s2D(g)).

By hypothesis, B′∂,i := (V ′∂,i, E
′
S ∩ E′∂,i) is a spanning tree of A′i. In this way,

there exists a unique 1-chain C in B′∂,i such that ∂1(C) = w′ − v′. It follows that
σB′ (e

′) = e′+C. Moreover, by combining (3.7) with the fact that D(f) ∈ E ′S, we infer
at once that

σ(g) = −s2(−s1D(f)− s2D(g) + C) = D(g) + s1s2D(f)− s2C.

On the other hand, by (3.6), we have also that −s1D(f)− s2D(g) = e′ −Coil(e) and
hence

(3.8) σ(g) = −s2(e′−Coil(e)+C) = −s2
(
σB′ (e

′)−Coil(e)
)

= −s2σB′ (e′)+s2Coil(e).

By Lemma 3.9, we know that κ̀(γ,R−(σB′ (e
′))) = 0. Moreover, since γ is corner-

free and e ∈ E∠
∂ , Lemma 3.8 ensures that κ̀(γ,R−(Coil(e))) = 0. In this way, bearing

in mind (3.8) and Lemma 2.7, we have

bg = κ̀(R+(γ), σ(g)) = −s2 κ̀(R+(γ), σB′ (e
′)) + s2 κ̀(R+(γ),Coil(e))

= −s2 κ̀(γ,R−(σB′ (e
′))) + s2 κ̀(γ,R−(Coil(e))) = 0,

as desired. This completes the proof.

Proof of Corollary 3.6.
(i) An internal 1-boundary of T is corner-free and hence it has an internal homo-

logical Seifert surface in T by Theorem 3.5.
(ii) As above, this point follows immediately from Theorem 3.5. Indeed, if T is

the first barycentric subdivision of some triangulation of Ω, then K∠
∂ = ∅ and hence

every 1-boundary of T is corner-free.

4. An elimination algorithm. Let γ =
∑
e∈E aee be a given 1-boundary of

T . A 2-chain S =
∑
f∈F bff of T is a homological Seifert surface of γ in T if its

coefficients {bf}f∈F satisfy the following equation in C1(T ;Z):

(4.1)
∑

f∈F
bf∂2f =

∑

e∈E
aee.
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CONSTRUCTION OF 2-CHAINS WITH PRESCRIBED BOUNDARY 1179

Let us write this equation more explicitly as a linear system with as many equations
as edges and as many unknowns as faces of T . Given e ∈ E , let F(e) be the set
{f ∈ F | |e| ⊂ |f |} of oriented faces in F incident on e and let oe : F(e) −→ {−1, 1}
be the function sending f ∈ F(e) into the coefficient of e in the expression of ∂2f as a
formal linear combination of oriented edges in E . Equation (4.1) is equivalent to the
linear system ∑

f∈F(e)

oe(f)bf = ae if e ∈ E ,

where the unknowns {bf}f∈F are integers. Theorem 3.3 ensures that if B′ = (V ′ ∪
V ′∂ , E

′
S) is a Seifert dual spanning tree of T and E ′S is its set of oriented dual edges,

then the linear system
∑
f∈F(e) oe(f)bf = ae if e ∈ E ,(4.2)

bf = 0 if D(f) ∈ E ′S(4.3)

has a unique solution given by the formula

(4.4) bf = κ̀
(
R+(γ), σB′ (D(f))

)

for every f ∈ G, where G = {f ∈ F |D(f) 6∈ E ′S}.
As we recalled in the introduction, the linking number can be computed accu-

rately. However, the use of formula (4.4) is too expensive if T is fine. In fact, if v is
the number of vertices of T , g is the first Betti number of Ω, and ]G is the cardinality
of G, then ]G is greater than or equal to 1

2v+ 1− g, which is usually huge if T is fine.
Let us explain the latter assertion. Let e, f, and t be the numbers of edges, faces, and
tetrahedra of T , respectively. Let us prove that ]G = e−v+1−g ≥ 1

2v+1−g. We know
that ]G = f− (t + p) (see Remark 3.2). The Euler characteristic χ(T ) = v− e + f− t

of T is equal to the sum
∑3
j=0(−1)jrj , where rj is the rank of the jth homology

group Hj(T ;Z) of T . Since r0 = 1, r1 = g, r2 = p, and r3 = 0, we infer that
v− e + f− t = 1− g + p and hence ]G = e− v + 1− g. Recall that, in a finite graph,
the sum of degrees of its vertices equals two times the number of its edges. Apply
this result to the graph A = (V,E). Since each vertex v in V belongs to at least one
tetrahedron of T , the degree of v, as a vertex of A, is ≥ 3. It follows that e ≥ 3

2v and
hence ]G ≥ 1

2v + 1− g.
We present below a simple elimination algorithm that simplifies drastically the

construction of homological Seifert surfaces given by Theorem 3.3. Let us denote by
R the set of oriented faces f in F for which the corresponding coefficient bf is already
known. Initially, thanks to (4.3), we have that R = F \ G. If there exist edges e such
that exactly one oriented face f∗ ∈ F(e) does not belong to R, namely, if there exist
equations of linear system (4.2) with just one remaining unknown, then we compute
the coefficients bf∗ via such equations and update R. If there are no such edges and
R 6= F , then we pick an oriented face f ∈ F \ R, compute bf using explicit formula
(4.4), and update R. More precisely, the algorithm reads as follows.

Algorithm 4.1.
1. R := F \ G, D := E.
2. while R 6= F

(a) nR := card(R)
(b) for every e ∈ D

i. if every oriented face of F(e) belongs to R
A. D = D \ {e}
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ii. if exactly one oriented face f∗ ∈ F(e) does not belong to R
A. compute bf via (4.2)
B. R = R∪ {f}
C. D = D \ {e}

(c) if card(R) = nR
i. pick f 6∈ R and compute bf = κ̀(R+(γ), σB′ (D(f)))

ii. R = R∪ {f}
It is always possible to choose a Seifert dual spanning tree B′ of T in such a

way that, for some e ∈ E , exactly one oriented face f∗ ∈ F(e) does not belong to
E ′S. In fact, in many of the numerical experiments we have considered, including
knotted 1-boundaries and homologically nontrivial computational domains, when we
use breadth-first spanning trees [11], the elimination algorithm determines the ho-
mological Seifert surface directly, without computing any linking number. The only
experiment in which the elimination procedure fails is the one with a computational
domain that is a cube with a cavity following a trefoil knot and a 1-boundary γ em-
bracing the cavity. However, to compute the homological Seifert surface, it is enough,
in this case, to use once the explicit formula bf = κ̀(R+(γ), σB′ (D(f))).

Concerning the complexity of this algorithm, if the elimination procedure does
not fail, it is linear in the number of faces of the mesh. However the computational
cost of a linking number is, in the worst case, of the order of the product of the number
of faces times the number of edges and the (nonrealistic) worst scenario corresponds
to a spanning tree B′ that requires the explicit computation of the coefficient bf for
each f with D(f) 6∈ E ′S. In this case, the computational cost is of the order of the
square of the number of faces times the number of edges.

Remark 4.2. The reader observes that Algorithm 4.1 works also if γ is an arbi-
trarily 1-cycle of T . In this way, the 1-cycle γ of T is a 1-boundary of T if and
only if the 2-chain S of T computed by the algorithm applied to γ has γ itself as its
boundary, namely, if and only if ∂2S = γ.

5. Numerical results. In this section we illustrate the performance of the
method analyzed in the previous sections. We consider three sets of test problems. In
the first set we focus on the simplest situation: the computational domain is a cube
and the considered 1-boundary is a trivial polygonal knot. Then, we present two more
complicated benchmark problems where the computational domain is still a cube but
the 1-boundary is a nontrivial knot or a link. In the last set of tests the computational
domain is homologically nontrivial: first a torus with a concentric toroidal cavity and
second a cube with a knotted cavity. In the first case the 1-boundary γ that we
consider has two connected components that are circumferences, one on the external
boundary of the computational domain and the other on the boundary of the cavity.
In the second case γ is a trivial polygonal knot embracing two branches of the cavity.

As we anticipated at the end of the previous section, in all these examples but the
last one, the elimination procedure in Algorithm 4.1, 2(b)ii.A, provides the homolog-
ical Seifert surface. Only in the last example it is necessary to use once the explicit
formula bf = κ̀(R+(γ), σB′ (D(f))) in Algorithm 4.1, 2(c)i.

The algorithm has been implemented in Fortran 90 compiled with Intel Visual
Fortran. All the numerical computations have been performed by a Intel Core i7-
3720QM, with a processor at 2.60 GHz in a laptop with 16 GB of RAM.

We adopt the following strategy for the construction of a Seifert dual spanning
tree B′ of T containing a maximal plug-set J , namely, a strongly Seifert spanning tree
(see Definition 3.4):
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1. Using a breadth-first search (BFS) [11] build a spanning tree on each graph
A′i induced by A′ on the connected component Γi of ∂Ω. (We remark that
this step is usually not required in practice as indicated in Remark 5.1.)

2. Build a maximal plug-set J . That is, for each tetrahedron with at least one
face in F∂ , add exactly one plug induced by one of its faces in F∂ .

3. Form a tree in (V ′, E′) with the BFS strategy, by using all tetrahedra with
at least one face in F∂ as root.

4. If ∂Ω has more than one connected component, the preceding steps return a
forest. To obtain a spanning tree of A′, one may run the Kruskal algorithm
[11] starting from the forest already constructed.

5.1. Trivial polygonal knot in a cubic computational domain. We start
with a toy problem obtained by triangulating a cube using just 48 tetrahedra; see
Figure 11(a). A possible maximal plug-set for the toy problem is represented in
Figure 11(b). In the same picture, the dotted dual edges represent the plugs induced
by corner faces whose plugs do not belong to the maximal plug-set J . The tree
extended to the interior of the domain by running the BFS algorithm is represented
in Figure 11(c). We consider first (Example 1) the 1-boundary γ represented in
Figure 11(a). By running Algorithm 4.1, one obtains the 2-chain S, whose support
is represented in Figure 11(d). Then we consider (Example 2) the 1-boundary γ
represented in Figure 12(a) obtaining the 2-chain illustrated in 12(b). For Example 2
we repeat the computation using a finer mesh with 479,435 tetrahedra obtaining now
the homological Seifert surface in Figure 12(c). It is worth noticing that for either
Example 1 or Example 2 the surface obtained is non-self-intersecting.

Table 1 contains the information about the number of geometric elements of the
triangulation T and of the edges belonging to the support of the 1-boundary γ. It
also shows the number of faces contained in the support of the homological Seifert
surface obtained by the elimination procedure of Algorithm 4.1 with a strongly Seifert
dual spanning tree, together with the time (in milliseconds) required to obtain them.

5.2. Link and knot in a cubic computational domain. Now we present
results for more complicated benchmark problems. First we take γ as the nontrivial
knot 821 inside a cube; see Figure 13(a) (see also [29, p. 394]). Figure 13(b) represents
a zoom on γ, while Figure 13(c) illustrates the support of the 2-chain obtained by
the elimination procedure of Algorithm 4.1 with a strongly Seifert dual spanning tree.
Then we consider γ as the Hopf link inside a cube (see Figure 13(d)); in this case the

(a) (b) (c) (d)

Fig. 11. Example 1: (a) A toy problem is obtained by triangulating a cube using 48 tetrahedra.
Thicker edges represent the support of the 1-boundary γ, whereas thin edges represent the edges
of the triangulation of the cube contained in its boundary. (b) Continuous dual edges represent a
maximal plug-set J, whereas the dotted dual edges are the plugs induced by corner faces that do not
belong to J. (c) The tree is completed in the interior of the triangulation by a BFS strategy (the tree
in A′0 is not shown). (d) The support of the homological Seifert surface obtained with Algorithm 4.1,
which appears to be minimal in this case.
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(a) (b) (c)

Fig. 12. Example 2. (a) The 1-boundary γ is represented by the thicker edges. (b) The support
of the 2-chain obtained for the coarse mesh. (c) The support of the 2-chain obtained for the fine
mesh.

Table 1
Cubic computational domain with a 1-boundary that is a trivial polygonal knot. Column |γ|

reports the number of edges in the 1-boundary γ and column |S| the number of faces in the computed
homological Seifert surface. The computational time in the last column is expressed in milliseconds.

Name Tetrahedra Faces Edges Vertices |γ| |S| Time
Example 1 48 120 98 27 8 8 < 1
Example 2 48 120 98 27 12 28 < 1
Example 2 479,435 973,963 583,183 88,656 341 15,023 233

(c)(b)

(a)

(f)(e)

(d)

Fig. 13. A nontrivial knot in a cube (top): (a) the support of the 1-boundary γ is a 821 knot
placed inside a box outlined in the picture, (b) a zoom on γ, and (c) the support of the homological
Seifert surface. The Hopf link in a cube (bottom): (d) the 1-boundary γ is a Hopf link placed inside
a cube, (e) a zoom on γ, and (f) the support of the homological Seifert surface.

support of γ has two connected components. Figure 13(e) represents a zoom on γ.
Figure 13(f) shows the support of the obtained homological Seifert surface.

As in the previous set of tests, Table 2 contains the information about the number
of geometric elements of the triangulation T and of the edges belonging to the support
of the 1-boundary γ. It also shows the number of faces contained in the support of
the computed homological Seifert surface, together with the time (in milliseconds)
required to obtain them. It is worth noticing that, in a mesh with more that 800,000
tetrahedra, Algorithm 4.1 computes the homological Seifert surface of a Hopf link in
under half a second. In these two examples the computed homological Seifert surface
is self-intersecting.

D
ow

nl
oa

de
d 

05
/1

8/
17

 to
 1

58
.1

10
.1

1.
25

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONSTRUCTION OF 2-CHAINS WITH PRESCRIBED BOUNDARY 1183

Table 2
A nontrivial knot and the Hopf link in a cube. Column |γ| reports the number of edges in the

1-boundary γ and column |S| the number of faces in the computed homological Seifert surface. The
computational time in the last column is expressed in milliseconds.

Name Tetrahedra Faces Edges Vertices |γ| |S| Time
821 knot 87,221 175,317 102,212 14,117 170 2663 37
Hopf link 800,020 1,600,537 937,631 137,115 235 4841 407

(a) (b)

Fig. 14. Toric shell: (a) The support of the 1-boundary γ is a pair of disjoint circumferences,
outlined in the picture, placed on the boundary of the toric shell (namely, the difference between two
coaxial solid tori); (b) the support of the computed homological Seifert surface.

(a) (b) (c) (d)

Fig. 15. Knotted cavity: (a) The support of the 1-boundary γ is a trivial polygonal knot
embracing two branches of the cavity; (b) a zoom on γ; (c), (d) two different views of the support
of the computed homological Seifert surface.

5.3. Nontrivial computational domain. The last set of test problems con-
cerns computational domains that are topologically nontrivial. First we consider a
toric shell (a solid torus with a concentric toroidal cavity) and a 1-boundary γ given
by two disjoint circumferences, one in the exterior boundary of the computational
domain and the other in the boundary of the cavity; see Figure 14(a). The sup-
port of the homological Seifert surface computed using Algorithm 4.1 with a strongly
Seifert dual spanning tree is illustrated in Figure 14(b). It is worth noticing that it is
non-self-intersecting.

Second, we consider a cube with a knotted cavity, a thickened trefoil knot, and a
1-boundary γ that is a trivial polygonal knot embracing two branches of the cavity;
see Figure 15(a). Figure 15(b) represents a zoom on γ. For this test case the support
of the homological Seifert surface computed is illustrated in Figures 15(c) and 15(d).
Also in this case, it is non-self-intersecting. Topologically it is a torus without a disk.
It is in fact a genuine Seifert surface of the polygonal knot γ in Ω of minimal genus,
namely, genus 1. (It is like a “swollen” version of the surface in Figure 17(f) in order
to obtain an internal homological Seifert surface).

The geometrical information and the computational time for these two examples
are summarized in Table 3. Again these two experiments illustrate the effectiveness
of Algorithm 4.1: in the first one the algorithm computes the homological Seifert
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Table 3
The number of geometric elements of the triangulation and of the edges belonging to the support

of the 1-boundary γ.

Name Tetrahedra Faces Edges Vert. |γ| |S| Time
Toric shell 1,851,494 3,871,379 2,419,350 399,465 176 1662 961

Knotted cavity 8,267 16,913 10,187 1,551 13 225 < 10
Knotted cavity 529,664 1,065,104 626,566 91,127 52 10,407 309

Fig. 16. Computational complexity: computational time versus the number of tetrahedra of the
mesh and the regression line for the examples where the elimination procedure succeeds.

surface in a mesh with 1.8 million tetrahedra under a second; in the second one, even
if the elimination algorithm fails and it is necessary to use once the explicit formula
bf = κ̀(R+(γ), σB′ (D(f))), Algorithm 4.1 is extremely fast. In fact, it takes less than
10 milliseconds in a mesh with 8,000 tetrahedra and 0.3 seconds in a mesh with half
a million tetrahedra.

Concerning the computational cost of Algorithm 4.1, in Figure 16 we plot com-
putational time versus the number of tetrahedra of the meshes with more than 10,000
tetrahedra to illustrate the linear trend (for meshes with less than 10,000 tetrahedra
the computational time is under 10 milliseconds). We also plot the regression line for
the four examples with more than 10,000 tetrahedra where the elimination procedure
succeeds. For the considered examples, we can clearly see the linear behavior when
the elimination procedure succeeds and the minor influence in the computational time
of the computation of a linking number in the one example where it is required.

5.4. Using a Seifert dual spanning tree without a maximal plug-set. To
conclude this section on numerical experiments we show, in Figure 17, the homological
Seifert surfaces computed with Algorithm 4.1 using a Seifert dual spanning tree that
does not contain a maximal plug-set. The meshes and the 1-boundaries considered
are the same as in the previous examples; the difference is just in the choice of the
spanning tree.

To construct this non-strongly Seifert dual spanning tree we proceed (heuristi-
cally) in this way:

1. Build a BFS spanning tree on each graph A′i induced by A′ on the connected
component Γi of ∂Ω. We remark that this step is usually not required in
practice as indicated in Remark 5.1.
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(a) (b)
(c)

(f)(d)

(e)

Fig. 17. Homological Seifert surfaces computed using a Seifert dual spanning tree without a
maximal plug-set. (a) Example 1. (b) Example 2. (c) A nontrivial knot in a cube. (d) The Hopf
link in a cube. (e) A 1-boundary γ with two connected components in a toric shell. (f) A trivial
polygonal knot embracing two branches of a knotted cavity.

2. Build an “internal” spanning tree of the graph (V ′, E′).
3. For each Γi, add exactly one plug induced by a face in Γi.

It is worth noticing that, as proved in Theorem 3.5, when using a strongly Seifert
dual spanning tree, Algorithm 4.1 computes an internal homological Seifert surface
but this is no longer true when considering a Seifert dual spanning tree that does
not contain a maximal plug-set. In Figure 17 we show the homological Seifert surface
computed using a Seifert dual spanning tree of this kind and the surfaces computed in
Example 1, Example 2, and the two examples in nontrivial computational domains are
not internal surfaces (see Figure 17(a), (b), (e), and (f), respectively). It can also be
noticed that, in general, the strongly Seifert dual spanning tree provides homological
Seifert surfaces with reduced support with respect to the Seifert dual spanning tree
without a maximal plug-set. The unique exception is the last example; compare
Figure 15(c) or (d) and Figure 17(f).

Notice that when many homological Seifert surfaces are required on the same
triangulation, Algorithm 4.1 can be vectorized in such a way that all surfaces are
generated at once.

Remark 5.1. It is worth noticing that in all but one of the examples considered
(the exception is the example concerning a cubic domain with a knotted cavity), Algo-
rithm 4.1 is able to construct the homological Seifert surface without the computation
of any linking number. Therefore, there is no need to compute a spanning tree of each
graph A′i and even to consider the dual graph (V ′∂ , E

′
∂) on the boundary of Ω. In fact,

in the elimination step 2(b), only E ′S ∩ E ′ is used. The complete knowledge of E ′S,
namely, the construction of B′i for every i ∈ {0, 1, 2, . . . , p}, is required just in the
direct computation step.
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